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Abstract

The expressiveness of higher-order, typed languages
such as Haskell or ML makes them an attractive
medium in which to write software components. Hith-
erto, however, their use has been limited by the all-
or-nothing problem: it is hard to write just part of an
application in these languages.

Component-based programming using a binary stan-
dard such as Microsoft’s Component Object Model
(COM) offers a solution to this dilemma, by specify-
ing a language-independent interface between compo-
nents. This paper reports about our experience with
exploiting this opportunity in the purely-functional
language Haskell. We describe a design for integrat-
ing COM components into Haskell programs, and we
demonstrate why someone might want to script their
COM components in this way.

This paper appears in the Proceedings of the Fifth In-
ternational Conference on Software Reuse, Victoria,
British Columbia, June 1998.

This version includes an Appendiz that is omitted from
the published paper.

1 Introduction

One of the attractive features of the current vogue for
component-based programming is its language inde-
pendence. Instead of having to write an entire ap-
plication in a single language it becomes possible to
write each software component in the most suitable
language available. This possibility presents new op-
portunities to component implementors.

In this paper we propose the purely-functional lan-
guage Haskell [4] as an attractive language for com-
ponent scripting; that is, for constructing new compo-
nents by gluing together other standard components.
Haskell supports a number of features that make this
both secure and expressive: a rich polymorphic type

system, higher order functions, lazy evaluation, and
convenient syntax [8]. In particular, we describe an
interface between Haskell and Microsoft’s Component
Object Model (COM) that makes it easy to script
COM components from a Haskell program. We make
two main contributions:

e We describe a graceful and strongly-typed inte-
gration of COM into Haskell.

e If the exercise is to be more than just “Gosh, we
can script COM in Haskell as well as in Visual
Basic” then it is important to demonstrate some
added value from using a higher-order, typed lan-
guage. We offer such a demonstration, in the form
of an extended case study.

We are also excited by the dual possibility: that of
writing COM components in Haskell, but that is be-
yond the scope of this paper.

2 Background

Until recently it has been much easier for a client pro-
gram to use software components (libraries, classes,
abstract data types) written in the same language:

1. The specification of the interface between the
component and its clients is usually given in a
language-specific way; for example, as C header
files or C++ class descriptions.

2. The calling convention between client and com-
ponent is often language-specific, or perhaps even
unspecified (because both client and component
are assumed to be compiled with the same com-
piler)

3. Programmers can assume a rather intimate cou-
pling between the address spaces of client and
component; for example, the client might pass a



pointer into the middle of an array, to be side-
effected by the component.

COM encapsulates a software component in a way
that contrasts with each of these three aspects:

e The interface between client and component is
specified in IDL (COM’s Interface Definition Lan-
guage). For each particular language, tools are
provided to convert IDL into the corresponding
specification in that language (section 3.4).

e COM specifies the client/component interface at
a binary level, independently of any particular
language or compiler (section 3.1).

e Parameters are expected to be marshalled from
the client’s address space to the component’s ad-
dress space, and vice versa. Sometimes the two
share an address space, in which case marshalling
need do no copying, but all COM-calls provide
enough information to do such marshalling.

e Interfacing between two languages often carries
performance overheads, because of differing data
representation and memory-allocation policies.
When the alternative is a native-language inter-
face between client and component, these extra
overheads can seem rather unattractive.

However, anyone using COM has already bitten
the bullet: they have declared themselves willing
to accept a hit in programming convenience, and
perhaps a hit in performance (for marshalling), in
exchange for the advantages that COM brings.

The above points are not COM’s only advantages.
For example, one of the primary motivations for using
COM concerns version control and upgrade paths for
software components, which we have not mentioned
at all. However, these additional properties are well
described elsewhere, [12, 14, 1, 2, 3] and do not con-
cern us further in this paper, except in so far as they
serve as motivators for people to write and use COM
components.

Also, COM is not alone in having these properties.
Numerous research projects had similar goals, in par-
ticular CORBA [15]. In fact, much of the rest of this
paper would apply to CORBA as well as COM. Un-
like COM, though, CORBA is not a binary standard,
to use CORBA for Haskell would required adding a
language binding for Haskell to some manufacturer’s
ORB. COM is much friendlier to non-mainstream lan-
guages.

3 How COM works

Although there are many very fat books about COM
(e.g. [14]), the core technology is quite simple, a no-
table achievement. This section briefly introduces the
key ideas. We concentrate exclusively on how COM
works, rather on why it works that way; the COM
literature deals with the latter topic in detail.

Here is how a client written in C might create and
invoke a COM object:

/* Create the object */
err_code = CoCreateInstance ( cls_id
, iface_id
, &iface_ptr
);
if (not SUCCEEDED(err_code)) {
...error recovery...

}

/* Invoke a method */
(xiface_ptr) [3]( iface_ptr, x, y, 2z );

The procedure CoCreateInstance is best thought of
as a system call. (In real life, it takes more parame-
ters than those given above, but they are unimportant
here.) Calling CoCreatelInstance creates an instance
of an object whose class identifier, or CLSID, is passed
in cls_id. The class identifier is a 128-bit globally
unique identifier, or GUID. Here “globally unique”
means that the GUID is a name for the class that will
not (ever) be re-used for any other purpose anywhere
on the planet. A standard utility allows an unlimited
supply of fresh GUIDs to be generated locally, based
on the machine’s IP address and the date and time.

The code for the class is found indirectly via the sys-
tem registry, which is held in a fixed place in the
file system. This double indirection of CLSIDs and
registry makes the client code independent of the
specific location of the code for the class. Next,
CoCreatelInstance loads the class code into the cur-
rent process (unless it has already been loaded); al-
ternatively, one can ask COM to create a new process
(either local or remote) to run the class code. Finally,
COM asks the class code (more precisely, the “class
factory”) to create an instance of the class, which it
returns to the caller. In fact, what is returned is an
interface pointer, which we discuss next.

3.1 Interfaces and method invocation

A COM object supports one or more interfaces, each
of which has its own globally-unique interface iden-
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Figure 1: Interface pointers

tifier or IID. That is why CoCreateInstance takes
a second parameter, iface_id, the IID of the de-
sired interface; CoCreatelInstance returns the inter-
face pointer of this interface in iface_ptr. There is
no such thing as an “object pointer”, or “object iden-
tifier”; there are only interface pointers.

The IID of an interface uniquely identifies the com-
plete signature of that interface; that is, what methods
the interface has (including what order they appear
in), their calling convention, what arguments they
take, and what results they return. If we want to
change the signature of an interface, we must give the
new interface a different IID from the old one. That
way, when a client asks for an interface with a particu-
lar IID, it knows exactly what that interface provides.

A COM interface pointer is (deep breath) a pointer to
a pointer to a table of method addresses (Figure 1).
Notice the double indirection, which allows the table
of method addresses to be shared among all instances
of the class. Data specific to a particular instance of
the class, notably the object’s state, can be stored at
some fixed offset from the “vtbl pointer” (Figure 1).
The format of this information is entirely up to the ob-
ject’s implementation; the client knows nothing about
it. Lastly, when a method is invoked, the interface
pointer must be passed as the first argument, so that
the method code can access the instance-specific state.
Taking all these points together, we can now see why
a method invocation looks like this:

(*iface_ptr) [3] ( iface_ptr, x, y, z );

None of this is language specific. That is, COM is
a binary interface standard. Provided the code that
creates an object instance returns an interface pointer

that points to the structures just described, the client
will be happy.

Interface pointers provide the sole way in which one
can interact with a COM object. This restriction
makes it possible to implement location transparency
(amajor COM war-cry), whereby an object’s client in-
teracts with the object in the same way regardless of
whether or not the object is in the same address space,
or even on the same machine, as the client. All that
is necessary is to build a prozy interface pointer, that
does point into the client’s address space, but whose
methods are stub procedures that marshal the data
across the border to and from the remote object.

3.2 Getting other interfaces

A single COM object can support more than one inter-
face. But as we have seen before CoCreateInstance
returns only one interface pointer. So how do we
get the others? Answer: every interface supports the
QueryInterface method, which maps an IID to an
interface pointer for the requested IID or fails if the
object does not support the requested interface. So,
from any interface pointer (iface_ptr) on an object
we can get to any other interface pointer (iface_ptr2)
which that object implements, for example:

(*iface_ptr) [0] ( iface_ptr, iid2, &iface_ptr2 );

Why “[0]”7 Because QueryInterface is at offset 0
in every interface.

The COM specification requires that QueryInterface
behaves consistently. =~ The IUnkown interface on
an object is the identity of that object; queries
for IUnknown from any interface on an object
should all return exactly the same interface pointer.
Queries for interfaces on the same object should
always fail or always succeed. Thus, the call
(xiface_ptr) [0] (iface_ptr, iid2,&iface_ptr2);
should not succeed at one point, but fail at another.
Finally, the set of interfaces on an object should form
an equivalence relation.

3.3 Reference counting

Each object keeps a reference count of all the inter-
face pointers it has handed out. When a client dis-
cards an interface pointer it should call the Release
method via that interface pointer; every interface sup-
ports the Release method. Similarly, when it dupli-
cates an interface pointer it holds, the client should
call the AddRef method via the interface pointer; ev-
ery interface also supports the AddRef method. When
an object’s reference count drops to zero it can com-



[object,

uuid (00000000-0000-0000-C000-000000000046) ,

pointer_default (unique)

]

interface IUnknown {

HRESULT QueryInterface( [in] REFID iid,
[out] void **ppv );

ULONG  AddrRef( void );

ULONG Release( void );

}

Figure 2: The IUnknown interface in IDL

mit suicide — but it is up to the object, not the client,
to cause this to happen. All the client does is make
correct calls to AddRef and Release.

3.4 Describing interfaces

Since every IID uniquely identifies the signature of
the interface, it is useful to have a common language
in which to describe that signature. COM has such a
language, called IDL (Interface Definition Language)
[6], although IDL is not part of the core COM stan-
dard. You do not have to describe an interface using
IDL, you can describe it in classical Greek prose if you
like. All COM says is that one IID must identify one
signature.

Describing an interface in IDL is useful, though, be-
cause it is a language that all COM programmers
understand. Furthermore, there are tools that read
IDL descriptions and produce language-specific dec-
larations and glue code. For example, the Microsoft
MIDL compiler can read IDL and produce C++ class
declarations that make COM objects look exactly like
C++ objects (or Java, or Visual Basic).

As a short example, Figure 2 gives the IDL description
of the IUnknown interface, the interface of which every
other is a superset. The 128 bit long constant is the
GUID for the IUnknown interface.

4 Interfacing Haskell and COM

Our goal is to provide a convenient and type-secure
interface between a Haskell program and the COM
objects it manipulates. How could COM objects ap-
pear to the Haskell programmer?

Our approach, illustrated in Figure 3, is broadly con-
ventional. We have built a tool, called Green Card,
that takes an IDL module M. id1, and from it generates
a Haskell module M.hs'. Object instances live in the

n fact, rather than reading the IDL text directly, the tool
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Figure 3: The big picture

C world (adding yet another level of indirection), and
are accessed in the Haskell world using our previously
developed foreign language interface to C[10]. Green
Card automatically generates all required stub proce-
dures and marshalling code to call C. The M.hs mod-
ule, together with a library Haskell module Com.hs,
is all that an application need import to access and
manipulate all the COM objects described by M.

4.1 What Green Card generates

So what does the Haskell module M export?

e For each CLSID Baz in the IDL module, module
M exports a value baz of type ClassId. This value
represents the CLSID of class Baz. ClassId is an
abstract type exported by Com.hs.

e For each IID IFoo in the IDL module, M exports:

— A new, abstract, Haskell data type IFoo.
Surprisingly, no operations are provided on
values of type IFoo.

— A value iFoo of type Interface IFoo.
This value represents the IID for IFoo.
Interface is an abstract type constructor
exported by Com.hs.

An interface pointer for an interface whose IID
is IFoo is represented by a Haskell value of type
Com IFoo. Com is an abstract type constructor
exported by Com.hs.

interrogates the type library for M, a COM object generated by
a Microsoft tool from the IDL. The Microsoft tool does all the
parsing and type-checking of the IDL. The type-library object
it produces is essentially a parse tree with methods that allow
its clients to navigate the parse tree. The tool itself is written
in Haskell and has been bootstrapped to generate the Haskell
module to access type library components.




e For each method meth in the interface IFoo, mod-

ule M exports a Haskell function meth with the
type:

meth :: a1 -> ... -=> a, => Com IFoo ->I0r

Here, a4, ..., a, are the argument types expected
by meth, extracted from the method’s IDL signa-
ture, and 7 is its result type. (If there are many
results then meth would have a tuple result type
10 (r1,...,7n).) The interface pointer is passed
as the last argument for reasons we discuss later.

Notice that meth cannot be invoked on any inter-
face pointer whose type is other than Com IFoo,
so the interface is type-secure.

The result of meth has type “I0 r” rather than
simply “r” to signal that meth might perform
some input/output. In Haskell, a function that
has type Int -> Int, say, is a function from in-
tegers to integers, no more and no less. In particu-
lar it cannot perform any input/output. All func-
tions that can perform I/O have a result type of
the form I0 7, which should be read “the type of
I/O-performing computations returning a value
of type 7”. This so-called monadic I/O has be-
come the standard way to do input/output in
purely functional languages [9]. We will see an
example of how to use values of I0 type in Sec-
tion 4.2.

The library module Com.hs provides a generic
procedure createlnstance:

ClassId
-> Interface i
-> I0 (Com i)

createInstance ::

Like CoCreateInstance, it takes a CLSID and
and IID, and returns an interface pointer. Unlike
the C++ procedure CoCreateInstance, however,
we use polymorphism to record the fact that the
interface pointer returned “corresponds to” the
IID passed as argument. This somewhat un-
usual use of polymorphism elegantly captures ex-
actly what we want to say: given an IID of type
Interface T it guarantees to return an interface
pointer of type COM 7. The typically implicit link-
age between the IID and the corresponding inter-
face pointer has been made explicit in the type.

The IO type has an exception mechanism that is
used to deal with the failure of createInstance.

The library module Com.hs provides a generic
procedure queryInterface:

queryInterface :: Interface j
-> Com i
-> 10 (Com j)

The first argument is the IID for the desired in-
terface. The second is the interface on which
we want to query for another interface. The
result is an interface for the desired interface.
Again, we use polymorphism to make sure that
the interface that is returned by queryInterface
(of type Com j) corresponds to the IID (of type
Interface j) passed as the first argument.

e There are no programmer-visible procedures cor-
responding to AddRef and Release. Instead,
when Haskell’s garbage collector discovers that a
value of type Com i is now inaccessible, it calls
Release on the interface pointer it encapsulates.
This is just a form of finalization, a well-known
technique in which the garbage collector calls a
user-defined procedure when it releases the store
held by an object [7].

The ability to do finalization is not a standard
feature of Haskell, but it is readily added to a
garbage-collected language. There is a time de-
lay between when the program ceases to use an
object and when the garbage collector discovers
this fact; for critical resources whose immediate
release is essential, the object can instead be freed
explicitly by the programmer by calling Release.

4.2 The Agent example

These points make more sense in the context of a par-
ticular example. Suppose we took the IDL description
for Microsoft Agent. After being processed by Green
Card, we would have a Haskell module Agent .hs that
exports (among other things) the types, functions, and
values given in Figure 4.

Microsoft Agent implements cartoon characters that
pop up on the screen and talk to you [13]. The ani-
mation is supported by an agent server whose CLSID
is agentServer, and whose main interface is IAgent.
Once we have created an agent server, we can load
a character from a file, getting a CharId in reply.
Now we can generate instances of that character us-
ing getCharacter, getting an interface pointer for the
character in return®. Having got a character, we can

21t is quite common for COM calls to return interfaces. Here,
getCharacter plays the role of createInstance, returning an
interface to the new character. The interface may be have been
created inside the agent server by a call to CoCreateInstance
but that does not concern us.



module Agent where

-- The Agent class
agentServer :: ClassID

-- The TAgent interface
data IAgent = ...
iAgent :: Interface IAgent --

type CharId = Int
load
getCharacter ::
...etc other methods of IAgent...

—-— The AgentCharacter interface
data IAgentCharacter = ...

iAgentCharacter ::

type Reqld = Int

...etc other methods of IAgentCharacter...

-- Agent interface type
...and its IID

: String -> Com IAgent -> IO CharId
CharId -> Com IAgent -> I0 (Com IAgentCharacter)

-- Ditto IAgentCharacter
Interface IAgentCharacter

play : String -> Com IAgentCharacter -> IO Reqld
speak :: String -> Com IAgentCharacter -> IO Reqld
wait :: Reqld -> Com IAgentCharacter -> I0 Reqld

Figure 4: Exports from module Agent.hs

make it talk a sentence by calling speak, or play a
little animation by calling play.

Here is a complete example program:

module Main where
import Agent

comRun $
do server <- createlnstance
agentServer iAgent
rob_id <- server # load '"robby.acs"
robby <- server # getCharacter rob_id
robby # moveTo centerScreen
robby # show
robby # speak "Hello world"

main =

To make sense of this, we need to know the following
Haskell lore:

e Left associative function application is written as
juxtaposition. Thus £ a b means “f applied to a
and b”. Right associative function application is
written as §. Thus £ $ g a means “f applied to
g a77 .

e The function # is simply reverse function applica-
tion.

#) :: a > (a->b) > b
x#f=1Fx

It is used here to allow us to write the inter-
face pointer first in a method call, much as hap-
pens in an object oriented language. For exam-
ple, robby # speak "Hello" means the same as
speak "Hello" robby. It is for this reason that
Green Card arranges that the interface pointer is
the last parameter of each method call.

e The “do” notation is used to sequence a series of
I/O-performing function calls. It is much more
syntactically convenient than using the bind and
unit functions of the monad, as the first papers
about monadic I/0O did [9, 11]. For example, the
statement

robby <- server # getCharacter rob_id

performs the action server # getCharacter
rob_id and binds its result to the name robby.

Now we can read the example. The function comRun
is exported by Com.hs and has type

comRun :: I0 a -> I0 ()



It encapsulates a computation that accesses COM,
preceding it with initialization and following it with
finalization.

Next, the call to createInstance creates an instance
of the agent server. The next two lines load the anima-
tion file “robby.acs” and create one instance of the
character. The curious intermediate value, rob_id, is
an artifact of the Agent server design, and not relevant
here. In practice we would abstract from this design
quirk and define a new function createCharacter as:

createCharacter :: String -> Com IAgent
-> I0 (Com IAgentCharacter)
createCharacter agent server =
do a <- server # load agent
server # getCharacter a

Finally, the character appears in the center of the
screen and is asked to speak a phrase.

4.3 Performance

In the past functional languages have had a reputation
for slow execution. That is no longer the case. Com-
piled Haskell programs run between 1 and 10 times
slower than their C counterparts, depending on the
application, and faster than typical interpreted lan-
guages. For scripting applications the performance of
the Haskell program is most unlikely to be an issue.

5 Why use Haskell?

One can, of course, invoke COM objects from Visual
Basic or C++. In this section we show how one can
easily build rather expressive Haskell libraries on top
of the basic interface we have seen so far. These li-
braries make extensive use of higher-order functions,
and have simple algebraic properties.

5.1 Extending the characters’ repertoire

The methods play and speak are rather limited. We
would like to be able to define new, compound method,
so that

robby # dancesAndSings

would make robby execute a sequence of play and
speak actions. Here’s how we can do that in Haskell:

type Action =

Com IAgentCharacter -> I0 Reqld
dancesAndSings :: Action
dancesAndSings agent =

do agent # speak "La la la"
agent # play "Dance"

Here we have defined the type Action as a shorthand
to denote actions that can be performed by an agent
(like play "Dance" or dancesAndSings).

In C++ or Java one could define dancesAndSings
as the method of a class that inherits from
IAgentCharacter, using implementation inheritance
to arrange to call the character’s own play or speak
procedure. To us, it seems rather unnatural to intro-
duce a type distinction between agents that can dance
and sing and agents that can danceAndSing. Object
oriented languages are good in expressing new objects
as extensions of existing objects, functional languages
are good in expressing new functions in terms of ex-
isting functions. In Visual Basic we could certainly
define a procedure like dancesAndSings, but than we
could only call it using a different syntax from native
methods calls:

Sub DancesAndSings (Byref Agent)
Agent.Speak ("La la la")
Agent.Play ("Dance")

End Sub

Robby.Speak ("Hello")
DancesAndSings (Robby)

If the sequence of actions a particular agent has to
perform gets long, it becomes a bit tiresome writing all
the “agent #” parts, so we can rewrite the definition
as a little script, like this:

dancesAndSings :: Action
dancesAndSings agent =
agent # sequence [ speak "La la la"
, play "Dance"

]

where sequence is a re-usable function that executes
a list of actions from left to right:

sequence :: [Action] -> Action
sequence [a] agent = agent # a
sequence (a:as) agent =

do agent # a; sequence as agent

Notice that the type of the first argument of sequence
is a list of functions that return I/O performing com-
putations. The ability to treat functions and compu-
tations as first-class values, and to be able to build
and decompose lists easily, has a real payoff. In Java,
C++, or VB it is much harder to define custom con-



trol structures such as sequence. For example in Java
1.1 one would use the package java.lang.reflect to
reify classes and methods into first class values, or use
the Command pattern [5] to implement a command
interpreter on top of the underlying language. Note
that in our case sequence [...] is another compos-
ite method on agents, just as dancesAndSings, and is
called in exactly the same way as a native method.

The low cost of abstraction in Haskell is even more
convincing when we define a family of higher-order
functions to ease moving agents around the screen.
First we define a function movePath as:

type Pos = (Int,Int)
[Pos] -> Action

movePath path agent =
agent # (sequence.map moveTo) path

movePath ::

Function movePath path robby moves agent robby
along all the points in the list path. In Visual Basic
(or Java) we can define a similar function quite easily
as well by using the built-in For ... Each ...Next
control structure:

Sub MovePath (Byref Agent, Byref Path)
For Each Point In Path
Agent .MoveTo (Point)
Next point
End Sub

However, in Haskell we don’t have to rely on fore-
sight of the language designers to built in every con-
trol structure we might ever need in advance, since we
can define our own custom control structures on de-
mand. Lazy evaluation and higher order functions are
essential for this kind of extensibility [8].

We can use function movePath to construct functions
that move an agent along more specific figures, such
as squares and circles:

moveSquare :: Pos -> Int -> Action
moveSquare (x,y) width agent =
agent # movePath square
where
w = width ‘div‘ 2
square = [ (x-w,y-w), (x+w,y-w)
, (x+w,y+w), (x-w,y+w)
, (x-w,y-w)

]

moveCircle :: Pos -> Int -> Action
moveCircle (x,y) radius agent =

agent # movePath circle
where
circle = [ ( x + (radius*cos t)
, y + (radius*sin t)
)
| t <- [0,pi/100..pil
]

By re-using sequence and movePath we were able to
define moveSquare and moveCircle very easily.

5.2 Synchronization

The Agent server manages each character as a sep-
arate, sequential process, running concurrently with
the other characters. Suppose we want one character
to sing while the other dances, we just write:

do erik # sings
simon # dances

It looks as if these take place sequentially, but actu-
ally they are done in parallel. Each character main-
tains a queue of requests it has got from the server
and performs these in sequence. Hence a call such as
erik # sings returns immediately, while erik is still
singing and then makes simon dance in parallel.

Now suppose we want daan to do something else only
when both erik and simon have terminated; how can
we ask the Agent server to do that? The answer is that
every Action returns a request ID, of type Reqld, on
which any character can wait, to synchronize on the
completion of that request. Thus:

do erikDone <- erik # sings
simonDone <- simon # dances
daan # wait erikDone;
daan # wait simonDone
daan # speak "They’re both done"

You may imagine that in a complex animation it can
be complicated to get all these synchronizations cor-
rect. We might easily wait for the wrong request ID,
or get deadlocked, or whatever. What we would like
to be able to do instead is to say something like:

(erik # sings) <||> (simon # dances)
<k>
(daan # speak "They’re both done")

Here <*> is an infix operator used to compose two an-
imations in sequence, and <| |> composes two anima-
tions in parallel. Since all the synchronization is now
implicit, it is much harder to get things wrong. We
can now say what we want, since we have abstracted



away from the details of the low-level synchronization
between agents.

How can we program these “animation abstractions”
in Haskell?

To perform two animations in sequence, we need to
wait until all actions in the first animation are per-
formed before we can start the second. If we assume
that an animation returns the request-id of the very
last action it performs, we can wait for that one and
be sure that all other actions in that animation are
also completed. In order to be able to make an an-
imation wait for a request-id, we need to know all
characters that will perform in that animation — its
“cast”. Hence, we represent animations by a pair of
an action that returns a request-id, and the cast for
that action:

type Anim =
(I0 Reqld, [Com IAgentCharacter])

Using type Anim, we could (erroneously) try to define
sequential composition of two animations as follows:

(actionl, castl) <*> (action2, cast2) =
(action, castl ‘union‘ cast2)
where
action =
do rl <- actionl
cast2 ‘waitFor‘ ri1
action2

Unfortunately, this solution does not work because we
can get a deadlock when an agent is part of both an-
imations, in which case it could be waiting for itself
to terminate. We therefore take the difference (\\)
between the casts involved in the two animations.

A more subtle problem occurs when more than two an-
imations are composed in sequence. Suppose we com-
pose three animations thus, (sl <*> s2) <¥> 3,
and suppose that agent daan plays a role in s1 and
s3 but not s2. The deadlock-avoidance device means
that daan will not wait for s2 to conclude before start-
ing whatever actions are scripted for him in s3. The
solution is a little counter-intuitive: in the compo-
sition s1 <*> s2, make the cast of s1 who are not
involved in s2 wait for the the cast of s2 to finish.

Our final (and correct) version of <*> will therefore
be:

(<*>) :: Anim -> Anim -> Anim
(actionl, castl) <*> (action2, cast2) =
(action, castl ‘union‘ cast2)

where
action =
do reqidl <- actionl
(cast2 \\ castl) ‘waitFor‘ reqidl
reqid2 <- action2
(castl \\ cast2) ‘waitFor‘ reqid2

The operation waitFor cast reqid makes every
agent a in its input list cast wait on the given request-
id reqid. Function as ‘waitFor‘ reqid always re-
turns reqid.

waitFor :: [Com IAgentCharacter] -> Reqld
-> I0 Reqld
1 ‘waitFor‘ reqid = return reqid

(a:as) ‘waitFor‘ reqid
do a # wait reqid
as ‘waitFor‘ reqid

The definition of parallel composition is now easy. We
let all the agents of the second animation wait for the
first animation to complete and the other way around.
Note the nice duality in the implementation of the
sequential and parallel combinator: we just swap the
middle two statements.

(<11>») :: Anim -> Anim -> Anim
(actionl, castl) <||> (action2, cast2) =
(action, castl ‘union‘ cast?2)
where
action =
do reqidl <- actionl
reqid2 <- action2
(cast2 // castl) ‘waitFor‘ reqidl
(castl // cast2) ‘waitFor‘ reqid2

In about 20 lines of code we have a very clear definition
and implementation of two non-trivial combinators.
Using the properties of a pure lazy language we can
use equational reasoning to prove various of laws that
we expect to hold for the combinators:

x <k> (y <x> z) = (x <k> y) <>z
x <[> (y <II> =2) <> y) <lI>z
x<lI>y = y<lI>x

Proving properties like these is not just a technical
nicety! As we have already seen, obtaining correct syn-
chronization among the characters is somewhat sub-
tle, and conducting proofs of properties like these can
reveal nasty bugs. This happened to us in practice:
when proving the associative law for <*>, we discov-
ered that our previous implementation was wrong.



6 What next?

So far we have described how we may access COM
objects from a Haskell program. The obvious dual is
to encapsulate a Haskell program as a COM object.
We plan to do this next, but there are some interesting
new challenges. Chief among these is that a COM
object implemented in Haskell must be supported by
a Haskell run-time system and garbage-collected heap.
While the code might be shared, we would prefer not
to create a separate heap for each object; remember
a COM object might represent a rather lightweight
thing like a button or a scroll-bar. Instead, we would
like all the Haskell objects in a process to share the
same run-time system and heap.

Besides encapsulating a Haskell program as a COM
object, we also plan to encapsulate a Haskell in-
terpreter as a COM object, which implements the
IScriptEngine interface. This allows us to use
Haskell programs to script interactive Web pages

<SCRIPT LANGUAGE="HaskellScript">
do yes <- confirm "Do you like Haskell?"
document # write (if yes then "Good!"
else "Really?")
</SCRIPT>

or as embedded macro language for MS Office appli-
cations such as Word and Excel.

7 Summary

The theme of this paper is that it is not only possible to
script COM components in Haskell, but also desirable
to do so.

We have described a simple way to incorporate
COM objects into Haskell’s type system, making
use of polymorphism to enforce the connection be-
tween an IID and the interface pointer returned by
queryInterface. We have also shown how one can
use higher-order functions, and first-class computa-
tions (that is, values of type I0 7), to define powerful
new abstractions. In the Agent example, we built a
little custom-designed sub-language, or combinator li-
brary, for expressing parallel behavior.

All of this can doubtlessly be done in any program-
ming language. Mainstream scripting languages such
as Tcl and Python provide ways to interface to COM
components, and of course one can script components
in Java, Visual Basic, or C++. The claim of this paper
is simply that a higher-order, typed, garbage-collected
language such as Haskell can open up new avenues for

scripting: one would have been unlikely to come up
with the combinator library described in Section 5.2
in any of the above languages.
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A Proof of associativity of <*>

In order to prove that <*> is associative, we make some
assumptions about Microsoft’s agent implementation.

The first assumption is that the call as ’waitFor’ r
behaves like the identity function with a side effect
of letting all agents in as wait for request id r. We
assume that waitFor has no other visible side effect.
It then follows that waitFor distributes over set union:

(as ‘union‘ bs) ‘waitFor‘ r

= as ‘waitFor‘ r; bs ‘waitFor‘ r

or equivalently that waiting is commutative and idem-
potent:

as ‘waitFor‘ r; as ‘waitFor‘ r

as ‘waitFor‘ r

as ‘waitFor‘ r; bs ‘waitFor‘ r

= bs ‘waitFor‘ r; as ‘waitFor‘ r
The next law states that agents don’t have to wait
twice in a row:

4

as ‘waitFor‘ rl; (as ‘union‘ bs) ‘waitFor

(as ‘union‘ bs) ‘waitFor‘ r2

When there is no interaction between the set of agents
that are waiting and the cast of a subsequent action
then waiting can be delayed.

as ‘waitFor‘ rl; r2 <- action

rl <- action; as ‘waitFor‘ r2

Using the above laws plus standard set theory, it fol-
lows that <*> is associative.

(actionl,cl) <*> ((action2,c2) <*> (action3,c3))
First, we unfold the definition of <*>

do rl <- actionl
(c2 ‘union® c3)\\c1l ‘waitFor‘ ri
r23 <- do r2 <- action2
c3\\c2 ‘waitFor‘ r2
r3 <- action3
c2\\c3 ‘waitFor‘ r3
c1\\(c2 ‘union® ¢3) ‘waitFor‘ r23

Next we flatten the sequence of actions

do rl <- actionil
c2\\c1 ‘waitFor‘ ri1
c3\\(c1 ‘union‘ c2)
r2 <- action2

‘waitFor‘ ri

r2

c3\\c2 ‘waitFor‘ r2
r3 <- action3
r23 <- (c2\\c3) ‘waitFor‘ r3

c1\\(c2 ‘union‘ c3) ‘waitFor‘ r23

We rearrange the statements by applying the various
swap laws

do rl <- actionil
c2\\cl1 ‘waitFor‘ ri1
r2 <- action2
ci\\c2 ‘waitFor‘ r2

c3\\(cl ‘union® c2) ‘waitFor‘ r2
r3 <- action3
c2\\c3 ‘waitFor‘ r3

c1\\(c2 ‘union‘ c3) ‘waitFor‘ r3

and introduce nesting again

do r12 <- do rl <- actionl
c2\\c1 ‘waitFor‘ ri1
r2 <- action2
c1\\c2 ‘waitFor‘ r2
c3\\(c1 ‘union® c2) ‘waitFor‘ ri2
r3 <- action3
(cl ‘union® c2)\\c3 ‘waitFor‘ r3

so that finally, we can fold the definition of <*>

((actionl,cl) <*> (action2,c2)) <*>
(action3,c3)



