
Scripting COM components in Haskell

Simon Peyton Jones �simonpj�dcs�gla�ac�uk�
University of Glasgow

Erik Meijer �erik�cs�ruu�nl�
University of Utrecht

Daan Leijen �leijen�wins�uva�nl�
University of Amsterdam

Abstract

The expressiveness of higher�order� typed languages
such as Haskell or ML makes them an attractive
medium in which to write software components� Hith�
erto� however� their use has been limited by the all�
or�nothing problem� it is hard to write just part of an
application in these languages�

Component�based programming using a binary stan�
dard such as Microsoft�s Component Object Model
�COM� o�ers a solution to this dilemma� by specify�
ing a language�independent interface between compo�
nents� This paper reports about our experience with
exploiting this opportunity in the purely�functional
language Haskell� We describe a design for integrat�
ing COM components into Haskell programs� and we
demonstrate why someone might want to script their
COM components in this way�

This paper appears in the Proceedings of the Fifth In�
ternational Conference on Software Reuse� Victoria�
British Columbia� June �����

This version includes an Appendix that is omitted from
the published paper�

� Introduction

One of the attractive features of the current vogue for
component�based programming is its language inde�
pendence� Instead of having to write an entire ap�
plication in a single language it becomes possible to
write each software component in the most suitable
language available� This possibility presents new op�
portunities to component implementors�

In this paper we propose the purely�functional lan�
guage Haskell �	
 as an attractive language for com�
ponent scripting� that is� for constructing new compo�
nents by gluing together other standard components�
Haskell supports a number of features that make this
both secure and expressive� a rich polymorphic type

system� higher order functions� lazy evaluation� and
convenient syntax ��
� In particular� we describe an
interface between Haskell and Microsoft�s Component
Object Model �COM� that makes it easy to script
COM components from a Haskell program� We make
two main contributions�

� We describe a graceful and strongly�typed inte�
gration of COM into Haskell�

� If the exercise is to be more than just 
Gosh� we
can script COM in Haskell as well as in Visual
Basic� then it is important to demonstrate some
added value from using a higher�order� typed lan�
guage� We o�er such a demonstration� in the form
of an extended case study�

We are also excited by the dual possibility� that of
writing COM components in Haskell� but that is be�
yond the scope of this paper�

� Background

Until recently it has been much easier for a client pro�
gram to use software components �libraries� classes�
abstract data types� written in the same language�

�� The speci�cation of the interface between the
component and its clients is usually given in a
language�speci�c way� for example� as C header
�les or C�� class descriptions�

�� The calling convention between client and com�
ponent is often language�speci�c� or perhaps even
unspeci�ed �because both client and component
are assumed to be compiled with the same com�
piler�

�� Programmers can assume a rather intimate cou�
pling between the address spaces of client and
component� for example� the client might pass a

�



pointer into the middle of an array� to be side�
e�ected by the component�

COM encapsulates a software component in a way
that contrasts with each of these three aspects�

� The interface between client and component is
speci�ed in IDL �COM�s Interface De�nition Lan�
guage�� For each particular language� tools are
provided to convert IDL into the corresponding
speci�cation in that language �section ��	��

� COM speci�es the client�component interface at
a binary level� independently of any particular
language or compiler �section �����

� Parameters are expected to be marshalled from
the client�s address space to the component�s ad�
dress space� and vice versa� Sometimes the two
share an address space� in which case marshalling
need do no copying� but all COM�calls provide
enough information to do such marshalling�

� Interfacing between two languages often carries
performance overheads� because of di�ering data
representation and memory�allocation policies�
When the alternative is a native�language inter�
face between client and component� these extra
overheads can seem rather unattractive�

However� anyone using COM has already bitten
the bullet� they have declared themselves willing
to accept a hit in programming convenience� and
perhaps a hit in performance �for marshalling�� in
exchange for the advantages that COM brings�

The above points are not COM�s only advantages�
For example� one of the primary motivations for using
COM concerns version control and upgrade paths for
software components� which we have not mentioned
at all� However� these additional properties are well
described elsewhere� ���� �	� �� �� �
 and do not con�
cern us further in this paper� except in so far as they
serve as motivators for people to write and use COM
components�

Also� COM is not alone in having these properties�
Numerous research projects had similar goals� in par�
ticular CORBA ���
� In fact� much of the rest of this
paper would apply to CORBA as well as COM� Un�
like COM� though� CORBA is not a binary standard�
to use CORBA for Haskell would required adding a
language binding for Haskell to some manufacturer�s
ORB� COM is much friendlier to non�mainstream lan�
guages�

� How COM works

Although there are many very fat books about COM
�e�g� ��	
�� the core technology is quite simple� a no�
table achievement� This section brie�y introduces the
key ideas� We concentrate exclusively on how COM
works� rather on why it works that way� the COM
literature deals with the latter topic in detail�

Here is how a client written in C might create and
invoke a COM object�

�� Create the object ��

err�code � CoCreateInstance � cls�id

� iface�id

� �iface�ptr

��

if �not SUCCEEDED�err�code�� 	




error recovery




�

�� Invoke a method ��

��iface�ptr��
�� iface�ptr� x� y� z ��

The procedure CoCreateInstance is best thought of
as a system call� �In real life� it takes more parame�
ters than those given above� but they are unimportant
here�� Calling CoCreateInstance creates an instance
of an object whose class identi�er� or CLSID� is passed
in cls�id� The class identi�er is a ����bit globally
unique identi�er� or GUID� Here 
globally unique�
means that the GUID is a name for the class that will
not �ever� be re�used for any other purpose anywhere
on the planet� A standard utility allows an unlimited
supply of fresh GUIDs to be generated locally� based
on the machine�s IP address and the date and time�

The code for the class is found indirectly via the sys�
tem registry� which is held in a �xed place in the
�le system� This double indirection of CLSIDs and
registry makes the client code independent of the
speci�c location of the code for the class� Next�
CoCreateInstance loads the class code into the cur�
rent process �unless it has already been loaded�� al�
ternatively� one can ask COM to create a new process
�either local or remote� to run the class code� Finally�
COM asks the class code �more precisely� the 
class
factory�� to create an instance of the class� which it
returns to the caller� In fact� what is returned is an
interface pointer� which we discuss next�

��� Interfaces and method invocation

A COM object supports one or more interfaces� each
of which has its own globally�unique interface iden�



Interface

pointer

Object

QueryInterface

AddRef

Release

other 

methods

(shared by all instances)
"Virtual function table""Vtbl pointer"

(not shared)

state

Figure �� Interface pointers

ti�er or IID� That is why CoCreateInstance takes
a second parameter� iface�id� the IID of the de�
sired interface� CoCreateInstance returns the inter�
face pointer of this interface in iface�ptr� There is
no such thing as an 
object pointer�� or 
object iden�
ti�er�� there are only interface pointers�

The IID of an interface uniquely identi�es the com�
plete signature of that interface� that is� what methods
the interface has �including what order they appear
in�� their calling convention� what arguments they
take� and what results they return� If we want to
change the signature of an interface� we must give the
new interface a di�erent IID from the old one� That
way� when a client asks for an interface with a particu�
lar IID� it knows exactly what that interface provides�

A COM interface pointer is �deep breath� a pointer to
a pointer to a table of method addresses �Figure ���
Notice the double indirection� which allows the table
of method addresses to be shared among all instances
of the class� Data speci�c to a particular instance of
the class� notably the object�s state� can be stored at
some �xed o�set from the 
vtbl pointer� �Figure ���
The format of this information is entirely up to the ob�
ject�s implementation� the client knows nothing about
it� Lastly� when a method is invoked� the interface
pointer must be passed as the �rst argument� so that
the method code can access the instance�speci�c state�
Taking all these points together� we can now see why
a method invocation looks like this�

��iface�ptr��
�� iface�ptr� x� y� z ��

None of this is language speci�c� That is� COM is
a binary interface standard� Provided the code that
creates an object instance returns an interface pointer

that points to the structures just described� the client
will be happy�

Interface pointers provide the sole way in which one
can interact with a COM object� This restriction
makes it possible to implement location transparency
�a major COM war�cry�� whereby an object�s client in�
teracts with the object in the same way regardless of
whether or not the object is in the same address space�
or even on the same machine� as the client� All that
is necessary is to build a proxy interface pointer� that
does point into the client�s address space� but whose
methods are stub procedures that marshal the data
across the border to and from the remote object�

��� Getting other interfaces

A single COM object can support more than one inter�
face� But as we have seen before CoCreateInstance
returns only one interface pointer� So how do we
get the others� Answer� every interface supports the
QueryInterface method� which maps an IID to an
interface pointer for the requested IID or fails if the
object does not support the requested interface� So�
from any interface pointer �iface�ptr� on an object
we can get to any other interface pointer �iface�ptr��
which that object implements� for example�

��iface�ptr����� iface�ptr� iid�� 	iface�ptr� �


Why 
����� Because QueryInterface is at o�set �
in every interface�

The COM speci�cation requires that QueryInterface
behaves consistently� The IUnkown interface on
an object is the identity of that object� queries
for IUnknown from any interface on an object
should all return exactly the same interface pointer�
Queries for interfaces on the same object should
always fail or always succeed� Thus� the call
��iface�ptr�����iface�ptr� iid���iface�ptr���

should not succeed at one point� but fail at another�
Finally� the set of interfaces on an object should form
an equivalence relation�

��� Reference counting

Each object keeps a reference count of all the inter�
face pointers it has handed out� When a client dis�
cards an interface pointer it should call the Release

method via that interface pointer� every interface sup�
ports the Release method� Similarly� when it dupli�
cates an interface pointer it holds� the client should
call the AddRef method via the interface pointer� ev�
ery interface also supports the AddRef method� When
an object�s reference count drops to zero it can com�



�object�

uuid��������������������C���������������
��

pointer�default�unique�

�

interface IUnknown �

HRESULT QueryInterface� �in� REFID iid�

�out� void ��ppv �


ULONG AddrRef� void �


ULONG Release� void �


�

Figure �� The IUnknown interface in IDL

mit suicide � but it is up to the object� not the client�
to cause this to happen� All the client does is make
correct calls to AddRef and Release�

��� Describing interfaces

Since every IID uniquely identi�es the signature of
the interface� it is useful to have a common language
in which to describe that signature� COM has such a
language� called IDL �Interface De�nition Language�
��
� although IDL is not part of the core COM stan�
dard� You do not have to describe an interface using
IDL� you can describe it in classical Greek prose if you
like� All COM says is that one IID must identify one
signature�

Describing an interface in IDL is useful� though� be�
cause it is a language that all COM programmers
understand� Furthermore� there are tools that read
IDL descriptions and produce language�speci�c dec�
larations and glue code� For example� the Microsoft
MIDL compiler can read IDL and produce C�� class
declarations that make COM objects look exactly like
C�� objects �or Java� or Visual Basic��

As a short example� Figure � gives the IDL description
of the IUnknown interface� the interface of which every
other is a superset� The ��� bit long constant is the
GUID for the IUnknown interface�

� Interfacing Haskell and COM

Our goal is to provide a convenient and type�secure
interface between a Haskell program and the COM
objects it manipulates� How could COM objects ap�
pear to the Haskell programmer�

Our approach� illustrated in Figure �� is broadly con�
ventional� We have built a tool� called Green Card�
that takes an IDL module M
idl� and from it generates
a Haskell module M
hs�� Object instances live in the

�In fact� rather than reading the IDL text directly� the tool

Application

M.idl M.hs Com.hs
Green

Card

Figure �� The big picture

C world �adding yet another level of indirection�� and
are accessed in the Haskell world using our previously
developed foreign language interface to C���
� Green
Card automatically generates all required stub proce�
dures and marshalling code to call C� The M
hs mod�
ule� together with a library Haskell module Com
hs�
is all that an application need import to access and
manipulate all the COM objects described by M�

��� What Green Card generates

So what does the Haskell module M export�

� For each CLSID Baz in the IDL module� module
M exports a value baz of type ClassId� This value
represents the CLSID of class Baz� ClassId is an
abstract type exported by Com
hs�

� For each IID IFoo in the IDL module� M exports�

� A new� abstract� Haskell data type IFoo�
Surprisingly� no operations are provided on
values of type IFoo�

� A value iFoo of type Interface IFoo�
This value represents the IID for IFoo�
Interface is an abstract type constructor
exported by Com
hs�

An interface pointer for an interface whose IID
is IFoo is represented by a Haskell value of type
Com IFoo� Com is an abstract type constructor
exported by Com
hs�

interrogates the type library for M� a COM object generated by

a Microsoft tool from the IDL� The Microsoft tool does all the

parsing and type�checking of the IDL� The type�library object

it produces is essentially a parse tree with methods that allow

its clients to navigate the parse tree� The tool itself is written

in Haskell and has been bootstrapped to generate the Haskell

module to access type library components�



� For each method meth in the interface IFoo� mod�
ule M exports a Haskell function meth with the
type�

meth �� a� �� � � � �� an �� Com IFoo �� IO r

Here� a�� � � � � an are the argument types expected
by meth� extracted from the method�s IDL signa�
ture� and r is its result type� �If there are many
results then meth would have a tuple result type
IO �r�� � � � � rn��� The interface pointer is passed
as the last argument for reasons we discuss later�

Notice that meth cannot be invoked on any inter�
face pointer whose type is other than Com IFoo�
so the interface is type�secure�

The result of meth has type 
IO r� rather than
simply 
r� to signal that meth might perform
some input�output� In Haskell� a function that
has type Int �� Int� say� is a function from in�
tegers to integers� no more and no less� In particu�
lar it cannot perform any input�output� All func�
tions that can perform I�O have a result type of
the form IO � � which should be read 
the type of
I�O�performing computations returning a value
of type ��� This so�called monadic I	O has be�
come the standard way to do input�output in
purely functional languages ��
� We will see an
example of how to use values of IO type in Sec�
tion 	���

� The library module Com
hs provides a generic
procedure createInstance�

createInstance �� ClassId

�� Interface i

�� IO �Com i�

Like CoCreateInstance� it takes a CLSID and
and IID� and returns an interface pointer� Unlike
the C�� procedure CoCreateInstance� however�
we use polymorphism to record the fact that the
interface pointer returned 
corresponds to� the
IID passed as argument� This somewhat un�
usual use of polymorphism elegantly captures ex�
actly what we want to say� given an IID of type
Interface � it guarantees to return an interface
pointer of type COM � � The typically implicit link�
age between the IID and the corresponding inter�
face pointer has been made explicit in the type�

The IO type has an exception mechanism that is
used to deal with the failure of createInstance�

� The library module Com
hs provides a generic
procedure queryInterface�

queryInterface �� Interface j

�� Com i

�� IO �Com j�

The �rst argument is the IID for the desired in�
terface� The second is the interface on which
we want to query for another interface� The
result is an interface for the desired interface�
Again� we use polymorphism to make sure that
the interface that is returned by queryInterface
�of type Com j� corresponds to the IID �of type
Interface j� passed as the �rst argument�

� There are no programmer�visible procedures cor�
responding to AddRef and Release� Instead�
when Haskell�s garbage collector discovers that a
value of type Com i is now inaccessible� it calls
Release on the interface pointer it encapsulates�
This is just a form of �nalization� a well�known
technique in which the garbage collector calls a
user�de�ned procedure when it releases the store
held by an object ��
�

The ability to do �nalization is not a standard
feature of Haskell� but it is readily added to a
garbage�collected language� There is a time de�
lay between when the program ceases to use an
object and when the garbage collector discovers
this fact� for critical resources whose immediate
release is essential� the object can instead be freed
explicitly by the programmer by calling Release�

��� The Agent example

These points make more sense in the context of a par�
ticular example� Suppose we took the IDL description
for Microsoft Agent� After being processed by Green
Card� we would have a Haskell module Agent
hs that
exports �among other things� the types� functions� and
values given in Figure 	�

Microsoft Agent implements cartoon characters that
pop up on the screen and talk to you ���
� The ani�
mation is supported by an agent server whose CLSID
is agentServer� and whose main interface is IAgent�
Once we have created an agent server� we can load
a character from a �le� getting a CharId in reply�
Now we can generate instances of that character us�
ing getCharacter� getting an interface pointer for the
character in return�� Having got a character� we can

�It is quite common for COM calls to return interfaces� Here�

getCharacter plays the role of createInstance� returning an

interface to the new character� The interface may be have been

created inside the agent server by a call to CoCreateInstance

but that does not concern us�



module Agent where

�� The Agent class

agentServer �� ClassID

�� The IAgent interface

data IAgent � 


 �� Agent interface type

iAgent �� Interface IAgent �� 


and its IID

type CharId � Int

load �� String �� Com IAgent �� IO CharId

getCharacter �� CharId �� Com IAgent �� IO �Com IAgentCharacter�




etc other methods of IAgent




�� The AgentCharacter interface

data IAgentCharacter � 


 �� Ditto IAgentCharacter

iAgentCharacter �� Interface IAgentCharacter

type ReqId � Int

play �� String �� Com IAgentCharacter �� IO ReqId

speak �� String �� Com IAgentCharacter �� IO ReqId

wait �� ReqId �� Com IAgentCharacter �� IO ReqId




etc other methods of IAgentCharacter




Figure 	� Exports from module Agent
hs

make it talk a sentence by calling speak� or play a
little animation by calling play�

Here is a complete example program�

module Main where

import Agent

main � comRun �

do server �� createInstance

agentServer iAgent

rob�id �� server � load �robby
acs�

robby �� server � getCharacter rob�id

robby � moveTo centerScreen

robby � show

robby � speak �Hello world�

To make sense of this� we need to know the following
Haskell lore�

� Left associative function application is written as
juxtaposition� Thus f a b means 
f applied to a
and b�� Right associative function application is
written as �� Thus f � g a means 
f applied to
g a��

� The function � is simply reverse function applica�
tion�

��� �� a �� �a��b� �� b

x � f � f x

It is used here to allow us to write the inter�
face pointer �rst in a method call� much as hap�
pens in an object oriented language� For exam�
ple� robby � speak �Hello� means the same as
speak �Hello� robby� It is for this reason that
Green Card arranges that the interface pointer is
the last parameter of each method call�

� The 
do� notation is used to sequence a series of
I�O�performing function calls� It is much more
syntactically convenient than using the bind and
unit functions of the monad� as the �rst papers
about monadic I�O did ��� ��
� For example� the
statement

robby �� server � getCharacter rob�id

performs the action server � getCharacter

rob�id and binds its result to the name robby�

Now we can read the example� The function comRun

is exported by Com
hs and has type

comRun �� IO a �� IO ��



It encapsulates a computation that accesses COM�
preceding it with initialization and following it with
�nalization�

Next� the call to createInstance creates an instance
of the agent server� The next two lines load the anima�
tion �le 
robby
acs� and create one instance of the
character� The curious intermediate value� rob�id� is
an artifact of the Agent server design� and not relevant
here� In practice we would abstract from this design
quirk and de�ne a new function createCharacter as�

createCharacter �� String �� Com IAgent

�� IO �Com IAgentCharacter�

createCharacter agent server �

do a �� server � load agent

server � getCharacter a

Finally� the character appears in the center of the
screen and is asked to speak a phrase�

��� Performance

In the past functional languages have had a reputation
for slow execution� That is no longer the case� Com�
piled Haskell programs run between � and �� times
slower than their C counterparts� depending on the
application� and faster than typical interpreted lan�
guages� For scripting applications the performance of
the Haskell program is most unlikely to be an issue�

� Why use Haskell�

One can� of course� invoke COM objects from Visual
Basic or C��� In this section we show how one can
easily build rather expressive Haskell libraries on top
of the basic interface we have seen so far� These li�
braries make extensive use of higher�order functions�
and have simple algebraic properties�

��� Extending the characters� repertoire

The methods play and speak are rather limited� We
would like to be able to de�ne new� compound method�
so that

robby � dancesAndSings

would make robby execute a sequence of play and
speak actions� Here�s how we can do that in Haskell�

type Action �

Com IAgentCharacter �� IO ReqId

dancesAndSings �� Action

dancesAndSings agent �

do agent � speak �La la la�

agent � play �Dance�

Here we have de�ned the type Action as a shorthand
to denote actions that can be performed by an agent
�like play �Dance� or dancesAndSings��

In C�� or Java one could de�ne dancesAndSings

as the method of a class that inherits from
IAgentCharacter� using implementation inheritance
to arrange to call the character�s own play or speak
procedure� To us� it seems rather unnatural to intro�
duce a type distinction between agents that can dance

and sing and agents that can danceAndSing� Object
oriented languages are good in expressing new objects
as extensions of existing objects� functional languages
are good in expressing new functions in terms of ex�
isting functions� In Visual Basic we could certainly
de�ne a procedure like dancesAndSings� but than we
could only call it using a di�erent syntax from native
methods calls�

Sub DancesAndSings �Byref Agent�

Agent
Speak ��La la la��

Agent
Play ��Dance��

End Sub






Robby
Speak ��Hello��

DancesAndSings �Robby�






If the sequence of actions a particular agent has to
perform gets long� it becomes a bit tiresome writing all
the 
agent �� parts� so we can rewrite the de�nition
as a little script� like this�

dancesAndSings �� Action

dancesAndSings agent �

agent � sequence � speak �La la la�

� play �Dance�

�

where sequence is a re�usable function that executes
a list of actions from left to right�

sequence �� �Action� �� Action

sequence �a� agent � agent � a

sequence �a�as� agent �

do agent � a� sequence as agent

Notice that the type of the �rst argument of sequence
is a list of functions that return I	O performing com�
putations� The ability to treat functions and compu�
tations as �rst�class values� and to be able to build
and decompose lists easily� has a real payo�� In Java�
C��� or VB it is much harder to de�ne custom con�



trol structures such as sequence� For example in Java
��� one would use the package java
lang
reflect to
reify classes and methods into �rst class values� or use
the Command pattern ��
 to implement a command
interpreter on top of the underlying language� Note
that in our case sequence �


� is another compos�
ite method on agents� just as dancesAndSings� and is
called in exactly the same way as a native method�

The low cost of abstraction in Haskell is even more
convincing when we de�ne a family of higher�order
functions to ease moving agents around the screen�
First we de�ne a function movePath as�

type Pos � �Int�Int�

movePath �� �Pos� �� Action

movePath path agent �

agent � �sequence
map moveTo� path

Function movePath path robby moves agent robby

along all the points in the list path� In Visual Basic
�or Java� we can de�ne a similar function quite easily
as well by using the built�in For 


 Each 


Next

control structure�

Sub MovePath �Byref Agent� Byref Path�

For Each Point In Path

Agent
MoveTo �Point�

Next point

End Sub

However� in Haskell we don�t have to rely on fore�
sight of the language designers to built in every con�
trol structure we might ever need in advance� since we
can de�ne our own custom control structures on de�
mand� Lazy evaluation and higher order functions are
essential for this kind of extensibility ��
�

We can use function movePath to construct functions
that move an agent along more speci�c �gures� such
as squares and circles�

moveSquare �� Pos �� Int �� Action

moveSquare �x�y� width agent �

agent � movePath square

where

w � width �div� �

square � � �x�w�y�w�� �x�w�y�w�

� �x�w�y�w�� �x�w�y�w�

� �x�w�y�w�

�

moveCircle �� Pos �� Int �� Action

moveCircle �x�y� radius agent �

agent � movePath circle

where

circle � � � x � �radius�cos t�

� y � �radius�sin t�

�

� t �� ���pi����

pi�

�

By re�using sequence and movePath we were able to
de�ne moveSquare and moveCircle very easily�

��� Synchronization

The Agent server manages each character as a sep�
arate� sequential process� running concurrently with
the other characters� Suppose we want one character
to sing while the other dances� we just write�

do erik � sings

simon � dances

It looks as if these take place sequentially� but actu�
ally they are done in parallel� Each character main�
tains a queue of requests it has got from the server
and performs these in sequence� Hence a call such as
erik � sings returns immediately� while erik is still
singing and then makes simon dance in parallel�

Now suppose we want daan to do something else only
when both erik and simon have terminated� how can
we ask the Agent server to do that� The answer is that
every Action returns a request ID� of type ReqId� on
which any character can wait� to synchronize on the
completion of that request� Thus�

do erikDone �� erik � sings

simonDone �� simon � dances

daan � wait erikDone�

daan � wait simonDone

daan � speak �They�re both done�

You may imagine that in a complex animation it can
be complicated to get all these synchronizations cor�
rect� We might easily wait for the wrong request ID�
or get deadlocked� or whatever� What we would like
to be able to do instead is to say something like�

�erik � sings� ���� �simon � dances�

���

�daan � speak �They�re both done��

Here ��� is an in�x operator used to compose two an�
imations in sequence� and ���� composes two anima�
tions in parallel� Since all the synchronization is now
implicit� it is much harder to get things wrong� We
can now say what we want� since we have abstracted



away from the details of the low�level synchronization
between agents�

How can we program these 
animation abstractions�
in Haskell�

To perform two animations in sequence� we need to
wait until all actions in the �rst animation are per�
formed before we can start the second� If we assume
that an animation returns the request�id of the very
last action it performs� we can wait for that one and
be sure that all other actions in that animation are
also completed� In order to be able to make an an�
imation wait for a request�id� we need to know all
characters that will perform in that animation � its

cast�� Hence� we represent animations by a pair of
an action that returns a request�id� and the cast for
that action�

type Anim �

�IO ReqId� �Com IAgentCharacter��

Using type Anim� we could �erroneously� try to de�ne
sequential composition of two animations as follows�

�action�� cast�� ��� �action�� cast�� �

�action� cast� �union� cast��

where

action �

do r� �� action�

cast� �waitFor� r�

action�

Unfortunately� this solution does not work because we
can get a deadlock when an agent is part of both an�
imations� in which case it could be waiting for itself
to terminate� We therefore take the di�erence ����
between the casts involved in the two animations�

A more subtle problem occurs when more than two an�
imations are composed in sequence� Suppose we com�
pose three animations thus� �s� ��� s�� ��� s
�
and suppose that agent daan plays a role in s� and
s
 but not s�� The deadlock�avoidance device means
that daan will not wait for s� to conclude before start�
ing whatever actions are scripted for him in s
� The
solution is a little counter�intuitive� in the compo�
sition s� ��� s�� make the cast of s� who are not
involved in s� wait for the the cast of s� to �nish�

Our �nal �and correct� version of ��� will therefore
be�

����� �� Anim �� Anim �� Anim

�action�� cast�� ��� �action�� cast�� �

�action� cast� �union� cast��

where

action �

do reqid� �� action�

�cast� �� cast�� �waitFor� reqid�

reqid� �� action�

�cast� �� cast�� �waitFor� reqid�

The operation waitFor cast reqid makes every
agent a in its input list cast wait on the given request�
id reqid� Function as �waitFor� reqid always re�
turns reqid�

waitFor �� �Com IAgentCharacter� �� ReqId

�� IO ReqId

�� �waitFor� reqid � return reqid

�a�as� �waitFor� reqid �

do a � wait reqid

as �waitFor� reqid

The de�nition of parallel composition is now easy� We
let all the agents of the second animation wait for the
�rst animation to complete and the other way around�
Note the nice duality in the implementation of the
sequential and parallel combinator� we just swap the
middle two statements�

������ �� Anim �� Anim �� Anim

�action�� cast�� ���� �action�� cast�� �

�action� cast� �union� cast��

where

action �

do reqid� �� action�

reqid� �� action�

�cast� �� cast�� �waitFor� reqid�

�cast� �� cast�� �waitFor� reqid�

In about �� lines of code we have a very clear de�nition
and implementation of two non�trivial combinators�
Using the properties of a pure lazy language we can
use equational reasoning to prove various of laws that
we expect to hold for the combinators�

x ��� �y ��� z� � �x ��� y� ��� z

x ���� �y ���� z� � �x ���� y� ���� z

x ���� y � y ���� x

Proving properties like these is not just a technical
nicety� As we have already seen� obtaining correct syn�
chronization among the characters is somewhat sub�
tle� and conducting proofs of properties like these can
reveal nasty bugs� This happened to us in practice�
when proving the associative law for ���� we discov�
ered that our previous implementation was wrong�



� What next�

So far we have described how we may access COM
objects from a Haskell program� The obvious dual is
to encapsulate a Haskell program as a COM object�
We plan to do this next� but there are some interesting
new challenges� Chief among these is that a COM
object implemented in Haskell must be supported by
a Haskell run�time system and garbage�collected heap�
While the code might be shared� we would prefer not
to create a separate heap for each object� remember
a COM object might represent a rather lightweight
thing like a button or a scroll�bar� Instead� we would
like all the Haskell objects in a process to share the
same run�time system and heap�

Besides encapsulating a Haskell program as a COM
object� we also plan to encapsulate a Haskell in�
terpreter as a COM object� which implements the
IScriptEngine interface� This allows us to use
Haskell programs to script interactive Web pages

�SCRIPT LANGUAGE��HaskellScript��

do yes �� confirm �Do you like Haskell��

document � write �if yes then �Good��

else �Really���

��SCRIPT�

or as embedded macro language for MS O�ce appli�
cations such as Word and Excel�

� Summary

The theme of this paper is that it is not only possible to
script COM components in Haskell� but also desirable
to do so�

We have described a simple way to incorporate
COM objects into Haskell�s type system� making
use of polymorphism to enforce the connection be�
tween an IID and the interface pointer returned by
queryInterface� We have also shown how one can
use higher�order functions� and �rst�class computa�
tions �that is� values of type IO ��� to de�ne powerful
new abstractions� In the Agent example� we built a
little custom�designed sub�language� or combinator li�
brary� for expressing parallel behavior�

All of this can doubtlessly be done in any program�
ming language� Mainstream scripting languages such
as Tcl and Python provide ways to interface to COM
components� and of course one can script components
in Java� Visual Basic� or C��� The claim of this paper
is simply that a higher�order� typed� garbage�collected
language such as Haskell can open up new avenues for

scripting� one would have been unlikely to come up
with the combinator library described in Section ���
in any of the above languages�

Acknowledgments

We thank the ICSR referees for their helpful comments
on the paper� We gratefully acknowledge the support
of the Oregon Graduate Institute during our sabbaticals�
funded by a contract with US Air Force Material Com�
mand �F�������	�C�

���� Machines and software were
supported in part by gifts from Microsoft Research�

References

��
 Kraig Brockschmidt� Inside OLE �second edition��
Microsoft Press� �����

��
 David Chappel� Understanding ActiveX and OLE�
Microsoft Press� �����

�	
 Adam Denning� ActiveX Controls Inside Out �second
edition�� Microsoft Press� �����

��
 J� Peterson �editor�� Report on the programming
language HASKELL version ���� Technical report�
http���www�haskell�org�� April � �����

��
 Erich Gamma� Richard Helm� Ralph Johnson� and
John Vlissides� Design Patterns� Addison�Wesley�
�����

��
 Object Management Group� The Common Object Re�
quest Broker� Architecture and Speci�cation �revision
����� Object Management Group� ���	� OMG Docu�
ment Number �	�����	�

��
 AB Hayes� Finalization in the collector interface�
In EY Bekkers and J Cohen� editors� Proceedings of
the International Workshop on Memory Management
�IWMM�	��
 St Malo� pages �������� Springer Verlag
LNCS �	�� Sept �����

��
 John Hughes� Why Functional Programming Matters�
Computer Journal� 	���������
�� �����

��
 Simon L� Peyton Jones and Philip Wadler� Imperative
functional programming� In POPL ��� pages ������
���	�

��

 Simon Peyton Jones� Thomas Nordin� and Alastair
Reid� Green Card� a foreign�language interface for
Haskell� In Proc� Haskell Workshop� �����

���
 SL Peyton Jones and J Launchbury� State in Haskell�
Lisp and Symbolic Computation� �������	�	��� �����

���
 Microsoft Press� Automation Programmers Reference�
�����

��	
 Microsoft Press� Developing for Microsoft Agent�
�����

���
 Dale Rogerson� Inside COM� Microsoft Press� �����

���
 Jon Siegel� CORBA Fundamentals and Programming�
John Wiley � Sons� �����



A Proof of associativity of ���

In order to prove that ��� is associative� we make some
assumptions about Microsoft�s agent implementation�

The �rst assumption is that the call as �waitFor� r

behaves like the identity function with a side e�ect
of letting all agents in as wait for request id r� We
assume that waitFor has no other visible side e�ect�
It then follows that waitFor distributes over set union�

�as �union� bs� �waitFor� r

� as �waitFor� r� bs �waitFor� r

or equivalently that waiting is commutative and idem�
potent�

as �waitFor� r� as �waitFor� r

� as �waitFor� r

as �waitFor� r� bs �waitFor� r

� bs �waitFor� r� as �waitFor� r

The next law states that agents don�t have to wait
twice in a row�

as �waitFor� r�
 �as �union� bs� �waitFor� r�

� �as �union� bs� �waitFor� r�

When there is no interaction between the set of agents
that are waiting and the cast of a subsequent action
then waiting can be delayed�

as �waitFor� r�� r� �� action

� r� �� action� as �waitFor� r�

Using the above laws plus standard set theory� it fol�
lows that ��� is associative�

�action��c�� ��� ��action��c�� ��� �action��c���

First� we unfold the de�nition of ���

do r� �� action�

�c� �union� c
���c� �waitFor� r�

r�
 �� do r� �� action�

c
��c� �waitFor� r�

r
 �� action


c���c
 �waitFor� r


c����c� �union� c
� �waitFor� r�


Next we �atten the sequence of actions

do r� �� action�

c���c� �waitFor� r�

c
���c� �union� c�� �waitFor� r�

r� �� action�

c
��c� �waitFor� r�

r
 �� action


r�
 �� �c���c
� �waitFor� r


c����c� �union� c
� �waitFor� r�


We rearrange the statements by applying the various
swap laws

do r� �� action�

c���c� �waitFor� r�

r� �� action�

c���c� �waitFor� r�

c
���c� �union� c�� �waitFor� r�

r
 �� action


c���c
 �waitFor� r


c����c� �union� c
� �waitFor� r


and introduce nesting again

do r�� �� do r� �� action�

c���c� �waitFor� r�

r� �� action�

c���c� �waitFor� r�

c
���c� �union� c�� �waitFor� r��

r
 �� action


�c� �union� c����c
 �waitFor� r


so that �nally� we can fold the de�nition of ���

��action��c�� ��� �action��c��� ���

�action
�c
�


