

 The Computer Boys Take Over

 History of Computing
 William Aspray, editor

 John Agar The Government Machine: A Revolutionary History of the
Computer

 William Aspray John von Neumann and the Origins of Modern Computing

 William Aspray and Paul E. Ceruzzi, editors The Internet and American Business

 Charles J. Bashe, Lyle R. Johnson, John H. Palmer, and Emerson W. Pugh IBM ’ s
Early Computers

 Martin Campbell-Kelly From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry

 Paul E. Ceruzzi A History of Modern Computing

 I. Bernard Cohen Howard Aiken: Portrait of a Computer Pioneer

 I. Bernard Cohen and Gregory W. Welch, editors Makin ’ Numbers: Howard
Aiken and the Computer

 Nathan Ensmenger The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise

 John Hendry Innovating for Failure: Government Policy and the Early British
Computer Industry

 Michael Lindgren Glory and Failure: The Difference Engines of Johann M ü ller,
Charles Babbage, and Georg and Edvard Scheutz

 David E. Lundstrom A Few Good Men from Univac

 Ren é Moreau The Computer Comes of Age: The People, the Hardware, and the
Software

 Arthur L. Norberg Computers and Commerce: A Study of Technology and
Management at Eckert-Mauchly Computer Company, Engineering Research
Associates, and Remington Rand, 1946 – 1957

 Emerson W. Pugh Building IBM: Shaping an Industry and Its Technology

 Emerson W. Pugh Memories That Shaped an Industry

 Emerson W. Pugh, Lyle R. Johnson, and John H. Palmer IBM ’ s 360 and Early
370 Systems

 Kent C. Redmond and Thomas M. Smith From Whirlwind to MITRE: The R & D
Story of the SAGE Air Defense Computer

 Alex Roland with Philip Shiman Strategic Computing: DARPA and the Quest
for Machine Intelligence, 1983 – 1993

 Ra ú l Rojas and Ulf Hashagen, editors The First Computers: History and
Architectures

 Dorothy Stein Ada: A Life and a Legacy

 John Vardalas The Computer Revolution in Canada: Building National
Technological Competence, 1945 – 1980

 Maurice V. Wilkes Memoirs of a Computer Pioneer

 The Computer Boys Take Over
 Computers, Programmers, and the Politics of
Technical Expertise

 Nathan Ensmenger

 The MIT Press
 Cambridge, Massachusetts
 London, England

 © 2010 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

 For information about special quantity discounts, please email special_sales
@mitpress.mit.edu

 This book was set in Sabon by Toppan Best-set Premedia Limited. Printed and
bound in the United States of America.

 Library of Congress Cataloging-in-Publication Data

 Ensmenger, Nathan, 1972 –
 The computer boys take over : computers, programmers, and the politics of
technical expertise / Nathan Ensmenger.
 p. cm. — (History of computing)
 Includes bibliographical references and index.
 ISBN 978-0-262-05093-7 (hardcover : alk. paper)
1. Computer programming. 2. Computer programmers. 3. Software
engineering — History. 4. Computer software — Development — Social aspects.
I. Title.
 QA76.6.E58 2010
 005.1 — dc22

 2009052638

 10 9 8 7 6 5 4 3 2 1

 For Deborah and the boys

 Contents

 Acknowledgments ix

 1 Introduction: Computer Revolutionaries 1

 2 The Black Art of Programming 27

 3 Chess Players, Music Lovers, and Mathematicians 51

 4 Tower of Babel 83

 5 The Rise of Computer Science 111

 6 The Cosa Nostra of the Data Processing Industry 137

 7 The Professionalization of Programming 163

 8 Engineering a Solution 195

 9 Conclusions: Visible Technicians 223

 Notes 245
 Bibliography 287
 Index 315

 Acknowledgments

 This book represents the culmination of a long period of research,
writing, and intellectual exchange that has benefi ted enormously from
the contributions of numerous historians from around the globe. The
history of the computing community, although small in number, is great
in spirit, and is as welcoming a collection of scholars as I have ever
encountered.

 Two of the senior members of this community have proven particu-
larly supportive of me and my work. William Aspray has served as an
adviser and mentor from almost the beginning of my career, and has
been unfailingly generous in his time, energy, and encouragement. The
late Michael Mahoney, whose wit and erudition will be sorely missed
by the community, also served as a model of unselfi sh scholarship. It
would be impossible to detail the many ways in which both of these
scholars have informed, and continue to inform, my own thinking and
scholarship.

 This book started as a dissertation, and owes much to the friends and
advisers who guided it through its earliest incarnations. Emily Thompson,
Robert Kohler, and Walter Licht served as patient readers of many, many
early drafts, and without their kind and enlightened counsel this project
would never have made it past its infancy. Josh Buhs, Thomas Haigh,
Atsushi Akera, and the rest of my graduate school cohort listened for
years to my vague musings on the eccentricities of early computer pro-
grammers, and their feedback helped refi ne my thoughts and arguments.
Edward Bell and the rest of the crew at E. J. Bell and Associates, by
providing me with frequent opportunities to pick up consulting work,
made it possible for me to fi nish graduate school without going under
fi nancially.

 My colleagues at the University of Pennsylvania have been patient and
gracious sounding boards and mentors. Ruth Schwartz Cowan, who

x Acknowledgments

served as the chair of the department for most of the formative years of
this manuscript, allowed me time and space to balance my research and
teaching. Susan Lindee has continued that tradition. Both of them have
provided much support and encouragement. Janet Tighe has served as a
fount of wisdom and sanity for almost a decade. John Tresch and Beth
Linker have struggled alongside me in the trenches as my fellow junior
faculty members. My other senior colleagues have been endlessly giving
of their advice and solicitude. I appreciate all of them greatly.

 There are far too many archivists, librarians, and fellow historians
who contributed to this project to identify them individually here. The
Charles Babbage Institute, however, cannot go unmentioned. Not only
does the Babbage hold the vast majority of the source material used to
construct this history but also it serves as the center of gravity of the
entire history of the computing community. It also provided generous
funding in the form of the Tomash Fellowship in the History of
Information Processing. Tom Misa, Jeff Yost, and Arthur Norberg have
all served as trusted friends and advisers.

 Finally, like most academic book projects, this one has absorbed more
than its share of my time and energy outside the offi ce. Many thanks to
all of my family. My parents, Elisabeth and Stephen, made possible so
many opportunities in my life. My wife, Deborah, has been a constant
companion and source of loving support, and has been endlessly forgiv-
ing of my need to stretch the project out with “ just one more ” revision.
My three sons, Asher, Tate, and Tucker, made the process bearable by
providing joy, motivation, and strength each day.

 1

 To be a good programmer today is as much a privilege as it was to be a literate
man in the sixteenth century. This privilege leads the programmer to expect rec-
ognition and respect on the part of society. Unfortunately, such recognition is
not always realized.

 — Andrei Ershov, Aesthetics and the Human Factor in Programming , 1972

 The Computer People

 Chances are that you or someone close to you makes their living “ working
with computers. ” In the decades since the 1950s, the technical spe-
cialists most directly associated with the electronic digital computer —
 computer programmers, systems analysts, and network and database
administrators — have assumed an increasingly active and visible role in
the shaping of our modern information society. All but the smallest
organizations now have their own information technology departments
fi lled with such specialists, and in many cases they represent some of the
organization ’ s most valued — or at least most highly paid — employees. In
the United States alone there are more than three million professional
computer experts; the total worldwide estimate is nearly thirty-fi ve
million. 1 There are now more people working in computing than in all
of the other fi elds of engineering and architecture combined. In recent
years, “ computer people ” have become some of our wealthiest citizens,
most important business leaders and philanthropists, and most recog-
nized celebrities.

 It is likely, however, that unless you yourself are one of these com-
puter people, you have at best a vague notion of what it actually means
to work with computers. Even compared to other esoteric scientifi c or
technical disciplines, the work of computer specialists is opaque to out-
siders. Their activities are often regarded by nonpractitioners as being at

 Introduction: Computer Revolutionaries

2 Chapter 1

once too diffi cult and technical to be understood by mere mortals, and
too trivial and tedious to be worth the effort. The specialists themselves
talk about what they do as being a mysterious blend of art and science,
high tech and black magic. Many of the colloquial terms that are fre-
quently used to describe these experts — “ hackers, ” “ wizards, ” “ cowboys, ”
or “ gurus ” — refl ect the ambivalent fusion of wonder, awe, and suspicion
with which they are generally regarded. 2 That so many of these computer
specialists seem unwilling (or unable) to communicate to others what it
is they do or how they do it only exacerbates the apparent impenetrabil-
ity of their discipline.

 But while you might not know much about what it is that these com-
puter specialists do, you probably can at least imagine what they look
like: the stereotype of the scruffy, bearded, long-haired programmer,
wearing (inappropriately) sandals and a T-shirt, has been a staple of
popular culture since at least the early 1960s. 3 He (always a he, at least
in the stereotype) is usually curt, antisocial, and more concerned with
maintaining the integrity of the “ system ” than in being truly helpful to
the end user. 4 So recognized is this stereotype that a high degree of pro-
fi ciency in computer programming has been linked with mild forms of
Asperger ’ s syndrome and autism — the so-called geek syndrome or engi-
neer ’ s disorder. 5 Regardless of the scientifi c validity of this particular
diagnosis, the more general association of computer programming ability
with a specifi c personality type — eccentric, arrogant, and antisocial — has
a long and well-established history, and continues to defi ne how com-
puter specialists are seen by their colleagues and contemporaries. The
archetype of the modern American “ nerd ” is no longer the engineer or
scientist but rather the computer specialist. 6

 However little you might know (or care) about the habits and char-
acter of the computer people, you can at least appreciate their contribu-
tions to contemporary society. The products of their labor are everywhere
around us. We live in a society that has been so thoroughly computerized
that even the most basic human activities involve us in constant interac-
tion with computers and computer-based technologies. Most obvious are
the “ personal ” computers that many of us rely on daily to do our work,
help us study, allow us to create and access entertainment, and facilitate
communication with friends and family. Less visible, but no less signifi -
cant, are the millions of other tiny computing devices that lie hidden,
embedded within other products and technologies, quietly gathering
data, controlling processes, and communicating between components.
Your automobile almost certainly has its own computer (in fact, proba-

Introduction: Computer Revolutionaries 3

bly several), as does your cell phone, digital camera, and television. Even
more intangible are the ways in which the electronic digital computer
has transformed how we perceive and interact with our environment. In
fi elds as diverse as molecular biology, anthropology, ecology, physics,
cognitive science, economics, and medicine, the electronic digital com-
puter has been widely adopted, not only as a useful tool for gathering
and manipulating data, but also as a fundamental metaphor for under-
standing ourselves and the world around us. In fact, it would be diffi cult
to identify a single aspect of contemporary social, economic, political,
or cultural life that has not been profoundly infl uenced by computers
and computer-based technologies — and by extension, the computer spe-
cialists who designed and developed these technologies.

 Despite their omnipresence in contemporary popular culture and
sizable representation in the modern information economy, historians
have thus far devoted little attention to these ubiquitous but mysterious
computer specialists. There are, of course, whole shelves of books devoted
to the small number of inventors and entrepreneurs — Bill Gates, Steve
Jobs, and Larry Ellison, in particular — who have managed to translate
their computing expertise into fabulous wealth and personal celebrity.
There is also considerable literature on the intriguingly subversive sub-
culture of teenage computer hackers. Since the late 1970s, these geeky
adolescents have been alternatively hailed as the heroic harbingers of
the coming “ computer revolution ” or castigated as dangerous cyber-
criminals. 7 But neither of these groups is representative of the larger
computing community. Little has yet been written about the silent major-
ity of computer specialists, the vast armies of largely anonymous engi-
neers, analysts, and programmers who designed and constructed the
complex systems that make possible our increasingly computerized
society. Even basic demographic information about them can be diffi cult
to come by.

 To a certain extent, this curious neglect of the computer people, at
least in popular histories of technology, is simply the result of the con-
ventions of the genre. Compared to the celebratory and sensationalized
accounts of genius inventors, important “ fi rsts, ” and machines that
 “ changed the world ” that generally dominate such histories, the stories
of merely average computer workers would seem at fi rst glance mundane
and inconsequential. Even sophisticated academic histories of technology
have diffi culty incorporating the actions and agendas of nonelite actors,
such as end users, operators, maintenance workers, and other “ invisible
technicians. ” 8 The stories of such actors are also surprisingly diffi cult to

4 Chapter 1

document: technical specialists and other midlevel laborers rarely leave
records, or at least the kind of records that are useful and accessible to
historians. And since the community of specialists associated with the
computer encompasses a broad and diverse range of occupational cate-
gories — from academic computer scientists to corporate computer pro-
grammers to machine operators and maintenance workers — they are an
especially diffi cult group about which to generalize. It is not altogether
startling, therefore, that many conventional histories of computing focus
on easily identifi able pioneers and isolated incidents of technological
innovation.

 A subtler and more signifi cant explanation for the lack of attention
paid to computer specialists has to do with the traditional bias in the
traditional emphasis of the history of computing on the history of the
 computer . Or to be more specifi c, on the history of a particular type of
computer: the electronic, programmable, digital computer. Most histo-
ries of computing begin and for the most part end with the invention of
this particular artifact. The development of the fi rst modern electronic
computers in the late 1940s is typically regarded as the seminal moment
in the birth of the modern information age, the culmination of all the
innovations in information technology that preceded it, and the precur-
sor and enabler of all that would come after. Once the electronic
computer had embarked on its seemingly inexorable march toward
Moore ’ s law — toward ever-smaller, faster, and more affordable comput-
ing power — the eventual “ computerization ” of all of society was both
desirable and inevitable.

 This focus on the invention and perfection of the technology of elec-
tronic computing makes for a clear and compelling narrative, and pro-
vides a straightforward and largely technologically determined explanation
for the emergence of the electronic computer as the defi ning technology
of the modern era. In doing so, however, it downplays or disregards the
contributions of the majority of the computer people. Whatever it is that
they really do, the typical computer specialist has almost nothing to do
with either the design or construction of actual computers. There are
certainly engineers and technicians whose primary responsibility is build-
ing computers, but they are an increasingly rare breed, and are generally
concentrated in a small number of large and highly specialized computer
manufacturers. The vast majority of computer specialists, from the earli-
est days of commercial computing to the present, spend little time inter-
acting with — and probably understand little about — the inner workings
of an electronic computer. Their association with the computer is much

Introduction: Computer Revolutionaries 5

more tenuous and abstract. For them, the computer is not the primary
object of interest but simply a tool with which to build other tools. In
other words, the computer people are mainly concerned with the applica-
tion of computers (and computer applications), not the computer itself.

 To the degree that the history of modern computing has been domi-
nated by the history of the computer as a machine, physical artifact, and
tangible “ thing, ” the work of the average computer specialist can indeed
be regarded as merely marginal. But from the broader perspective of the
history of computerization — of the rise to dominance of the electronic
computer as the defi ning technology of the modern era, our chosen tool
for approaching almost every problem, social, economic, and political,
and the fundamental metaphor through which we understand ourselves
and our environment — then the computer people are those individuals
most directly responsible for bringing about what is arguably the most
profound social and technological development of our times. They did
so not as inventors from the traditional mold but rather as the developers
of the software (broadly defi ned to include programs, procedures, and
practices) that integrated the novel technology of electronic computing
into existing social, political, and technological networks.

 In many respects, it is the history of computer software and not of
the computer itself that is at the heart of the larger story of the great
computer revolution of the mid- to late twentieth century. What makes
the modern electronic digital computer so unique in all the history of
technology — so powerful, fl exible, and capable of being applied to such
an extraordinarily diverse range of purposes — is its ability to be recon-
fi gured, via software, into a seemingly infi nite number of devices. In fact,
it is this ability to be programmed via software that has come to encap-
sulate the essence of modern computing: for a contemporary computer
scientist, a computer is simply a device that can run a certain kind of
software program. Whether that computer is electronic, digital, or even
material is irrelevant. What matters is that it is programmable.

 From a certain modern perspective, the signifi cance of software seems
obvious. Software is what makes a computer useful. Software transforms
the latent power of the theoretically general-purpose machine into a
specifi c tool for solving real-world problems. A computer without soft-
ware is irrelevant, like an automobile without gasoline or a television set
without a broadcast signal. 9

 Software is also how most of us experience the computer. Although
we might speak casually about “ using the computer, ” as if the computer
was a specifi c, singular type of machine, most of us interact with the

6 Chapter 1

computer not as one device but instead as many. Simply by installing
new software, we can allow our computer to serve alternatively as an
email application, video game console, digital photo album, or electronic
diary. It is software that defi nes our relationship to the computer, soft-
ware that gives the computer its meaning. We might not know what kind
of computer we are using or who manufactured it but we generally know
what software we are currently using. Software is the interface between
computer and society.

 By allowing the computer to be perpetually reinvented for new pur-
poses, users, and social and economic contexts, software has transformed
what was originally intended primarily as a special-purpose technol-
ogy — essentially a glorifi ed electronic calculator — into a “ universal
machine ” that encompasses and supersedes all others, the central meta-
phor that informs our most fundamental conceptions of ourselves and
our environment, and the embodiment and enabler of our highest cul-
tural and political aspirations. Historically speaking, it has been software
that defi ned what a computer was and what it could be used for, software
that provided the crucial link between the technology of computing and
its larger socioeconomic environment. And so when people talk about
the larger process of the computerization of modern society, or speak of
the computer revolution transforming the ways in which they work, live,
consume, recreate, and engage in social and personal relationships, they
are really talking about the history of software.

 But what exactly is software? Most of us today tend to think of soft-
ware as a consumer good, a product, a prepackaged application. We
purchase (or download) a copy of Microsoft Word, Mozilla Firefox, or
World of Warcraft; install it; and use it. In this sense, software resembles
other, more familiar mass-market manufactured goods: someone, some-
where, produces some computer code, and that computer code in turn
transforms, temporarily, your computer into a word processor, Web
browser, or a gateway into the mythical world of Azeroth. Software, in
this context, is simply the set of instructions or “ code ” that controls your
computer — plus, perhaps, the physical media on which those instructions
are encoded (a CD or DVD, for example), and possibly the printed
manual that accompanied it.

 Historically speaking, however, software was not something that was
purchased off-the-shelf, nor was it a single application or product.
Rather, it was a bundle of systems, services, and support. 10 When a fi rm
in the 1950s wanted to computerize its accounting operations, for
example, the software that it had to develop included not only computer

Introduction: Computer Revolutionaries 7

code but also an analysis of existing operations, the reorganization of
procedures and personnel, the training of users, the construction of
peripheral support tools and technologies, and the production of new
manuals and other documents. 11 The concept of software encompassed
all of these meanings and more. It was not until the late 1960s
that software became a product that could be purchased separately
from a computer, and even then software as code represented only
a small component of a larger software system of services and support.
To this day, the vast majority of software is custom produced for
individual corporations in a process that resembles more the hiring
of a management consulting fi rm than the purchase of a mass-market
consumer good. 12

 Although the idea of software is central to our modern conception of
the computer as a universal machine, defi ning exactly what software is
can be surprisingly diffi cult. It was not until more than a decade after
the development of the fi rst electronic computers that the statistician
John Tukey fi rst applied the word software to those elements of a typical
computer installation that were not obviously “ tubes, transistors, wires,
tapes and the like. ” 13 Although Tukey clearly intended these other ele-
ments to include primarily computer code, by defi ning software in strictly
negative terms — software was everything not explicitly understood to be
hardware — he left open the possibility of a broader understanding of
software that would quickly be adopted throughout the nascent comput-
ing community. For example, just a few years later the head of the newly
established University of Michigan Computing Center declared that soft-
ware was essentially everything associated with computing that wasn ’ t
the computer: for the user of the center, “ the total computing facility
provided for his use, other than the hardware, is the software. ” 14 The
implication was that most users could not or did not distinguish between
the elements of the software system: tools, applications, personnel, and
procedures were all considered essential elements of the software experi-
ence. 15 By the end of the decade the term had been expanded even further
to include documentation, development methodologies, user training,
and consulting services. 16 In this broader conception of software, the true
complexity of software development as a human activity becomes appar-
ent. Unlike hardware, which is almost by defi nition a tangible thing that
can readily be isolated, identifi ed, and evaluated, software is inextricably
intertwined with the larger sociotechnical system of computing that
includes machines (computers and their associated peripherals), people
(users, designers, and developers), and processes (the corporate payroll

8 Chapter 1

system, for example). In this sense, software is an ideal illustration of
what the historians and sociologists of technology call a sociotechnical
system: that is to say, a system in which machines, people, and processes
are inextricably interconnected and interdependent. As the sociologist
John Law has suggested, the “ heterogeneous engineering ” required to
assemble such complex systems blurs the boundaries between the tech-
nological and organizational, and typically creates a process fraught
with confl ict, negotiation, disputes over professional authority, and the
confl ation of social, political, and technological agendas. 17 Nowhere is
this more true than in the history of software.

 Software is perhaps the ultimate heterogeneous technology. It exists
simultaneously as an idea, language, technology, and practice. Although
intimately associated with the computer, it also clearly transcends it. For
the most part software is invisible, ethereal, and ephemeral — and yet it
is also obviously constructed. Certain aspects of software, such as a
sorting algorithm, can be generalized and formalized as mathematical
abstractions, while others remain inescapably local and specifi c, subject
to the particular constraints imposed by corporate culture, informal
industry standards, or government regulations. In this sense, software
sits uncomfortably at the intersection of science, engineering, and busi-
ness. Software is where the technology of computing meets social rela-
tionships, organizational politics, and personal agendas. All technologies
are to a certain extent social constructions, but in the case of software,
the social dimensions of technology are particularly apparent.

 Consider, for example, the aforementioned computerized accounting
system. Much of the process of computerizing the accounting department
happened without any reference to an actual computer. The vast major-
ity of the work involved documentation and analysis: the crucial step in
designing the new system was understanding the old one, and then
modifying it to fi t the requirements of the new computing mentality.
Existing processes needed to be studied, charted, and analyzed. Clerical
workers had to be interviewed, accounting experts consulted, and depart-
mental managers informed and placated. Reports needed to be written,
fl owcharts constructed, and product specifi cations developed. The trans-
lation of established work fl ow into terms that could be understood or
implemented by a computer generally required the modifi cation of related
systems and practices. Often entire departments would need to be restruc-
tured to accommodate the new procedures.

 Only after all this study and analysis could the design of the software
even be considered. And since the development of new software fre-

Introduction: Computer Revolutionaries 9

quently required the purchase of new hardware and peripherals, another
set of actors — vendors, sales engineers, and technicians — would have to
be brought in. After the software design architecture had been estab-
lished, it would be turned over to the programmers. Although program-
ming is usually thought of in terms of the translation of a design
architecture into the coded language that a computer could understand,
in fact, most programs were written in a higher-level language that a
 human could understand. Only later would this human-readable program
be compiled into a lower-lever machine language meant only for a com-
puter. Once these various versions of the code were written and com-
piled, the software application would still need to be installed, tested,
and debugged. At each step a different set of users, experts, and techni-
cians would be involved.

 After the software had been tested and debugged (and possibly rede-
signed and reprogrammed), another series of documents — user manuals,
training materials, and marketing materials — would have to be devel-
oped. Everyone involved in the accounting system, including not only
those who interacted directly with the computerized system, such machine
operators and clerical staff, but also higher-level managers or those
members of other departments who needed to engage with or at least
understand the new system, would have to be trained. The system would
also have to be “ operated ” (a function that would eventually be taken
over by yet another piece of software, called an operating system).
Finally, the software would need to be continuously maintained — not
because the software application would “ break ” but because the context
in which it was used, or the other systems that it interacted with, included
such nontechnical systems as corporate accounting policies and govern-
mental regulations, would change over time. As much as two-thirds of
the cost of a software system was incurred after the software was devel-
oped and operational. 18

 Viewed from this historical perspective, it is easy to see the signifi cance
of software in the history of computing. Software was an ever-expanding
category that grew not only in size and scale but also in scope. As the
nuts and bolts of computer hardware became faster, more reliable, and
less expensive — and therefore increasingly invisible to the end user — the
relative importance of software became even more pronounced. 19 In
effect, for most organizations, by the end of the 1960s software had
become the computer: software, rather than the computer, had become
the focus of all discussion, debate, and dissension within the computing
community.

10 Chapter 1

 The heterogeneity of software, its inherent messiness, and permeabil-
ity, are everywhere apparent in the historical documents. Compared to
the history of computer hardware, which is characterized by regular and
remarkable progress, the history of software is replete with tension,
confl ict, failure, and disillusionment. The fi rst commercial computers
had been out for only a few years when the availability of useful and
reliable software was identifi ed as one of the critical bottlenecks hinder-
ing the expansion of the industry. 20 Unlike computer hardware, which
was constantly becoming smaller, faster, and cheaper, software always
seemed to be getting more expensive and less reliable. By the early 1960s
industry observers and corporate managers increasingly warned against
a growing “ software gap ” as well as a sense of “ frustration, ” “ disen-
chantment, ” and “ disillusionment ” with electronic computing provoked
by problems associated with the rising costs of software development. 21
By the end of the decade many were talking openly of a looming soft-
ware crisis that threatened the health and future of the entire com-
mercial computer industry. For the next several decades, corporate
managers, academic computer scientists, and government offi cials would
release ominous warnings about the desperate state of the software
industry with almost ritualistic regularity. 22 In fact, what is most striking
about much of the literature from the supposed Golden Age of the com-
puter revolution is how contentious it is, how fraught with anger and
anxiety. In an industry characterized by rapid change and innovation,
the rhetoric of the software crisis has proven remarkably persistent. The
Y2K crisis, the H1-B visa debates, and recent concerns about the loss
of programming jobs to India and Pakistan are only the most recent
manifestations of the industry ’ s apparent predilection for apocalyptic
rhetoric.

 To many observers of the computer industry, reconciling the two
dominant but opposing views of the history of computing — the glorious
history of computer hardware and the dismal history of computer soft-
ware — often has been diffi cult, if not impossible. The seeming paradox
between the inevitable progress promised by Moore ’ s Law and the per-
petual crisis in software production challenges conventional assumptions
about the progressive nature of computer technology. This is perhaps
the most signifi cant lessons to be learned from the history of software:
 There is no Moore ’ s Law for software technology . But the real problem
with software is not so much that it is “ hard ” (as computer scientist
Donald Knuth famously declared) but rather that it is inherently con-
tested; the problem was generally not that the software itself did

Introduction: Computer Revolutionaries 11

not work but instead that the work that it did do turned out to have
undesirable side effects for the organizations that used them. 23
Computerization projects created “ unusual internal implications, ”
 “ placed stress on established organizational relationships, ” and demanded
 “ skills not provided by the previous experience of people assigned to the
task. ” 24 Such projects generally crossed organizational boundaries and
disrupted existing hierarchies and power relationships. Information tech-
nology, as Thomas Whisler observed, tended to “ shift and scramble the
power structure of organizations among the various functional depart-
ments. ” 25 What might on the surface appear to be disagreements about
the particular technical challenges associated with software development
were in reality local disputes about organizational power and authority
and, more signifi cant for this purposes of this book, about the peculiar
character of the people involved with software development. Ostensibly
debates about the “ one best way ” to manage a software development
project, they were in fact a series of highly contested social negotiations
about the role of electronic computing — and computing professionals —
 in modern corporate and academic organizations.

 This is a book about the history of software, and the intersection between
the history of software and the larger social history of the computer
revolution of the mid- to late twentieth century. It is a book about how
software gets made, why, and for what purposes. Of particular concern
is the series of software crises that plagued the computer industry
throughout its early history, and the way in which these crises highlight
the heterogeneous nature of software development. Rather than treating
the software crises as a well-defi ned and universally understood phenom-
enon, as they are usually assumed to be in the industry and historical
literature, this book considers them as socially constructed historical
artifacts. It interprets debates about the core problems facing the soft-
ware industry — and more important, claims about how it could best be
resolved — within the larger context of the struggle for control over orga-
nization power and occupational authority. Specifi c claims about the
nature and extent of the crisis can be used as a lens through which to
examine broader issues in the history of software — and from there, the
larger social history of computing. As with all crises, the software crisis
can be used to reveal the hidden fault lines within a community: points
of tension between groups or individuals, differing perceptions of reality
or visions for the future, and subtle hierarchies and structures of power
relationships.

12 Chapter 1

 The focus of the book is on the consultants, analysts, programmers,
operators, and other technical specialists who build software, and the
ways in which these specialists constructed for themselves a unique
occupational identity based on their control over the nascent technology
of electronic computing. Earlier in this book these specialists were
referred to as computer people; from here on out, they will be called by
the name given to them by their contemporaries: namely, the “ computer
boys. ” This was in part a term of endearment, in part a disparagement,
and in either case, a fairly accurate representation of who these people
were: young, male, and technologically inclined. This is not to say that
there were not many female computer specialists. In fact, the computing
professions, at least in the early decades of commercial computing, were
surprisingly accepting of women. It was only later that the computing
occupations became highly masculinized. This book tells a portion of
that story.

 The book traces the history of the computer boys as they struggled
to establish a role for themselves within traditional organizational, pro-
fessional, and academic hierarchies. It focuses on the tensions that
emerged between the craft-centered practices of vocational program-
mers, the increasingly theoretical agenda of academic computer science,
and the desire of corporate managers to control and routinize the process
of software development. It describes the ways in which confl icts within
the computing community played out in the development of professional
societies, programming languages, computer science curricula, and cor-
porate training and recruitment programs. Seen from this perspective,
what are dismissed as merely internal debates about the technical fea-
tures of programming languages, the inclusion of a specifi c course in a
computer science curriculum, or the imposition of software engineering
methodologies for managing development projects are revealed rather
as strategic moves in this negotiation over professional status and
identity.

 A central theme of the book is that computer specialists possessed
skills and abilities that transcended existing boundaries between scien-
tifi c, technical, and business expertise. As the electronic computer moved
out of the laboratory and into the marketplace, it became an increasingly
valuable source of professional and institutional power and authority.
In their role as mediators between the technical system (the computer)
and its social environment (existing structures and practices), computer
programmers played a crucial role in transforming the computer from
a scientifi c instrument into a powerful tool for corporate control and

Introduction: Computer Revolutionaries 13

communication. As such, they also served as a focus for opposition to
and criticism of the use of new information technologies. To many
observers of the computer revolution of the mid-twentieth century, it
seemed as if the computer boys were taking over — not just in the corpo-
rate setting but also in government, politics, and society in general. 26

 By virtue of their control over the powerful new technology of elec-
tronic computing, however, computer specialists were granted an unprec-
edented degree of independence and authority. Their work brought them
into confl ict with established networks of power and authority. This was
particularly true in the corporate environment, where the incorporation
of new forms of information technology “ placed stresses on established
organizational relationships. ” 27 The systems they developed often
replaced, or at least substantially altered, the work of traditional white-
collar employees. 28 As the computer transformed from a tool to be
managed into a tool for management, computer specialists emerged as
powerful “ change agents ” (to use the management terminology of the
era). Faced with this perceived challenge to their occupational territory,
traditional white-collar employees attempted to reassert their control
over corporate computerization efforts. The result was a highly charged
struggle over the proper place of the programmer in traditional occupa-
tional and professional hierarchies.

 Finally, this is book about the invention of the computer user.
Historians have long suggested that technological innovators, including
the designers of electronic computers, also invent the kind of people they
expect to use their innovations. 29 The two acts of invention are in fact
inseparable: assumptions made about who will be using a technology,
how, and for what purposes inevitably infl uence its eventual design. This
means that the invention of the user, like the invention of the technology
itself, is a highly contested social process involving confl ict and negotia-
tion. The emergence and transformation of the computer boys as the
dominant group of computer users provides a fascinating glimpse into
the social and cultural history of the computer, the development of tech-
nical communities and distinctive subcultures, the relationship between
science and craft in engineering practice, and the role of technical elites
in modern corporate hierarchies. These are central research agendas in
the labor history, business history, and the history of technology to
which we as historians of computing are well suited to contribute.

 Note that the principal group of computer specialists who this book
deals with is computer programmers. Programmers were not, of course,
the only computer boys attempting to lay claim to the professional status

14 Chapter 1

and authority conveyed by the electronic computer. Systems analysts,
operations researchers, management consultants, and data processing
specialists, among others, were all associated with the emergence of the
nascent technology. In many respects, the term computer boys came to
refer more generally not simply to actual computer specialists but rather
to the whole host of smart, ambitious, and technologically inclined
experts that emerged in the immediate postwar period. But computer
programmers were the original and exemplary computer boys, and the
term programmer was applied by contemporaries to the entire range of
specialists involved with computing in this period. As much as the
various computer specialists themselves worked to differentiate them-
selves from each other — systems analysts usually saw themselves as being
distinct from programmers, and many academic computer scientists had
no time at all for occupational programmers — they were generally all
lumped together by outsiders as programmers. 30

 A Brief History of Programming

 The story of the computer boys begins, intriguingly enough, with a group
of women. These women, generally referred to by contemporaries as the
Electronic Numerical Integrator and Computer (ENIAC) “ girls ” — were
female “ human computers ” recruited by the male ENIAC engineers/
managers to “ setup ” the general-purpose ENIAC machine to perform
specifi c “ plans of computation. ” The ENIAC, which was the most widely
publicized of the wartime experiments in electronic computing, con-
tained many (but not all) of the architectural elements of the modern
computer: it was digital, electronic, and programmable. And so although
the idea of the computer program had not yet been developed, the
women of ENIAC are nevertheless widely celebrated as the world ’ s
earliest computer programmers.

 It is no coincidence that the fi rst software workers were women. The
use of the word software in this context is, of course, anachronistic — the
word itself would not be introduced until 1958 — but the hierarchical
distinctions and gender connotations it embodies — between “ hard ” tech-
nical mastery, and the “ softer, ” more social (and implicitly, of secondary
importance) aspects of computer work — are applicable even in the earli-
est of electronic computing development projects. 31 In the status hierar-
chy of the ENIAC project, it was clearly the male computer engineers
who were signifi cant. The ENIAC women, the computer programmers,
as they would later be known, were expected to simply adapt the plans

Introduction: Computer Revolutionaries 15

of computation already widely used in human computing projects to the
new technology of the electronic computer. These plans of computation
were themselves highly gendered, having been traditionally developed by
women for women (human computing had been largely feminized by the
1940s). The ENIAC women would simply set up the machine to perform
these predetermined plans; that this work would turn out to be diffi cult
and require radically innovative thinking was completely unanticipated. 32
The telephone switchboardlike appearance of the ENIAC programming
cable-and-plug panels reinforced the notion that programmers were mere
machine operators, that programming was more handicraft than science,
more feminine than masculine, more mechanical than intellectual.

 The idea that the development of hardware was the real business of
computing, and that software was at best secondary, persisted through-
out the 1940s and early 1950s. In the fi rst textbooks on computing
published in the United States, for example, John von Neumann and
Herman Goldstine outlined a clear division of labor in computing — pre-
sumably based on their experience with the ENIAC project — that clearly
distinguished between the headwork of the (male) scientist or “ planner, ”
and the handwork of the (largely female) “ coder. ” In the von Neumann
and Goldstine schema, the planner did the intellectual work of analysis
and the coder simply translated this work into a form that a computer
could understand. Coding was, according to von Neumann and Goldstine,
a “ static ” process — one that could be performed by a low-level clerical
worker. Coding implied manual labor, and mechanical translation or
rote transcription; coders were obviously low on the intellectual and
professional status hierarchy. It was not unreasonable to expect that as
was the case in the ENIAC project, most of these coders would be
women.

 To the surprise of engineers and managers at the ENIAC and other
wartime computing projects, however, programming turned out to be
much more diffi cult, time-consuming, and expensive than had originally
been imagined. What had been expected to be a straightforward process
of coding an algorithm turned out to involve many layers of analysis,
planning, testing, and debugging. For many, this unanticipated and
unwelcome divergence between expectation and reality was already a
crisis in the making. For others, the discovery of the hidden complexities
posed a stimulating intellectual challenge. For the computer scientist
Maurice Wilkes (one of the authors of the fi rst computer programming
textbook), it was a little bit of both. “ It had not occurred to me that
there was going to be any diffi culty about getting programs working, ”

16 Chapter 1

Wilkes recalls of his experience programming the EDSAC (Electronic
Delay Storage Automatic Calculator — arguably the world ’ s fi rst elec-
tronic, digital stored-program computer). “ And it was with somewhat
of a shock that I realized that for the rest of my life I was going to spend
a good deal of my time fi nding mistakes that I had made in my
programs. ” 33

 Wilkes might have been one of the fi rst to recognize the inherent dif-
fi culties of computer programming, but he was hardly the last. Particularly
in the pioneering electronic computing projects of the late 1940s and
early 1950s, involving as they did custom-built prototype machines that
were highly idiosyncratic and unreliable, programmers were required to
be at the same time scientists and tinkerers. Many of these early program-
mers were in fact migrants from scientifi c and engineering disciplines.
They acquired a reputation as being both geniuses and mavericks; as
John Backus, the inventor of the FORTRAN programming language
later described this period, programming in the 1950s was “ a black art,
a private arcane matter . . . in which the success of a program depended
primarily on the programmer ’ s private techniques and inventions. ” 34
This reputation would later come back to haunt the industry: the need
to transform the black art of programming into the “ science ” of software
engineering became a major theme of the software crisis rhetoric of the
next several decades.

 In the meantime, the computer itself was gradually being reinvented
as a business technology. The focus of electronic computing shifted from
scientifi c and military agendas (which emphasized mathematics and
highly optimized code) to electronic data processing (EDP) and informa-
tion management (in which more commercial considerations of cost,
reliability, generality, and the availability of peripherals dominated). As
general-purpose electronic computers became less expensive, more reli-
able, and better integrated into existing business processes and informa-
tion technology systems, they were adopted by a larger and more diverse
range of companies. Most of these companies did not possess large engi-
neering or even data processing departments, making the availability of
high-quality applications programs and systems tools even more essential
(and conversely, their defi ciencies even more noticeable). At the same
time, the scale and scope of computerization projects increased dramati-
cally. Whereas the fi rst generation of commercial computers were gener-
ally used to replicate existing data processing applications, by the 1950s
computers were being used for less familiar and more ambitious pur-
poses, such as management planning and control.

Introduction: Computer Revolutionaries 17

 Prior to the invention of the electronic digital computer, information
processing in the corporation had largely been handled by conventional
clerical staffs and traditional offi ce managers. There had been attempts
by aspiring “ systems managers ” to leverage expertise in the technical and
bureaucratic aspects of administration into a broader claim to authority
over the design of elaborate, custom information-processing systems. 35
In certain cases, strong-willed executives were able to use information
technology to consolidate control over lower levels of the organizational
hierarchy. For the most part, however, the use of such technologies did
not contribute to the rise of a class of technical professionals capable of
challenging the power of traditional management. 36

 As more and more corporations began to integrate electronic comput-
ers into their data processing operations, however, it became increasingly
clear that this new technology threatened the stability of the established
managerial hierarchy. Early commercial computers were large, expen-
sive, and complex technologies that required a high level of technical
competence to operate effectively. Many nontechnical managers who
had adapted readily to other innovations in offi ce technology, such as
complicated fi ling systems and tabulating machinery, were intimidated
by computers — and computer specialists. Many of them granted their
computer specialists an unprecedented degree of independence and
authority. The increasing centrality of the electronic computer to the
economic, social, and politic life of industrialized nations also started to
raise profound questions about the qualifi cations of computer workers.
Who were these computer boys who were not just processing the payroll
but also radically reshaping organizations? Despite their relatively low
status in the managerial hierarchy, they seemed to exert an undue degree
of power and autonomy. What were their qualifi cations? They were
increasingly responsible for constructing systems that were increasingly
mission and safety critical. But who were these people? Were they sci-
entists, engineers, or technicians? Should they be required to be college
educated, certifi ed by the state, or members of a professional society?

 The “ Labor Crisis ” in Programming

 One of the immediate implications of this transformation and expansion
of commercial computing was a sharp increase in the demand for busi-
ness programmers. At the fi rst-ever Conference on Training Personnel
for the Computing Machine Field, held at Wayne State University in
1956, industry observers warned of an imminent shortage of the kinds

18 Chapter 1

of programmers required by the rapidly expanding EDP industry: “ The
development of these machines is resulting in even greater recognition
of, and paying a greater premium for, the man who is above average in
training and mental ability. ” 37 By 1961, industry journals such as
 Datamation were using crisis rhetoric to describe the looming “ program-
ming gap ” that threatened the “ bright and rosy future ” of the industry. 38
A year later, Daniel McCracken talked about the “ software turmoil ”
that threatened to set back the industry. By the mid-1960s, it was widely
estimated that there were at least a hundred thousand people working
as programmers in the United States alone, with an expected immediate
demand for at least fi fty thousand more. “ Competition for programmers
has driven salaries up so fast, ” warned a contemporary article in Fortune
magazine, “ that programming has become probably the country ’ s highest
paid technological occupation. . . . Even so, some companies can ’ t fi nd
experienced programmers at any price. ” 39

 The burgeoning information technology labor shortage of the late
1950s (to apply yet another contemporary term anachronistically) was
complicated by the general lack of consensus about what skills and
characteristics were required of a good programmer. The problem was
not just simply that demand for programmers far outstripped supply. In
fact, numerous attempts to ramp up the supply of programmers, either
through in-house training programs, private vocational training schools,
or academic computer science programs, generally failed to alleviate
the growing crisis. A 1968 study by the Association for Computing
Machinery (ACM) Special Interest Group on Computer Personnel
Research (SIGCPR) warned of a growing oversupply of computer per-
sonnel: “ The ranks of the computer world are being swelled by growing
hordes of programmers, systems analysts and related personnel.
Educational, performance and professional standards are virtually non-
existent and confusion growths rampant in selecting, training, and
assigning people to do jobs. ” 40 In part this critique refl ects the immaturity
of the industry, and the lack of established institutions for educating and
certifying programmers. That similar critiques have continued to plague
the industry to this day suggest a deeper structural problem worth
exploring. As with various other iterations of information technology
labor shortages (past and present), the problem was not so much an
absolute shortage of programmers but rather a shortage of a particular
kind of programmer . What this particular kind of programmer might
look like — what skills they need to possess, what level of professionalism
they aspire to, what wages they require, and how willing they are to

Introduction: Computer Revolutionaries 19

conform to the managerial goals of the corporation — is the real question
underlying many of these debates about labor shortages and other pro-
grammer personnel crises.

 One of the perennial problems facing the computer industry, in the
1950s and 1960s as well as the present, was defi ning precisely what
characteristics or training made for a good computer programmer. As
was mentioned earlier, programming was frequently seen as a black art
whose success or failure was dependent on the idiosyncratic abilities of
individual programmers. This notion was reinforced by a series of apti-
tude tests and personality profi les that suggested that computer program-
mers, like chess masters or virtuoso musicians, were endowed with a
uniquely creative ability. Great disparities were discovered between the
productivity of individual programmers. “ When a programmer is good,
he is very, very good. But when he is bad, he is horrid, ” declared one
widely quoted IBM study of programmer performance. 41 The same study
introduced the meme — which despite the original study ’ s serious meth-
odological limitations and a general paucity of follow-up empirical
research, continues to be repeated — that a good programmer was at least
twenty-fi ve times more effi cient than his or her merely average colleague.
Whether the exact ratio of performance was precisely twenty-fi ve to one
(or a hundred to one — another commonly quoted fi gure) did not much
matter. What did matter is that whatever its defi ciencies, this study and
others seemed to confi rm plentiful anecdotal evidence that good pro-
grammers appeared to have been “ born, not made. ” 42

 It should be noted that computer programming is not by any means
the only technical occupation in which elements of both art and science
are seen as being inextricably intertwined. There is a large literature in
the history of science and technology that describes the role of intuition,
tacit knowledge, and craft technique in many technical industries. 43
Computer work is different in the degree to which this blurry boundary
is perceived to be a central contributing factor to an ongoing crisis.

 The administrative and managerial problems associated with fi nding
and keeping the “ right ” programmers was complicated by both the
newness of the discipline and the extent and duration of the early com-
puter revolution. The nascent computing professions were so pressed for
resources that they had little time to construct the institutional frame-
work required to produce and regulate software development. Almost
from their very origins university computer science programs were criti-
cized as being too theoretical in focus, too concerned with “ playing
games, making fancy programs that really do not work, [and] writing

20 Chapter 1

trick programs ” to “ discipline their own efforts so that what they say
they will do gets done on time and in practical form. ” 44 In fact, this focus
on theory served computer science well as a disciplinary strategy in the
modern research university; if it did not satisfactorily meet the needs of
industry, then so be it. Professional certifi cation programs run by the
professional societies — such as the Certifi ed Data Processor (CDP)
program offered by the National Machine Accounting Association
(NMAA, or later the Data Processing Management Association, or
DPMA) — also proved unsatisfactory for various reasons. 45 The computer
programming business appeared to many to be a free-for-all in which
 “ anyone with ten dollars can join the ACM and proclaim himself a
professional computer expert. ” 46 The competing pressures to regulate the
industry while at the same providing enough programmers to meet con-
stantly growing demand proved diffi cult to balance.

 Perhaps the most important reason why the “ personnel problem ”
dominated the industry literature during the late 1950s and early 1960s
has to do with a fundamental structural change in the nature of software
development. It was clear to most observers during this period that not
only were many more programmers required to meet the demands of a
rapidly expanding industry but also that the type and range of skills
required of programmers had changed and expanded dramatically. The
mathematical training essential for scientifi c programming was seen as
being increasingly irrelevant in the business context, which stressed the
application of specifi c knowledge, training in systems analysis, and the
ability to work well with others. New programming languages were
developed that highlighted the specifi c needs of corporate programmers:
legibility, ease of use, continuity with older data processing systems
(as was the case with RPG), and the ability to be read and understood
by corporate managers (an ostensible selling point of COBOL, for
example).

 A Crisis in Programmer Management

 The increasingly widespread use of the word software — which as we
have seen, included not only computer code but also the tools and pro-
cesses used to create it — emphasized the systemic dimensions of comput-
erization projects. Describing the products of computerization as
software — as opposed to applications or programs, for instance — implied
a much larger organizational role for computer personnel. As Willis
Ware argued in a 1965 editorial in the trade journal Datamation , “ It is

Introduction: Computer Revolutionaries 21

clear that only a part — perhaps a small part, at that — of the program-
ming process is involved with actually using a language for writing rou-
tines. ” And since the rest of the work involved required “ intellectual
activity, mathematical investigation [and] discussions between people, ”
Ware maintained, there was no easy fi x to the programming problem.
 “ All the programming language improvement in the world will not
shorten the intellectual activity, the thinking, the analysis, that is inherent
in the programming process. ” 47 Many companies did attempt to formally
differentiate between programming tasks and systems analysis, but in
practice these distinctions proved diffi cult to maintain. 48

 The merging of computer programming into systems analysis aggra-
vated the training and personnel problems of many corporations. The
principle diffi culty, contended Daniel McCracken, “ seems to be that
systems work is not so much a body of factual knowledge, as an approach
to problem solving — and no one knows how to teach the problem solving
approach. ” Perhaps even more than programming ability, the skills
associated with systems analysis were diffi cult to teach: “ All that we seem
to be able to do is let the coder work with an experienced systems man,
and hope that some of the skills get transferred by osmosis. ” 49 At the
least they were clearly not easy to replicate on the scale required by the
growing industry.

 The increasing inclusion of computer personnel as active participants
in all phases of software development, from design to implementation,
brought them into increasing contact — and confl ict — with other corpo-
rate employees. As software projects expanded in scope to encompass
not only traditional data processing applications (payroll, for example)
but also management and control, computer personnel began to encroach
on the domains of operational managers. These managers resented the
perceived impositions of the computer boys, regarding them as threats
to their occupational status and authority. 50

 The growing use of computerized “ management information systems ”
corresponded with a general shift in management practices in the postwar
period. The Second World War had produced a series of “ management
sciences ” — including operations research, game theory, and systems
analysis — all of which offered a mathematical, scientifi c approach to
business management. Many of this new breed of management consul-
tants were already familiar with the computer from their experience with
the military and pushed heavily for information technological solutions
to perceived management problems. And because these computer-based
solutions were extremely capital intensive, they were generally pitched

22 Chapter 1

to and approved by high-level executives — in many cases without any
input from the midlevel managers whose work would be most affected
by their implementation.

 The combination of “ professional management ” and computerized
management systems threatened to remove power from the hands of
local managers. In a widely cited 1958 article in the Harvard Management
Review , Harold Leavitt and Thomas Whisler predicted that within thirty
years, the combination of management science and information technol-
ogy would decimate the ranks of middle management and lead to the
centralization of managerial control. 51 Whisler would later suggest that
EDP specialists were the direct benefi ciaries of such centralization, which
occurred at the expense of traditional managers. He quoted one insur-
ance executive who claimed that “ there has actually been a lateral shift
to the EDP manager of decision-making from other department man-
agers whose departments have been computerized. ” 52 Or as one Wharton
MBA graduate warned his colleagues in a 1965 article, “ As the EDP
group takes on the role of a corporate service organization, able to cut
across organizational lines, a revolution in the organizational power
structure is bound to occur. ” 53 In a 1971 book describing How Computers
Affect Management , Rosemary Stewart argued how computer specialists
mobilized the mystery of their technology to “ impinge directly on a
manager ’ s job and be a threat to his security or status. ” 54

 In addition to this direct threat to their occupational authority, tradi-
tional managers had other reasons to resent EDP specialists. “ Computer
people tend to be young, mobile, and quantitatively oriented, and look
to their peers both for company and for approval ” suggested a 1969
 Fortune article explaining why “ Computers Can ’ t Solve Everything ” :
 “ Managers, on the other hand, are typically older and tend to regard
computer people either as mere technicians or as threats to their position
and status. ” 55 As the persistent demand for qualifi ed computer personnel
pushed up salaries and created considerable opportunities for occupation
mobility, computer personnel acquired a reputation — deserved or other-
wise — for being fl ighty, arrogant, and lacking in corporate loyalty.

 As might be expected, the perceived impositions of the computer boys
prompted a determined response from midlevel managers. By the end of
the 1960s the management literature was full of reports of a growing
crisis in “ software management. ” An infl uential 1968 report by McKinsey
and Company suggested that most computer installations were unprofi t-
able — not because the technology was not effective but rather because
 “ many otherwise effective top managements . . . have abdicated control

Introduction: Computer Revolutionaries 23

to staff specialists — good technicians who have neither the operation
experience to know the jobs that need doing nor the authority to get
them done right. ” 56 The secret to “ unlocking the computer ’ s profi t poten-
tial, ” according to the McKinsey report, was to restore the proper
balance between managers and programmers: “ Only managers can
manage the computer in the best interests of the business. The companies
that take this lesson to heart today will be the computer profi t leaders
of tomorrow. ” 57 The combination of new software development meth-
odologies and stricter administrative controls promised to eliminate
management ’ s dangerous dependency on individual programmers.

 By accusing computer specialists of being self-interested peddlers of
 “ whiz-bang ” technologies, or referring to electronic data processing as
 “ the biggest rip-off that has been perpetrated on business, industry, and
government over the past 20 years, ” managers were as much playing
organizational politics as they were responding to any real crisis. 58 In
their representation of programmers as shortsighted, self-serving techni-
cians, managers reinforced the notion that they were ill equipped to
handle big picture, mission-critical responsibilities. By redefi ning contem-
porary understandings of the nature and causes of the software crisis,
turning the focus of debate away from “ fi nding and caring for good
programmers, ” and squarely toward the problem of programmer man-
agement, the McKinsey report (among many others) also relocated the
focus of its solution, removing it from the domain of the computer spe-
cialist and placing it fi rmly in the hands of traditional managers. 59

 The growing management frustration with software systems cannot,
of course, be attributed solely to organizational politics. There is no
question that in this same period the costs of software increased dramati-
cally. In the internal language of the discipline, an “ inversion in the
hardware-software cost ratio curve ” occurred in the mid-1960s that
clearly demanded a managerial response. 60 Put more simply, the cost of
the actual computers went down at the same time that the cost of using
them (developing and maintaining software) went up. By the middle of
the decade the expenses associated with commercial data processing were
dominated by software maintenance and programmer labor rather than
equipment purchases. And since the management of labor fell under the
traditional domain of the midlevel manager, these managers quickly
developed a deep interest in the art of software development.

 At the same time that the costs of software were visibly rising, a series
of highly public software disasters — the software-related destruction of
the Mariner I spacecraft, the IBM OS/360 debacle, and a devastating

24 Chapter 1

criticism of contemporary EDP practices published by McKinsey and
Company — lent credence to the popular belief that an industry-wide
software crisis was imminent. The industry literature from this period is
rife with scandals, complaints, laments, and self-recriminations.

 This all suggests that by the mid-1960s, the rhetoric of crisis became
fi rmly entrenched in the vernacular of commercial computing. All of the
elements of the subsequent debates had been articulated: a widespread
critique of the artisanal practices of programmers; the growing tension
between the personnel demands of industry employers and the academic
agenda of university computer science departments; emerging turf battles
between technical experts and traditional corporate managers; and a
shared perception that software was becoming increasingly expensive,
expansive, infl uential, and out of control. The culmination of this period
of tension was the 1968 North Atlantic Treaty Organization (NATO)
Conference on Software Engineering, widely regarded as one of the
seminal moments in the history of modern software development. 61 By
defi ning the software crisis in terms of the discipline of software engineer-
ing, the NATO conference set an agenda that infl uenced many of the
technological, managerial, and professional developments in commercial
computing for the next several decades. In the interest of effi cient soft-
ware manufacturing, the black art of programming had to make way for
the science of software engineering.

 The NATO conference has achieved almost mythical status in the lit-
erature on software development. Not only did it deeply imprint the
discourse of software crisis on the consciousness of both the computer
industry and the broader public; it also introduced a compelling solution.
The general consensus among historians and practitioners alike is that
the NATO meeting marked “ a major cultural shift ” in the computing
community, the moment when computer programming “ started to make
the transition from being a craft for a long-haired programming priest-
hood to becoming a real engineering discipline. ” 62 The call to integrate
 “ good engineering principles ” into the software development process has
been the rallying cry of software developers from the late 1960s to the
present. 63 By defi ning the software crisis in terms of the discipline of
software engineering, the NATO conference set an agenda that substan-
tially infl uenced many of the technological, managerial, and professional
developments in commercial computing for the next several decades.

 And yet, despite the consensus reached at the NATO conference, the
crisis continued to rage on. Although the specifi cs varied over time, the
core issues remained the same: a perceived shortage of a certain type of

Introduction: Computer Revolutionaries 25

 “ qualifi ed ” programmer; calls to replace “ pseudo-artists [programmers]
by engineers and to treat programming as a normal branch of engineer-
ing ” ; and rising costs and increased incidence of failure. 64 In 1987, the
editors of Computerworld complained that “ the average software project
is often one year behind plan and 100% over budget. ” 65 Two years later
the House Committee on Science, Space, and Technology released a
report highly critical of the “ shoot-from-the-hip ” culture of the software
industry. Later that same year the Pentagon launched a broad campaign
to “ lick its software problems ” that included funds for a Software
Engineering Institute and the widespread adoption of the ADA program-
ming language. 66 The list of critical reports, denunciations of contempo-
rary methodologies, and proposed silver bullet solutions continued to
grow. And yet, in the words of one industry observer, by the mid-1980s
 “ the software crisis has become less a turning point than a way of life. ” 67
In the late 1990s the Y2K crisis called new public attention to this
long-standing debate; in many respects, however, it added little to an
already-established discourse. It is a rare article on software engineering
that does not make at least a token reference to the ongoing crisis. The
legacy of the past continues to shape the possibilities of the future.

 Computing as a Human Activity

 It is tempting, from the vantage point of the early twenty-fi rst century,
to view the widespread adoption of the electronic computer as an uncom-
plicated and technologically determined process, driven by the growing
informational demands of modern scientifi c, corporate, and governmen-
tal organizations along with the obvious superiority of the general-
purpose, programmable digital computer as a tool for managing and
manipulating information. Indeed, from a modern perspective, it is dif-
fi cult to imagine a more obviously useful and desirable technology. The
inherently protean nature of the electronic computer — its ability to be
easily reconfi gured, via software, to accomplish an almost infi nite number
of applications — combined with regular and impressive improvements in
the underlying hardware makes the computerization of modern society
seem, in retrospect, overdetermined, almost inevitable.

 But like all great social and technological innovations, the computer
revolution of the previous century didn ’ t just happen. It had to be made
to happen, and it had to be made to happen by individual people, not
impersonal processes. One of the most signifi cant and lasting insights of
recent scholarship in the history of technology is that technological

26 Chapter 1

innovation is as much driven by social processes as by inherent techno-
logical imperatives. That is to say, there is never a single, ideal type
toward which any given technology will inevitably evolve. Specifi c tech-
nologies are developed to solve specifi c problems, for specifi c users, in
specifi c times and places. How certain problems get defi ned as being most
in need of a solution, which users are considered most important to
design for, what other technological systems need to be provided or
accounted for, who has the power to set certain technical and economic
priorities — these are fundamentally social considerations that deeply
infl uence the process of technological development. Nowhere are the
social dimensions of technological development more apparent than in
the history of computing.

 If we take seriously the notion, foundational to the history of technol-
ogy, that the things that human beings build matter — that the vast tech-
nological systems that we construct to understand and manipulate our
environment both refl ect our social, economic, and political values, and
constrain them — then it is absolutely essential that we understand how
these systems get built, by whom, and for what purposes. If there was
indeed a computer revolution of the mid- to late twentieth century, then
computer specialists were its primary revolutionaries; it behooves us,
therefore, to understand something about who they were and what they
hoped to accomplish.

 2

 When a programmer is good, he is very, very good. But when he is bad, he is
horrid.

 — IBM study on programmer performance, 1968

 An Unexpected Revolution

 One of the great myths of the computer revolution is that nobody saw
it coming — particularly not the so-called computer experts. In one widely
repeated but apocryphal anecdote, Thomas Watson, the legendary
founder and longtime chair of the IBM Corporation, is said to
have predicted as late as 1943 a total world market for “ maybe fi ve
computers. ” The story of this wildly inaccurate forecast, alternatively
attributed to Watson, the Harvard professor and computing pioneer
Howard Aiken, or the Cambridge professor of computer science Douglas
Hartree, among others, is generally mobilized as a kind of modern moral-
ity play, a cautionary tale about the dangers of underestimating the
power and rapidity of technological progress. 1 Similar tales (similarly
apocryphal) are told about a series of unimaginative computer industry
executives — from Digital Equipment Corporation ’ s Ken Olsen to
Microsoft ’ s Bill Gates — whose alleged lack of imagination prevented
them from fully appreciating the transformative potential of computer
technology. Such stories are a staple of popular histories of the electronic
computer, which generally privilege dramatic change — sudden, unantici-
pated, and inexorable — over continuity.

 In reality, many of the predictions made by contemporaries about the
revolutionary potential of the electronic computer were, if anything,
wildly optimistic. Almost before there were any computers — functional,
modern, electronic digital stored-program computers — enthusiasts
for the new technology were confi dently anticipating its infl uence on

 The Black Art of Programming

28 Chapter 2

contemporary society. As early as 1948 the cybernetician Norbert Wiener
was predicting a “ second industrial revolution ” enabled by the electronic
computer. 2 A year later, the computer consultant Edmund Berkeley, in
his popular book Giant Brains; or, Machines That Think , described a
near future in which computers radically transform a broad range of
human cognitive and occupational activities, including business, law,
education, and medicine. 3 Despite the fact that electronic computers were
in this period little more than glorifi ed calculating machines, the provoca-
tive image of the computer as a “ giant ” or “ mechanical brain ” quickly
became established in the popular imagination. Within just a few years
of the introduction of the fi rst commercial electronic computers, even
mass-market publications like Time and Newsweek were predicting the
use of computers in wide variety of commercial and scientifi c applica-
tions. Indeed, as Stephen Schnaars and Sergio Carvalho have recently
suggested, far from underestimating its potential, during the 1950s the
press in the United States “ fell in love ” with computer technology. 4

 In the business literature in particular, the coming computer revolu-
tion was declared boldly, widely, and repeatedly. 5 The expectation was
that electronic computers would soon become an integral part of the
already large and thriving business machines industry. As Fortune maga-
zine confi dently predicted in a 1952 survey of the computer industry,
 “ offi ce robots ” were poised to “ eliminate the human element ” in many
clerical operations, enabling massive gains in productivity. 6 While these
wild predictions might have been unsettling to U.S. offi ce workers, they
did suggest a rapidly growing market for computer technology. At the
very least, the computer manufacturers were convinced that computers
were the wave of the future; in the early 1950s, dozens of fi rms — among
them such major players as IBM, GE, Burroughs, RCA, and NCR —
 invested heavily in this potential new growth market.

 And grow the market did. In 1950 there were only 2 electronic com-
puters in use in the United States. By 1955 there were 240. Five years
later, there were 5,400. By 1965, the grand total had grown to almost
25,000, and by 1970, 75,000. 7 By the end of the 1960s, electronic com-
puters and their associated peripherals formed the basis of a $20 billion
industry — an industry growing at an average rate of more than 27
percent annually. Within two decades of the development of the fi rst
electronic digital computer, the computer industry in the United States
had emerged from nothing to become one of the largest and fastest-
growing sectors of the U.S. economy — a position that it would hold for
the next several decades. 8

The Black Art of Programming 29

 Coevolving with this fl ourishing new information industry was a
novel species of technical professional: the computer programmer. In
1945 there were no computer programmers, professional or otherwise;
by 1967 industry observers were warning that although there were at
least a hundred thousand programmers working in the United States,
there was an immediate need for at least fi fty thousand more. 9
 “ Competition for programmers, ” declared a contemporary article in
 Fortune magazine, “ has driven salaries up so fast that programming has
become probably the country ’ s highest paid technological occupation.
 . . . Even so, some companies can ’ t fi nd experienced programmers at any
price. ” 10

 Of all the unanticipated consequences of the invention of the elec-
tronic computer in the mid-1940s, the most surprising was the sudden
rise to prominence of the computer programmer. While the computer
revolution itself might not have been unforeseen, the role of the computer
programmer in bringing about that revolution certainly was. In all of the
pioneering computer projects of this period, for example, programming
was considered, at best, an afterthought. It was generally assumed that
coding the computer would be a relatively simple process of translation
that could be assigned to low-level clerical personnel. It quickly became
apparent that computer programming, as it came to be known, was
anything but straightforward and simple. Skilled programmers devel-
oped a reputation for creativity and ingenuity, and programming was
considered by many to be a uniquely intellectual activity, a black art that
relied on individual ability and idiosyncratic style. By the beginning of
the 1950s, however, programming had been identifi ed as a key compo-
nent of any successful computer installation. By the early 1960s, the
 “ problem of programming ” had eclipsed all other aspects of commercial
computer development. As the electronic computer increasingly moved
out of the laboratory and into the marketplace, the centrality of pro-
gramming — and programmers — became even more apparent.

 Originally envisioned as little more than glorifi ed clerical workers,
programmers quickly assumed a position of power within many organi-
zations that was vastly disproportionate to their offi cial position in the
organizational hierarchy. Defi ned by their mastery of the highest of high
technology, they were often derided for their adherence to artisanal
practices. Although associated with the emerging academic discipline of
computer science, they were never widely considered to be either scien-
tists or engineers. Neither laborers nor professionals, they defy tradi-
tional occupational categorizations. The ranks of the elite programmers

30 Chapter 2

included both high school dropouts and ex-PhD physicists. Even to this
day, their occupational expertise remains diffi cult to clearly defi ne or
delineate. For example, the term programmer, which was widely used as
a generic catchall description of a computing specialist in the 1960s,
encompasses such a wide range of occupational categories — from the
narrow and highly technical coder to the elite and infl uential “ systems
man ” — that it is more useful as a rhetorical device than as an analytic
category.

 The questions of what programming was — as an intellectual and
occupational activity — and where it fi t into traditional social, academic,
and professional hierarchies, were actively negotiated during the decades
of the 1950s and 1960s. Programmers were well aware of their tenuous
professional position, and they struggled to prove that they possessed
a unique set of skills and training that allowed them to lay claim to
professional autonomy. This chapter traces the history of computer
programming from its origins as low-status clerical work (often per-
formed by women) into one of the highest-paid technical occupations of
the late 1950s and early 1960s. The focus is on the emergence of the
computer programmer as a highly valued, well-compensated, and largely
autonomous technical expert.

 The Origins of Computer Programming

 In the eyes of a computer scientist, all computers are created equal. That
is to say, any true computing machine can, by defi nition, compute any-
thing that is computable. Or to state the case a little more clearly, any
device worthy of the name computer can be programmed to perform
any task that can be performed by any other computer. This means that
in theory at least, all computers are functionally equivalent: any given
computer is but a specifi c implementation of a more general abstraction
known as a Universal Turing Machine.

 It is the Platonic ideal of the Universal Turing Machine, and not the
messy reality of actual physical computers, that is the true subject of
modern theoretical computer science; it is only by treating the computer
as an abstraction, a mathematical construct, that theoretical computer
scientists lay claim to their fi eld being a legitimate scientifi c , rather than
merely a technical or engineering, discipline. The story of this remarkable
self-construction and its consequences is the subject of chapter 5.

 The idealized Universal Turing Machine is, of course, only a concep-
tual device, a convenient fi ction concocted by the mathematician Alan

The Black Art of Programming 31

Turing in the late 1930s as a means of exploring a long-standing puzzle
in theoretical mathematics known as the Entscheidungsproblem . In order
to facilitate his exploration, Turing invented a new tool, an imaginary
device capable of performing simple mechanical computations. Each
Turing Machine, which consisted of only a long paper tape along with
a mechanism for reading from and writing to that tape, contained a table
of instructions that allowed it to perform a single computation. As a
computing device, the Turing Machine is deceptively simple; as a con-
ceptual abstraction, it is extraordinarily powerful. As it turns out, the
table of instructions for any Turing Machine can be rewritten to contain
the instructions for building any other Turing Machine. The implication,
as articulated in the Church-Turing thesis, is that every Turing Machine
is a Universal Turing Machine, and by extension, every computing
machine is essentially equivalent.

 In the real world, the appealingly egalitarian abstractions of the
Church-Turing thesis quickly break down in the face of the temporal
and spatial constraints of the physical universe. To implement even the
simplest computations on an archetypal paper tape – based Turing
Machine, for example, would require an enormous and prohibitive
amount of resources. In fact, the fi gures involved quickly become absurdly
Saganesque: the number of miles of paper tape required would be more
than the total number of atoms in the universe, and the amount of time
required would be more than all of known cosmological history. To the
emerging discipline of theoretical computer scientists, perhaps, none of
these practical realities were particularly signifi cant. But to working
computer engineers and programmers, such constraints were a daily
reality, even in the era of electronic computing. Extracting acceptable
performance and reliability out of the early electronic computers required
an enormous degree of messy tinkering, local knowledge, and idiosyn-
cratic technique. The developing tension between the messy tinkering of
real-world computing and the clean abstractions of academically minded
computer scientists would come to defi ne one of the sharp divides within
the ranks of the larger computing community. The struggle between
theory and practice would become a major challenge for academics and
practitioners alike, and would refl ect itself in the structure of program-
ming languages, professional societies, and academic curricula.

 Conventional histories of computer programming tend to confl ate
programming as a vocational activity with computer science as an aca-
demic discipline. In many of these accounts, programming is represented
as a subdiscipline of formal logic and mathematics, and its origins are

32 Chapter 2

identifi ed in the writings of early computer theorists Alan Turing and
John von Neumann. The development of the discipline is evaluated in
terms of advances in programming languages, formal methods, and
generally applicable theoretical research. This purely intellectual approach
to the history of programming, however, conceals the essentially craftlike
nature of early programming practice. The fi rst computer programmers
were not scientists or mathematicians; they were low-status, female
clerical workers and desktop calculator operators. The origins of pro-
gramming as a profession lie in the commercial traditions of machine-
assisted, manual computation, not in the mainstream of theoretical
mathematics.

 The history of vocational computer programming begins, in the United
States at least, with the construction of the ENIAC in summer 1945.
Many historians have identifi ed the ENIAC as the fi rst true electronic
computer. The question of “ which was the fi rst computer ” is surprisingly
diffi cult to answer. As Michael Williams suggests in a recent volume
edited by Raul Rojas and Ulf Hashagen called The First Computers (note
the crucial use of the plural), any particular claim to the priority of
invention must necessarily be heavily qualifi ed: if you add enough adjec-
tives you can always claim your own favorite. 11 And indeed, the ENIAC
has a strong claim to this title: not only was it digital, electronic, and
programmable (and therefore looked a lot like a modern computer) but
the ENIAC designers — John Mauchly and J. Presper Eckert — went on to
form the fi rst commercial computer company in the United States. The
ENIAC and its commercial successor, the UNIVersal Automatic Computer
(UNIVAC), were widely publicized as the fi rst of the “ giant brains ” that
presaged the coming computer age. But even the ENIAC had its precur-
sors and competitors. For example, in the 1930s, a physicist at Iowa
State University, John Atanasoff, had worked on an electronic computing
device and had even described it to Mauchly. Others were working on
similar devices. During the Second World War in particular, a number
of government and military agencies, both in the United States and
abroad, had developed electronic computing devices, many of which also
have a plausible claim to being if not the fi rst computer, then at least a
fi rst computer.

 There are two major innovations in computing that the ENIAC
embodied. The fi rst was that it was electronic. Earlier computing devices,
including tabulating machines, were either mechanical or electrome-
chanical, meaning that they contained numerous moving parts. These
moving parts were complicated to manufacture, diffi cult to maintain,

The Black Art of Programming 33

and above all relatively slow. By replacing them with completely elec-
tronic components, Eckert and Mauchly were able to dramatically speed
up the process of computation. Whereas the electromechanical Harvard
Mark I (completed in 1943), which was of similar complexity to the
ENIAC, could perform 2 or 3 additions per second, and a multiplication
every six seconds, the ENIAC (completed just three years later) could
perform 5,000 additions per second, or 333 multiplications. Although
this extraordinary improvement in performance came at the price of
increased cost and complexity — when completed the ENIAC weighed
nearly thirty tons, occupied an entire room, and required more than
eighteen thousand expensive and unreliable vacuum tubes — by the end
of the 1940s it was clear that electronic computing was the wave of
the future.

 The second revolutionary feature of the ENIAC was its ability to be
programmed. This meant that the machine could be reconfi gured to
perform different types of computation. In the case of the ENIAC the
machine had to be physically wired, or “ set up, ” as the process was
called at the time, to compute specifi c functions — a complicated process
that could take as long as two days. 12 Within a short time, however, the
ENIAC was modifi ed to allow it to be “ programmed ” automatically
using punch cards. 13 In the meantime, the physicist and mathematician
von Neumann had published his now-infamous First Draft of a Report
on the EDVAC , which provided a description of the computer that was
to be heir to the ENIAC. 14 This successor machine, which was called the
Electronic Discrete Variable Automatic Computer (EDVAC), was the
world ’ s fi rst stored-program computer. Unlike previous programmable
machines, the EDVAC stored-program computer did not distinguish
between data and instructions. This allowed it to modify its own instruc-
tions, which effectively allowed the computer to program itself. This not
only allowed for greater fl exibility in programming but also paved the
way for the development of assemblers, compilers, and other program-
ming tools. The concept of the stored-program computer was so signifi -
cant that it has come to defi ne the essence of the modern computer; today
a device is only considered to be a true computer if it is a stored-program
machine.

 And this is what brings us back to the centrality of software to the
history of computing: it was not so much the original invention of the
electronic computer that launched the computer revolution but the later
discovery that such computers could be made programmable. To be sure,
prior to the electronic computer there were machines that could be

34 Chapter 2

controlled automatically. A Jacquard loom, for instance, used a series of
steel cards, as many as twenty thousand at a time, to control the weaving
of patterns on fabric. 15 Tabulating machines could also be programmed
to a certain degree by rewiring their components. But the combination
of speed and fl exibility provided by the combination of an electronic
digital computer and well-designed software was unprecedented. The
electronic digital computer would eventually become a universal machine
whose potential applications were limited only by the imagination of its
programmers.

 Therein lies the rub: the very aspect of electronic computing that made
it so powerful and appealing was the aspect of least interest to its original
designers. Computer programming began as little more than an after-
thought in most of the pioneering wartime electronic computing projects,
an offhand postscript to what was universally regarded as the much more
pressing challenge of hardware development.

 There were certainly legitimate reasons for privileging hardware
over software; simply managing to keep the early electronic computers
running without failure for more than a few minutes was an engi-
neering challenge of heroic proportions. As was mentioned earlier,
the core computational units of the ENIAC machine relied on more
than eighteen thousand vacuum tubes, each of which had an average
lifespan of just three thousand hours. This meant that statistically speak-
ing, six of these tubes would fail every hour; or in other words, at least
one tube failed every ten minutes. Figuring out how to control the rate
of failure of vacuum tubes was one of the great contributions of the
ENIAC ’ s brilliant chief engineer, J. Presper Eckert. Similarly, the con-
struction of mercury delay lines, which were an early form of short-term
memory used in the Cambridge University EDSAC, the world ’ s fi rst
working stored-program computer, required the precise coordination of
acoustical waves moving at 1,450 meters per second. There is no ques-
tion that overcoming the engineering challenges posed by the electronics
of electronic computing was essential to the further development of
computer technology.

 But solving the programming hurdles was equally vital. Although in
the decades after the ENIAC we have come to regard the electronic
computer as an almost infi nitely protean and useful machine, this is
largely a refl ection of the successes of software. In the immediate postwar
period even programmable computers like the ENIAC were considered
impressive but limited. It was not hard to imagine that the military and
the government might have a need for a small number of such devices,

The Black Art of Programming 35

yet few would have predicted how rapidly the commercial market for
computers would expand over the course of the next decade.

 “ Glorifi ed Clerical Workers ”

 The low priority given to programming was refl ected in who was assigned
to the task. Although the ENIAC was developed by academic researchers
at the University of Pennsylvania ’ s Moore School of Electrical Engineering,
it was commissioned and funded by the Ballistics Research Laboratory
(BRL) of the U.S. Army. Located at the nearby Aberdeen Proving Grounds,
the BRL was responsible for the development of the complex fi ring tables
required to accurately target long-range ballistic weaponry. Hundreds of
these tables were required to account for the infl uence of highly variable
atmospheric conditions (air density, temperature, etc.) on the trajectory
of shells and bombs. Prior to the arrival of electronic computers, these
tables were calculated and compiled by teams of human “ computers ”
working eight-hour shifts, six days a week. From 1943 onward, essen-
tially all of these computers were women, as were their immediate super-
visors. The more senior women (those with college-level mathematical
training) were responsible for developing the elaborate “ plans of compu-
tation ” that were carried out by their fellow computers.

 In June 1945, six of the best human computers at Aberdeen were hired
by the leaders of the top secret “ Project X ” — the U.S. Army ’ s code name
for the ENIAC project — to set up the ENIAC machine to produce bal-
listics tables. Their names were Kathleen McNulty, Frances Bilas, Betty
Jean Jennings, Elizabeth Snyder Holberton, Ruth Lichterman, and
Marlyn Wescoff. Collectively they were known as “ the ENIAC girls. ” 16
Today the ENIAC girls are often considered the fi rst computer program-
mers. In the 1940s, they were simply called coders.

 The use of the word coder in this context is signifi cant. At this point
in time the concept of a program, or of a programmer, had not yet been
introduced into computing. Since electronic computing was then envi-
sioned by the ENIAC developers as “ nothing more than an automated
form of hand computation, ” it seemed natural to assume that the primary
role of the women of the ENIAC would be to develop the plans of com-
putation that the electronic version of the human computer would
follow. 17 In other words, they would code into machine language the
higher-level mathematics developed by male scientists and engineers.
Coding implied manual labor, and mechanical translation or rote tran-
scription; coders were obviously low on the intellectual and professional

36 Chapter 2

status hierarchy. It was not until later that the now-commonplace title
of programmer was widely adopted. The verb “ to program, ” with its
military connotations of “ to assemble ” or “ to organize, ” suggested a
more thoughtful and system-oriented activity. 18 Although by the mid-
1950s the word programmer had become the preferred designation, for
the next several decades programmers would struggle to distance them-
selves from the status (and gender) connotations suggested by coder.

 The fi rst clear articulation of what a programmer was and should be
was provided in the late 1940s by Goldstine and von Neumann in a
series of volumes titled Planning and Coding of Problems for an Electronic
Computing Instrument . These volumes, which served as the principal
(and perhaps only) textbooks available on the programming process at
least until the early 1950s, outlined a clear division of labor in the pro-
gramming process that seems to have been based on the practices used
in programming the ENIAC. Goldstine and von Neumann spelled out a
six-step programming process: (1) conceptualize the problem mathemati-
cally and physically, (2) select a numerical algorithm, (3) do a numerical
analysis to determine the precision requirements and evaluate potential
problems with approximation errors, (4) determine scale factors so that
the mathematical expressions stay within the fi xed range of the computer
throughout the computation, (5) do the dynamic analysis to understand
how the machine will execute jumps and substitutions during the course
of a computation, and (6) do the static coding. The fi rst fi ve of these
tasks were to be done by the “ planner, ” who was typically the scientifi c
user and overwhelmingly was frequently male; the sixth task was to be
carried out by coders. Coding was regarded as a “ static ” process by
Goldstine and von Neumann — one that involved writing out the steps
of a computation in a form that could be read by the machine, such as
punching cards, or in the case of the ENIAC, plugging in cables and
setting up switches. Thus, there was a division of labor envisioned that
gave the highest-skilled work to the high-status male scientists and the
lowest-skilled work to the low-status female coders.

 As the ENIAC managers and coders soon realized, however, control-
ling the operation of an automatic computer was nothing like the process
of hand computation, and the Moore School women were therefore
responsible for defi ning the fi rst state-of-the-art methods of program-
ming practice. Programming was an imperfectly understood activity in
these early days, and much more of the work devolved on the coders
than anticipated. To complete their coding, the coders would often have
to revisit the underlying numerical analysis, and with their growing skills,

The Black Art of Programming 37

some scientifi c users left many or all six of the programming stages to
the coders. In order to debug their programs and distinguish hardware
glitches from software errors, they developed an intimate knowledge of
the ENIAC machinery. “ Since we knew both the application and the
machine, ” claimed ENIAC programmer Betty Jean Jennings, “ as a result
we could diagnose troubles almost down to the individual vacuum tube.
Since we knew both the application and the machine, we learned to
diagnose troubles as well as, if not better than, the engineers. ” 19 In a few
cases, the local craft knowledge that these female programmers accumu-
lated signifi cantly affected the design of the ENIAC and subsequent
computers. ENIAC programmer Betty Holberton recalled one particu-
larly signifi cant episode:

 In the fall of ‘ 46 when the new idea of wiring up the ENIAC with sort of semi-
permanent wiring with instruction codes [emerged] . . . a number of us worked
with Dr. von Neumann in setting up this code. . . . We felt we wouldn ’ t need
that many settings for all of the instructions. We sort of worked along for a
while. But to my astonishment, he never mentioned a stop instruction. So I did
coyly say, “ Don ’ t we need a stop instruction in this machine? ” He said, “ No we
don ’ t need a stop instruction. We have all these empty sockets here that just let
it go to bed. ” And I went back home and I was really alarmed. After all, we had
debugged the machine day and night for months just trying to get jobs on it.

 So the next week when I came up with some alterations in the code, I
approached him again with the same question. He gave me the same answer.
Well I really got red in the face. I was so excited and I really wanted to tell him
off. And I said, “ But Dr. von Neumann, we are programmers and we sometimes
make mistakes. ” He nodded his head and the stop order went in. 20

 The deference with which Holberton proposes her tentative suggestion
and von Neumann ’ s initial patronizing dismissal are indicative of the
status of the programmers relative to that of their scientifi c and engineer-
ing colleagues. Von Neumann ’ s eventual acceptance refl ects his recogni-
tion of the importance of local craft knowledge and an increasing
acceptance of the value of programming expertise. Given that the pro-
grammers “ were often able to point out to a technician which individual
vacuum tube needed to be changed, ” they were able to interact much
more with the computer engineers and technicians than was probably
originally intended. This had the positive effect of convincing the ENIAC
managers that programmers were essential to the success of the overall
project and that well-informed, technically profi cient, high-quality pro-
grammers were especially indispensable.

 Thus, what was supposed to have been a low-level skill, a static activ-
ity, prepared these women coders well for careers as programmers, and

38 Chapter 2

indeed, those who did pursue professional careers in computing often
became programmers and thrived at it. A few women, Grace Hopper
and Betty Holberton of UNIVAC as well as Ida Rhodes and Gertrude
Blanche of the National Bureau of Standards in particular, continued to
serve as leaders in the programming profession. But despite the success
of the ENIAC women in establishing a unique occupational niche for
the programmer within the ENIAC community, programming continued
to be perceived as marginal to the central business of computer develop-
ment. By nature of their gender (female) and education (nonscientifi c and
nonengineering), the early programmers remained isolated from their
engineering and scientifi c managers. If software was admitted to be
important, hardware was considered to be essential.

 The confl ation of programming and coding, and the association of
both with low-status clerical labor, indicated the ways in which early
software workers were gendered female. In the ENIAC project, of course,
the programmers actually were women. In this respect programming
inherited the gender identity of the human computing projects in which
it originated. But the suggestion that coding was low-status clerical work
also implied an additional association with female labor. As Margery
Davies, Sharon Strom, and Elyce Rotella have described, clerical work
had, by the second decade of the twentieth century, become largely
feminized. 21 This was particularly true of clerical occupations that were
characterized by the rigid division of labor and the introduction of new
technologies. Some of these occupations carried over directly into the
computer era: the job of keypunch operator, for example, had been
thoroughly feminized long before it became associated with electronic
data processing. 22 And although today we do not associate the work
of keypunchers with the work of the computer programmer, in the
1950s and 1960s the differentiation between keypunch operators and
other forms of computer work was not always clear. In any case, the
historical pattern of the nineteenth and twentieth centuries has been that
low-status occupations, with the exception of those requiring certain
forms of physical strength, have often become feminized. In terms of the
ENIAC, for example, the telephone switchboardlike appearance of the
ENIAC programming cable-and-plug panels reinforced the notion that
programmers were mere machine operators, that programming was
more handicraft than science, more feminine than masculine, more
mechanical than intellectual. The programmer/coder continued to
occupy an uncertain position within the nascent association of computer
professionals.

The Black Art of Programming 39

 Throughout the next several decades programmers struggled to dis-
tance themselves from the status (and gender) connotations suggested by
coder. An early manuscript version of the UNIVAC Introduction to
Programming manual, for instance, highlighted the distinction between
the managerial programmer and the technical coder: “ In problem prepa-
ration, the detailed work may be accomplished by two individuals. The
fi rst, who may be called the ‘ programmer, ’ studies the problem, deter-
mines the appropriate method of solution, and prepares the fl ow chart.
This person must be well versed in the particular fi eld in which the
problem lies, and should also be able to fully exploit the fl exibility and
versatility of the UNIVAC system. The second person, referred to as the
 ‘ coder, ’ need only be familiar with the technique of reducing the fl ow
chart to the specifi c instructions, or coding, required by the UNIVAC to
solve the problem. ” 23 By differentiating between these two tasks, one
clerical and the other analytic, the manual reinforced the Goldstine and
von Neumann model of the programmer. In this model the real business
of programming was analysis: the actual coding aspect of programming
was trivial and mechanical. “ Problems must be thoroughly analyzed to
determine the many factors that must be taken into consideration, ” sug-
gested the same preliminary UNIVAC manual, but once this analysis had
been completed, the “ pattern of the [programming] solution would be
readily apparent. ” Although this division of the programming process
into two distinct and unequal phases did not survive into the published
version of the UNIVAC documentation, its early inclusion highlighted
the persistence of the programmer/coder distinction.

 The Art of Programming

 Although they continued to struggle with questions of status and iden-
tity, by the end of the 1950s computer programmers were generally
considered to be anything but routine clerical workers. A Price Waterhouse
report from 1959 titled Business Experience with Electronic Computers
argued that “ high quality individuals are the key to top grade program-
ming. Why? Purely and simply because much of the work involved is
exacting and diffi cult enough to require real intellectual ability and above
average personal characteristics. ” 24 In fact, the study ’ s authors observed
that “ the term ‘ programmer ’ is . . . unfortunate since it seems to indicate
that the work is largely machine oriented when this is not at all the
case. . . . [T]raining in systems analysis and design is as important to a
programmer as training in machine coding techniques; it may well

40 Chapter 2

become increasingly important as systems get more complex and coding
becomes more automatic. ” 25 Although Goldstine and von Neumann had
envisioned a clear division of labor between planners and coders, in
reality this boundary became increasingly indistinct. The clear implica-
tion of recent experience, in both scientifi c computation and business
data processing, was that programmers should be given more responsi-
bility for design and analysis, the idea that coding could be left to less-
experienced or lower-grade personnel was “ erroneous, ” and “ the human
element is crucial in programming. ” 26 Indeed, by the mid-1950s, a new
model for programming had emerged that emphasized individual exper-
tise and creativity. During this period computers remained a primarily
scientifi c and military technology, and computer programming as a dis-
cipline retained a close association with the practice of mathematics. The
limitations of early hardware devices usually meant that a simple pro-
gramming problem could quickly turn into a research excursion into
algorithm theory and numerical analysis. Computer programmers devel-
oped a reputation for creativity and ingenuity. Contemporary storage
devices were so slow and had such little capacity that programmers had
to develop great skill and craft knowledge to fi t their programs into the
available memory space. As John Backus (the IBM researcher best known
as the inventor of the FORTRAN programming language) would later
describe the situation, “ Programming in the 1950s was a black art, a
private arcane matter. . . . [E]ach problem required a unique beginning
at square one, and the success of a program depended primarily on the
programmer ’ s private techniques and inventions. ” 27

 The notion that programming was a black art pervades the literature
from this period. There are several reasons why programming was so
diffi cult. To begin with, the programmer had to develop an algorithm
suitable to the problem at hand. Since the primary purpose of the
earliest computers was to produce solutions to complex mathematical
functions that could not be solved analytically, these programs necessar-
ily required skill in numerical analysis. Numerical analysis is the set of
tools that mathematicians have developed to provide approximate solu-
tions to otherwise-insoluble equations. This process of analysis was itself
something of an art form: numerical solutions always involved a
compromise between speed and accuracy — even when using the fastest
computers. Choosing the right approximation required the programmer
to balance acceptable error against the specifi c limitations of a given
machine.

The Black Art of Programming 41

 Figure 2.1
 RCA advertisement, 1962.

42 Chapter 2

 For problems that were not mathematical in nature, developing
an appropriate algorithm could be even more challenging. This was a
particular problem for the corporate users of computers. Even the sim-
plest business activities can be diffi cult, if not impossible, to describe in
terms of the limited instruction set understood by a computer.
Programmers fi rst had to thoroughly understand the activity in question,
including all of its exceptional cases, imprecise terms, and potential
errors. Not only was this process inherently diffi cult but it also frequently
involved social and analytic skills foreign to the average programmer.
 “ Because the background of the early programmers was acquired mainly
in mathematics or other scientifi c fi elds, they were used to dealing with
well-formulated problems and they delighted in a sophisticated approach
to coding their solutions, ” noted the Price Waterhouse report. “ When
they applied their talents to the more sprawling problems of business,
they often tended to underestimate the complexities and many of their
solutions turned out to be oversimplifi cations. Most people connected
with electronic computers in the early days will remember the one- or
two-page fl ow charts which were supposed to cover the intricacies of the
accounting aspects of a company ’ s operations. ” 28 Most companies
attempted to differentiate the more social and organizational processes
essential to algorithm development, often referred to as system analysis,
from the more technical procedures associated with programming.
Inevitably the two would bleed into one another, however. 29

 Even after a suitable algorithm had been selected, the process of
transforming that algorithm into a form that could be understood by a
computer was challenging. Most electronic computers represented
numbers internally in binary form, and so conversion routines from
decimal to binary (and back) had to be developed. If the machine was a
fi xed-point machine, all of the numbers also scaled to stay within the
bounds of the fi xed-point arithmetic units. Since in a stored-program
computer both programs and data were stored in the same memory, it
was possible to confuse the two and create strange errors that were
almost impossible to trace. Most of these machines had limited debug-
ging capabilities (if any) and complicated mechanisms for accessing
subroutine libraries. Programmers had to use obscure techniques to
optimize for size rather than for legibility or ease of maintenance due
to the limited amount of available memory. In order to coax every
bit of speed out of a relatively slow storage device such as a rotating
memory drum, programmers would carefully organize their coded

The Black Art of Programming 43

instructions in such a way as to assure that each instruction passed
by the magnetic read head in just the right order and at just the right
execution time. 30 Only the best programmers could hope to develop
applications that worked at acceptable levels of usability and perfor-
mance. They had to cultivate a series of idiosyncratic and highly indi-
vidual craft techniques designed to overcome the limitations of primitive
hardware. 31

 In his memoir describing “ Programming in America in the 1950s, ”
John Backus offered an especially detailed example of the many ways in
which a programmer project could run into problems:

 Some idea of the machine diffi culties facing early programmers can be had by a
brief survey of a few of the bizarre characteristics of the Selective Sequence
Electronic Calculator (SSEC).

 This vast machine (circa 1948 – 1952) had a store of 150 words; instructions,
constants, and tables of data were read from punched tapes the width of a
punched card; the ends of an instruction tape were glued together to form a
paper loop, which was then placed on one of 66 tape-reading stations. The SSEC
could also punch intermediate data into tapes that could subsequently be read
by a tape-reading station.

 One early problem strained the SSEC ’ s capacity to the limit. The computation
was divided into three phases; in the fi rst phase a tape of many yards of inter-
mediate results was punched out; during the second phase this tape was glued
into a loop and mounted on a tape-reading station so that in the third phase it
could be read many times.

 The problem ran successfully through many cycles of these three phases, but
then a mysterious error began to appear and disappear regularly in the third
phase. For a long time no one could account for it.

 Finally, the large pile of intermediate data tape was pulled from the bin below
its reading station and a careful inspection revealed that it had been glued to
form a Mobius strip rather than a simple loop. The result was that on every
second revolution of the tape each number would be read in reverse order. 32

 As this anecdote suggests, writing programs under these constraints was
a time-consuming and error-prone process. One the oldest-surviving
computer programmers, a 126-line debugging tool developed for the
Cambridge EDSAC machine (notable as being the fi rst working stored-
program computer in the world) was recently discovered to have con-
tained more than twenty errors. 33 Because the author of the program,
the mathematical physicist Maurice Wilkes, literally wrote the book on
computer programming in the early 1950s (his 1951 Preparation of
Programs for an Electronic Digital Computer is considered the fi rst
widely available textbook on programming), we can assume that this

44 Chapter 2

was not an unrepresentative example. 34 As Wilkes later recalled in his
memoirs, early on in the life of the EDSAC, its programmers had “ begun
to realize that it was not so easy to get a program right as had at one
time appeared. ” It was with some shock and dismay that he himself
realized that “ a good part of the remainder of my life was going to be
spent in fi nding errors in my own programs. ” 35 The tedious process of
identifying and removing these errors, known as “ debugging, ” was time-
consuming, diffi cult, and intellectually unfulfi lling. As much as one-half
of the budget of a large programming project could be spent on testing
and debugging — activities that were perceived as being low-status and
unpleasant. 36

 As will be described in subsequent chapters, improvements in com-
puter hardware along with the development of compilers and other
programming utilities would help alleviate some of the challenges associ-
ated with coding. But as many FORTRAN and COBOL programmers
would soon realize, the dull and mechanical aspects of software develop-
ment did not disappear with the advent of compilers and automatic
programming languages. Nor did the intellectual challenges associated
with analysis and design. Mistakes were inevitable, even from the most
profi cient of programmers. In one widely recited and tragic (and possibly
apocryphal) example, a minor transcription error in control software for
the Mariner I probe to Venus caused the spacecraft to veer off-course
four minutes after takeoff, forcing NASA to destroy it remotely. The
mistake that the programmer allegedly made was to replace the
FORTRAN statement

 DO 3 I = 1,3

 with

 DO 3 I = 1.3

 Instead of looping through a series of statements, as the code in the fi rst
version would have required, the latter form was interpreted by the
FORTRAN compiler as the assignment of a variable. That the loss of
the Mariner I could be caused by such a seemingly trivial error high-
lighted for many observers the central importance of employing only the
most skilled programmers. 37 This perception holds true regardless of
whether or not the Mariner I anecdote is factually accurate. During the
late 1950s and 1960s such stories of software-related disaster were a
staple of the popular press, and helped set the state for the emergence
of a full-blown software crisis in the late 1960s.

The Black Art of Programming 45

 Building Castles in the Air

 In describing his experiences as the project manager of the single-largest
and most expensive software development effort ever undertaken in the
history of the IBM Corporation, the noted computer scientist Frederick
Brooks provided a curiously literary portrayal of the computer program-
mer: “ The programmer, like the poet, works only slightly removed from
pure-thought stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. ” 38

 That a technical manager in a conservative corporation should use
such lofty language in reference to such a seemingly prosaic occupation
like programming is striking yet not unusual. But Brooks meant his liter-
ary metaphors to be taken seriously. Even more so than the poet, he
argued, the programmer worked in the medium of the imagination, using
words to bring to life grand conceptual structures. In fact, in the case of
the programmers the relationship between words and reality was almost
magical: “ One types the correct incantation on a keyboard, and a display
screen comes to life, showing things that never were nor could be. ” And
like the magical incantation, the computer program demanded perfec-
tion: “ If one character, one pause, of the incantation is not strictly in
proper form, the magic doesn ’ t work. ” This is what made programming
so diffi cult, he suggested: “ Human beings are not accustomed to being
perfect, and few areas of human activity demand it. Adjusting to the
requirement for perfection is, I think, the most diffi cult part of learning
to program. ” 39

 Like many of his contemporaries, Brooks was struggling to under-
stand why software development projects seemed almost impossible
to manage using conventional management techniques. In the late
1960s, Brooks had been the manager of the IBM OS/360 development
project. The OS/360 operating system was the cornerstone of IBM ’ s
larger System/360 strategy, which consolidated IBM ’ s computer product
lines into a single range of hardware- and software-compatible machines.
Although the System/360 turned out to be a tremendous success for
IBM, it had almost been derailed by problems with the development
of OS/360. In the years between 1963 and 1966, over fi ve thousand
staff years of effort went into the design, construction, and documenta-
tion of OS/360. When it was fi nally delivered in 1967, nine months
late and riddled with errors, it had cost the IBM Corporation half a
billion dollars — four times the original budget, and the single-largest
expenditure in company history. And according to Brooks, the personal

46 Chapter 2

 Figure 2.2
 Service Bureau Corporation advertisement, 1964.

The Black Art of Programming 47

toll that OS/360 took on IBM ’ s software personnel was perhaps even
more signifi cant.

 The highly publicized failure of the OS/360 project served as a dra-
matic illustration of the shortcomings of the traditional management
methods in software development. It was in The Mythical Man-Month ,
his postmortem analysis of the OS/360 disaster, that Brooks fi rst com-
pared programming to poetry. His larger point was that computer pro-
gramming, as an inherently artistic activity, was resistant to most forms
of industrial production. Take, for example, his own experience with
OS/360: when faced with serious schedule slippages, quality problems,
and unanticipated changes in scope, he and the other project leaders had
done what traditional manufacturing managers were accustomed to
doing, which was to add more resources. The only noticeable result was
that the project fell more and more behind schedule.

 After diagnosing the disease, Brooks proposed its cure. If skilled
programmers were the sine qua non of quality software development,
they must be elevated to the center of the production process. The
remainder of The Mythical Man-Month is an attempt to fi gure out
how to harness the power of highly artistic programmer/poets to the
demands of industrial-strength software development. The development
methodology that Brooks outlined was never widely adopted in industry,
but his larger argument about the inherently creative nature of program-
ming was. The Mythical Man-Month quickly became one of the most
widely read and oft-quoted references on the practice of software
development.

 There is no doubt that in the formative years of commercial computing,
there was widespread dissension within the programming community
over the goals and direction of the programming profession. Computer
scientists, corporate employers, and vocational programmers disagreed
about the proper relationship between formal and idiosyncratic tech-
nique, local knowledge and generally applicable theory. What was largely
agreed on, however, was that in the early 1960s, programming was “ not
yet a science, but an art that lacks standards, defi nitions, agreement on
theories and approaches. ” 40 This popular perception of computer pro-
gramming as a poorly understood, idiosyncratic, and creative process
defi ned the discipline as it emerged in the 1950s, and continues to infl u-
ence the culture and practice of programming even today. The notion
that programming was an art served as both a resource and a source of
much anxiety and discomfort for programmers.

48 Chapter 2

 For all of these reasons and more, programming in the 1950s acquired
a reputation for being incomprehensible to all but a small set of extremely
talented insiders. As John Backus would later describe it, “ Each [pro-
gramming] problem required a unique beginning at square one, and the
success of a program depended primarily on the programmer ’ s private
techniques and invention. ” 41 Techniques developed for one application
or installation could not be easily adapted for other purposes. There were
few useful or widely applicable tools available to programmers, and
certainly no science of programming. Programmers often worked in
relative isolation, and had few opportunities for formal or even informal
education. They generally perceived little value in the work going on
at other fi rms or laboratories, as it was equally haphazard and
idiosyncratic. They placed great emphasis on local knowledge and indi-
vidual ability.

 The widespread perception that programming was a black art per-
vades the industry and technical literature of the 1950s and 1960s. 42
Even today, more than a half century after the invention of the fi rst
electronic computers, the notion that computer programming still retains
an essentially artistic character is still widely accepted. 43 Whether or not
this is desirable is an entirely different question — one that remains a
subject of considerable and contentious debate. What is important for
the purposes of this book is the various ways in which the language of
art, aesthetics, and craft is used throughout the history of computing to
elevate, denigrate, or castigate programmers and other software special-
ists. By characterizing the work that they did as artistic, programmers
could lay claim to the autonomy and authority that came with being an
artist. If it were true, as one industry observer suggested in the late 1960s,
that “ generating software is ‘ brain business, ’ often an agonizingly diffi -
cult intellectual effort, ” then talented programmers were effectively irre-
placeable, and should be treated and compensated accordingly. 44

 On the other hand, being artistic might also imply that one was not
scientifi c or professional. One common usage of the word art, of course,
is in reference to the visual, literary, or performing arts. In this context,
describing programmers as artists implied that they were might be non-
conformist, unreliable, or eccentric — not traits likely to endear them to
straitlaced corporate managers. Although some programmers (and man-
agers) did apply this meaning of the word art to programming — Brooks
used a “ programmers as poets ” metaphor — for the most part the word
was used in its more traditional association with craft technique and
preindustrial forms of production. 45 When participants at the NATO

The Black Art of Programming 49

Conference on Software Engineering in 1968 portrayed computer
programming as being “ too artistic, ” they was using the word in this
latter sense, as a rhetorical device for contrasting its “ backward ” craft
sensibilities with “ the types of theoretical foundations and practical
disciplines ” that they believed characterized “ the established branches
of engineering. ” 46 Note that the appeal here is to the tradition of the
artisan or craftsperson, which is a masculine identity, rather than to the
potentially effeminate artsy type.

 For those computer programmers who also had academic aspirations,
the word art was always used in opposition to science. For them the
word suggested an undesirable lack of theoretical or mathematical rigor.
They needed to distance the more artistic practices of programming from
the more respectable discipline of computer science. This often brought
these academically minded proto – computer scientists into confl ict with
working programmers, who had different professional and occupational
agendas. The differences between these agendas would come to light in
subsequent debates about programmer recruitment practices, program-
ming language adoption, and academic curriculum.

 3

 In one inquiry it was found that a successful team of computer specialists
included an ex-farmer, a former tabulating machine operator, an ex-key punch
operator, a girl who had done secretarial work, a musician and a graduate in
mathematics. The last was considered the least competent.

 — Hans Albert Rhee, Offi ce Automation in a Social Perspective , 1968

 In Search of “ Clever Fellows ”

 The “ Talk of the Town ” column in the New Yorker magazine is not
generally known for its coverage of science and technology. But in
January 1957, the highbrow gossip column provided for its readers an
unusual but remarkably prescient glimpse into the future of electronic
computing. Already there were more than fi fteen hundred of the elec-
tronic “ giants ” scattered around the United States, noted the column
editors, with many more expected to be installed in the near future. Each
of these computers required between thirty and fi fty programmers, the
 “ clever fellows ” whose job it was to “ fi gure out the proper form for
stating whatever problem a machine is expected to solve. ” And as there
were currently only fi fteen thousand professional computer programmers
available worldwide, many more would have to be trained or recruited
immediately. After expressing “ modest astonishment ” over the size of
this strange new “ profession we ’ d never heard of, ” the “ Talk of the
Town ” went on, in its inimitable breezy style, to accurately describe a
problem that industry observers were only just beginning to recognize:
namely, that the looming shortage of computer programmers threatened
to strangle in its cradle the nascent commercial computer industry. 1

 The impetus for the “ Talk of the Town ” vignette was a series of
advertisements that the IBM Corporation had recently placed in the
New York Times . At fi rst glance the ads read as rather conventional

 Chess Players, Music Lovers, and
Mathematicians

52 Chapter 3

help-wanted fare. Promising the usual “ exciting new jobs ” in a “ new
and dynamic fi eld, ” they sought out candidates for a series of positions
in programming research. That particularly promising candidates might
be those who “ enjoy algebra, geometry and other logical operations ”
was also not remarkable, given the context. What caught the eye of the
 “ Talk of the Town ” columnists, however, was the curious addition of
an appeal to candidates who enjoyed “ musical composition and arrange-
ment, ” liked “ chess, bridge or anagrams, ” or simply possessed “ a lively
imagination. ” 2 Struck by the incongruity between these seemingly differ-
ent pools of potential applicants, one technical and the other artistic, the
columnists themselves “ made bold to apply ” to the IBM manager in
charge of programmer recruitment. “ Not that we wanted a programming
job, we told him; we just wondered if anyone else did. ” 3

 The IBM manager they spoke to was Robert W. Bemer, a “ fast-
talking, sandy-haired man of about thirty-fi ve, ” who by virtue of his
eight-years experience was already considered, in the fast-paced world
of electronic computing, “ an old man with a long beard. ” It was from
Bemer that they learned of the fi fteen thousand existing computer pro-
grammers. An experienced programmer himself, Bemer nevertheless
confessed astonishment at the unforeseen explosion into being of a
programming profession, which even to him seemed to have “ happened
overnight. ” And for the immediate future, at least, it appeared inevitable

 Figure 3.1
 IBM Advertisement, New York Times , May 31, 1969.

Chess Players, Music Lovers, and Mathematicians 53

that the demand for programmers would only increase. With obvious
enthusiasm, Bemer described a near future in which computers
were much more than just scientifi c instruments, where “ every major
city in the country will have its community computer, ” and where
citizens and businesspeople of all sorts — “ grocers, doctors, lawyers ” —
 would “ all throw problems to the computer and will all have their
problems solved. ” The key to achieving such a vision, of course, was the
availability of diverse and well-written computer programs. Therein lay
the rub for recruiters like Bemer: in response to the calls for computer
programmers he had circulated in the New York Times , Scientifi c
American , and the Los Angeles Times , he had received exactly seven
replies. That IBM considered this an excellent return on its invest-
ment highlights the peculiar nature of the emerging programming
profession.

 Of the seven respondents to IBM ’ s advertisements, fi ve were experi-
enced programmers lured away from competitors. This kind of poaching
occurred regularly in the computer industry, and although this was no
doubt a good thing from the point of view of these well-paid and highly
mobile employees, it only exacerbated the recruitment and retention
challenges faced by their employers. The other two were new trainees,
only one of whom proved suitable in the long-term. The fi rst was a chess
player who was really “ interested only in playing chess, ” and IBM soon
 “ let him go back to his board. ” The second “ knew almost nothing about
computing, ” but allegedly had an IQ of 172, and according to Bemer,
 “ he had the kind of mind we like. . . . [He] taught himself to play the
piano when he was ten, working on the assumption that the note F was
E. Claims he played that way for years. God knows what his neighbors
went through, but you can see that it shows a nice independent talent
for the systematic translation of values. ” 4

 Eventually the ad campaign and subsequent New Yorker coverage did
net IBM additional promising programmer trainees, including an Oxford-
trained crystallographer, an English PhD candidate from Columbia
University, an ex-fashion model, a “ proto-hippie, ” and numerous chess
players, including Arthur Bisguier, the U.S. Open Chess champion,
Alex Bernstein, a U.S. Collegiate champion, and Sid Noble, the self-
proclaimed “ chess champion of the French Riviera. ” 5 The only charac-
teristics that these aspiring programmers appeared to have in common
were their top scores on a series of standard puzzle-based aptitude tests,
the ability to impress Bemer as being clever, and the chutzpah to respond
to vague but intriguing help-wanted ads.

54 Chapter 3

 The haphazard manner in which IBM recruited its own top program-
mers, and the diverse character and backgrounds of them, reveals much
about the state of computer programming at the end of its fi rst decade
of existence. On the one hand, computer programming had successfully
emerged from the obscurity of its origins as low-status, feminized clerical
work to become the nation ’ s fastest-growing and highest-paid techno-
logical occupation. 6 The availability of strong programming talent was
increasingly recognized as essential to the success of any corporate com-
puterization effort, and individual programmers were able to exert an
inordinate amount of control over the course of such attempts.

 But at the same time, the “ long-haired programming priesthood ” — the
motley crew of chess players, music lovers, and mathematicians who
comprised the programming profession in this period — fi t uncomfortably
into the traditional power structures of the modern corporate organiza-
tion. 7 The same arcane and idiosyncratic abilities that made them well-
paid and highly sought-after individuals also made them slightly suspect.
How could the artistic sensibilities and artisanal practices of program-
mers be reconciled with the rigid demands of corporate rationality? How
could corporate managers predict and control the course of computeriza-
tion efforts when they were so dependent on specifi c individuals? If good
programmers “ were born, not made, ” as was widely believed, then how
could the industry ensure an adequate supply? 8

 The tension between art and science inherent in contemporary pro-
gramming practices, unwittingly but ably captured by the “ Talk of the
Town ” gossip columnists, would drive many of the most signifi cant
organizational, technological, and professional developments in the
history of computing over the course of the next few decades. This
chapter will deal with early attempts to use aptitude tests and personality
profi les to manage the growing “ crisis ” of programmer training and
recruitment.

 The Persistent Personnel Problem

 The commercial computer industry came of age in the 1960s. At the
beginning of that decade the electronic computer was still a scientifi c
curiosity, its use largely confi ned to government agencies as well as a few
adventurous and technically sophisticated corporations; by the decade ’ s
end, the computer had been successfully reinvented as a mainstream
business technology, and companies such as IBM, Remington Rand, and
Honeywell were selling them by the thousands.

Chess Players, Music Lovers, and Mathematicians 55

 But each of these new computers, if we are to take Bemer ’ s reckoning
seriously, would require a support staff of at least thirty programmers.
Since almost all computer programs in this period were effectively custom
developed — the packaged software industry would only begin to emerge
in the late 1960s — every purchase of a computer required the corre-
sponding hire of new programming personnel. Even if we were to halve
Bemer ’ s estimates, the predicted industry demand for computer program-
mers in 1960 would top eighty thousand.

 In truth, no one really knew for certain exactly how many program-
mers would be required. Contemporary estimates ranged from fi fty thou-
sand to fi ve hundred thousand. 9 What was abundantly clear, however,
was that whatever the total demand for programmers might eventually
turn out to be, it would be impossible to satisfy using existing training
and hiring practices. By the mid-1960s the lack of availability of trained
computer programmers threatened to stifl e the adoption of computer
technology — a grave concern for manufacturers and employers alike.
Warnings of a “ gap in programming support ” caused by the ever-wors-
ening “ population problem ” pervade the industry literature in this
period. 10 In 1966, the personnel situation had degraded so badly that
 Business Week magazine declared it a “ software crisis ” — the fi rst appear-
ance of the crisis mentality that would soon come to dominate and defi ne
the entire industry. 11

 Wayne State Conference

 It did not take long after the invention of the fi rst electronic computers
for employers and manufacturers to become aware of the “ many educa-
tional and manpower problems ” associated with computerization. In
1954, leaders in industry, government, and education gathered at Wayne
State University for the Conference on Training Personnel for the
Computing Machine Field. The goal was to discuss what Elbert Little,
of the Wayne State Computational Laboratory, suggested was a “ uni-
versal feeling ” among industry leaders that there was “ a defi nite short-
age ” of technically trained people in the computer fi eld. 12 This shortage,
variously described by an all-star cast of scientists and executives from
General Motors, IBM, the RAND Corporation, Bell Telephone, Harvard
University, MIT, the Census Bureau, and the Offi ce of Naval Research,
as “ acute, ” “ unprecedented, ” “ multiplying dramatically, ” and “ astound-
ing compared to the [available] facilities, ” represented a grave threat to
the future of electronic computing. Already it was serious enough to

56 Chapter 3

demand a “ cooperative effort ” on the part of industry, government, and
educational institutions to resolve. 13

 The proceedings of the Conference on Training Personnel for the
Computing Machine Field provide the best data available on the state
of the labor market in the electronic computer industry during its fi rst
decade. Representatives from almost every major computer user or man-
ufacturer were in attendance; those who could not be present were sur-
veyed in advance about their computational requirements and personnel
practices.

 The most obvious conclusion to be drawn from these data are that
the computer industry in this period was growing rapidly, not just in
size, but also in scope. The survey of the fi ve hundred largest manufac-
turing companies in United States, compiled by Milton Mengel of the
Burroughs Corporation, revealed that almost one-fi fth were already
using electronic computers by 1954, with another fi fth engaged in study-
ing their feasibility. The extent of this early and widespread adoption of
the computer by large corporations is confi rmed by other sources, and
is a refl ection of the increased availability of low(er)-cost and more reli-
able technology. By 1954, for example, IBM had already released its fi rst
mass-produced computer, the IBM 650, which sold so many units that
it became known as the “ Model T ” of electronic computing. The IBM
650 and successors were in many ways evolutionary developments,
designed specifi cally to integrate smoothly into already-existing systems
and departments of computation.

 This increase in the number of installed computers was, in and of
itself, enough to cause a serious shortage of experienced computer per-
sonnel. Truman Hunter, of the IBM Applied Sciences Division (an entirely
separate group from that headed by Bemer), anticipated doubling his
programming staff (from fi fty to a hundred) by the end of the year. 14
Similar rates of growth were reported in the aircraft, automobile, and
petroleum industries, with one survey respondent expected to triple its
number of programmers. 15 Charles Gregg, of the Air Force Materiel
Command, declined to even estimate the demand for trained computer
personnel in the U.S. government, suggesting only that “ we sure need
them badly, ” and that as far as training was concerned, “ we have a rough
row to hoe. ” 16 If we include in our understanding of computer personnel
not just programmers but also keypunch and machine operators, techni-
cians, and supervisory staff, the personnel shortage appears even more
dramatic.

Chess Players, Music Lovers, and Mathematicians 57

 In the face of this looming crisis, the existing methods for training
programmers and other computer personnel were revealed as ludicrously
insuffi cient. At this point, there were no formal academic programs in
computer science in existence, and those few courses in computer pro-
gramming that were offered in universities were at the master ’ s or PhD
level. Computer manufacturers, who had a clear stake in ensuring that
their customers could actually use their new machines, provided some
training services. But in the fi fteen months prior to the 1954 conference,
confessed M. Paul Chinitz of Remington Rand UNIVAC (at that point
the largest manufacturer of computers in the world), the company had
only managed to train a total of 162 programmers. 17 He estimated that
the total training capacity of all of the manufacturers combined at a mere
260 programmers annually. And so the majority of computer users were
left to train their own personnel. 18 This in-house training was expensive,
time-consuming, and generally inadequate. 19

 Part of the problem, of course, was that computer programming
was inherently diffi cult. As was described in the previous chapter,

 Figure 3.2
 Cartoon from Datamation magazine, 1968.

58 Chapter 3

programming in the 1950s — particularly in the early 1950s — was an
inchoate discipline, a jumble of skills and techniques drawn from electri-
cal engineering, mathematics, and symbolic logic. It was also intrinsically
local and idiosyncratic: each individual computer installation had its own
unique software, practices, tools, and standards. There were no program-
ming languages, no operating systems, no best-practice guidelines, and
no textbooks. The problem with the so-called electronic brains, as
Truman Hunter of IBM noted, is that they were anything but: computers
might be powerful tools, yet they were “ completely dependent slaves ”
to the human mind. The development of these machines was resulting
in “ even greater recognition of, and paying a greater premium for, ” the
skilled programmers who transformed their latent potential into real-
world applications. 20

 It was one thing to identify, as Truman Hunter did, the increasing
need for “ men [programmers] . . . who were above average in training
and ability ” to accomplish this transformation, but what kind of train-
ing, and what kind of abilities? 21 Although government laboratories and
engineering fi rms remained the primary consumers of computer technol-
ogy through the early 1950s, a growing number were being sold to
insurance companies, accounting fi rms, and other, even less technically
oriented customers. Not only were these users less technically profi cient
and less likely to have their own in-house technical specialists but they
also used their computers for different and in many ways more compli-
cated types of applications. The Burroughs study, for example, suggested
an interesting shift in the way in which computers were being used in
this period, and by whom. While the majority of computers (95 percent)
currently in service were being used for engineering or scientifi c purposes,
the data on anticipated future purchases indicated a shift toward business
applications. 22 The next generation of computers, the survey suggested,
would be used increasingly (16 percent) for business data processing
rather than scientifi c computation. 23

 These new business users saw the electronic computer as more than
mere number crunchers; they saw them as payroll processing devices,
data processing machines, and management information systems. This
broader vision of an integrated “ information machine ” demanded of the
computer new features and capabilities, many of them software rather
than hardware oriented. 24

 As the computer became more of a tool for business than a scientifi c
instrument, the nature of its use — and its primary user, the computer
programmer — changed dramatically. The projects that these business

Chess Players, Music Lovers, and Mathematicians 59

programmers worked on tended to be larger, more highly structured
(while at the same time less well defi ned), less mathematical, and more
tightly coupled with other social and technological systems than were
their scientifi c counterparts. Were the programmers who worked on
heterogeneous business data processing systems technologists, managers,
or accountants? As Charles Gregg of the Air Force Materiel Command
jokingly suggested, the people who made the best programmers were
 “ electronics engineers with an advanced degree in business administra-
tion. ” Such multitalented individuals were obviously in short supply. “ If
anyone can energize an educational program to produce such people in
quantity, ” he quickly added, “ we would certainly like to be put on their
mailing list. ” His fellow conference participants no doubt agreed with
this assessment: the needs of business demanded a whole new breed of
programmers, and plenty of them. 25

 The 1954 Conference on Training Personnel for the Computing
Machine Field was to be the fi rst of many. The “ persistent personnel
problem, ” as it soon became known in the computing community, would
only get worse over the course of the next decade. 26 It was clear that
recruiting programmers a half dozen at the time with cute advertisements
in the New York Times was not a sustainable strategy. But what was
the alternative? If employers truly believed, as was argued in the previous
chapter, that computer programmers formed a unique category of techni-
cal specialists — more creative than scientifi c, artisanal rather than indus-
trial, born and not made — then how could they possibly hope to ensure
an adequate supply to meet a burgeoning demand? How did they rec-
oncile contemporary beliefs about the idiosyncratic nature of individual
programming ability with the rigid demands of corporate management
and control?

 Aptitude Tests and Psychological Profi les

 So how did companies deal with the need to train and recruit pro-
grammers on a large scale? Here the case of the System Development
Corporation (SDC) is particularly instructive.

 SDC was the RAND Corporation spin-off responsible for developing
the software for the U.S. Air Force ’ s Semi-Automated Ground Environ-
ment (SAGE) air-defense system. SAGE was perhaps the most ambitious
and expensive of early cold war technological boondoggles. Comprised
of a series of computerized tracking and communications centers, SAGE
cost approximately $8 billion to develop and operate, and required the

60 Chapter 3

services of over two hundred thousand private contractors and military
operators.

 A major component of the SAGE project was the real-time computers
required to coordinate its vast, geographically dispersed network of
observation and response centers. IBM was hired to develop the comput-
ers themselves but considered programming them to be too diffi cult. In
1955 the RAND Corporation took over software development. It was
estimated that the software for the SAGE system would require more
than one million lines of code to be written. At a time when the largest
programming projects had involved at most fi fty thousand lines of code,
this was a singularly ambitious undertaking. 27

 Within a year, there were more programmers at RAND than all other
employees combined. Overwhelmed, RAND spun-off SDC to take over
the project. By 1956, SDC employed seven hundred programmers, which
at the time represented three-fi fths of the available programmers in the
entire United States. 28 Over the next fi ve years, SDC would hire and train
seven thousand more. 29 In the space of a few short years the personnel
department at SDC had effectively doubled the number of trained pro-
grammers in the country. “ We trained the industry, ” SDC executives
were later fond of saying, and in many respects they were correct; for
the next decade, at the very least, any programming department of any
size was likely to contain at least two or three SDC alumni. 30

 In order to effectively recruit, train, and manage an unprecedented
number of programmers, SDC pursued three interrelated strategies. The
fi rst involved the construction of an organizational and managerial struc-
ture that reduced its reliance on highly skilled, experienced programmers.
The second focused on the development and use of aptitude tests and
personality profi les to fi lter out the most promising potential program-
mers. And fi nally, SDC invested heavily in internal training and develop-
ment programs. In a period when the computer manufacturers combined
could only provide twenty-fi ve hundred student weeks of instruction
annually, SDC devoted more than ten thousand student weeks to instruct-
ing its own personnel to program. 31

 The engineers who founded SDC explicitly rejected what they called
the “ nostalgic ” notion, common in the industry at that time, that pro-
grammers were “ different, ” and “ could not work and would not prosper ”
under the rigid structures of engineering management. 32 They organized
SDC along the lines of a “ software factory ” that relied less on skilled
workers, and more on centralized planning and control. The principles
behind this approach were essentially those that had proven so successful
in traditional industrial manufacturing: replaceable parts, simple and

Chess Players, Music Lovers, and Mathematicians 61

repetitive tasks, and a strict division of labor. The assumption was that
a complex computer program like the SAGE control system could be
neatly broken down into simple, modular components that could be
easily understood by any programmer with the appropriate training and
experience. Programmers in the software factory were mere machine
operators; they had to be trained, but only in the basic mechanisms of
implementing someone else ’ s design. In the SDC hierarchy, managers
made all of the important decisions. 33

 The hierarchical approach to software development was attractive to
SDC executives for a number of reasons. To begin with, it was a familiar
model for managing government and military subcontractors. Engineering
management promised scientifi c control over the often-unpredictable
processes of research and development. It allowed for the orderly pro-
duction of cutting-edge science and technology. 34 In the language used
by the managers themselves, it was a solution that “ scaled ” well, meaning
that it could accommodate the rapid and unanticipated growth typical
of cold war – era military research. Scientifi c management techniques and
production technologies could be substituted for human resources. It was
not a system dependent on individual genius or chance insight. It replaced
skilled personnel with superior process. For these and other reasons, it
seemed the perfect solution to the problem posed by the mass production
of computer programs. (Coincidentally, it was easier to justify billing the
government for a large number of mediocre low-wage employees than a
smaller number of excellent but expensive contractors.)

 It is important to note that the SDC approach did not attempt to solve
its programmer personnel problem by reducing the number of program-
mers it required. On the contrary, the SDC software factory strategy (or
as detractors dismissively referred to it, the “ Mongolian Horde ” approach
to software development) probably demanded more programmers than
was otherwise necessary. But the programmers that SDC was interested
in were not the idiosyncratic “ black artists ” that most employers were
desperately in search of. SDC still expected to hire and train large
numbers of programmers, yet it hoped that these programmers would
be much easier to identify and recruit. Most of its trainees had little or
no experience with computers; in fact, many managers at SDC preferred
it that way. 35

 The solution that SDC ultimately employed to identify and recruit
potential programmers was to become standard practice in the industry.
Building on techniques pioneered at RAND and MIT ’ s Lincoln Laboratory
in the early 1950s, SDC developed a suite of aptitude tests and psycho-
logical profi les that were used to screen large numbers of potential

62 Chapter 3

trainees. 36 Candidates who scored well on the tests were then inter-
viewed, tested a second time — this time for desirable psychological char-
acteristics — and then assuming that all went well, offered a position. The
aptitude tests were meant to fi lter for traits thought essential to good
programming, such as the ability to think logically and do abstract rea-
soning. The psychological profi les were meant to identify individuals
with the appropriate personality for programming work. 37

 The use of psychometric tools such as aptitude tests and psychological
profi les was not unique to computing. Such tests had long been used by
the U.S. military in the recruitment of soldiers. The SDC exams, for
example, were based on the Thurstone Primary Mental Abilities Test and
the Thurstone Temperament Schedule, which had both been in wide use
since the 1930s. 38 In the period following the end of the Second World
War, similar metrics had been enthusiastically adopted by the advocates
of scientifi c personnel research. 39 SDC was able to choose from more
than thirty available tests when it established its test battery in the late
1950s. 40

 Figure 3.3
 Honeywell Corporation Aptitude Test, 1965.

Chess Players, Music Lovers, and Mathematicians 63

 The central assumption of all such aptitude tests was that there was
a particular innate characteristic, or set of characteristics, that could be
positively correlated with occupational performance. These traits were
necessarily innate — otherwise they could simply be taught, rather then
only identifi ed — and tended to be cognitive, personality related, or some
combination of both. The Thurstone Primary Mental Abilities Test, for
example, claimed to evaluate specifi c skills, such as “ verbal meaning ”
and “ reasoning, ” as well as more general qualities such as “ emotional
stability. ” The verbal meaning section presented a series of words for
which the test taker would have to identify the closest synonym. The
reasoning section involved the completion of number series using rules
implicit in the given portion of the series. The emotional stability ques-
tions purported to measure an amalgam of desirable personality traits,
including patience and a willingness to pay close attention to detail.

 The scientifi c validity of aptitude testing was at best equivocal. At an
Association for Computing Machinery conference in 1957, the com-
pany ’ s own psychometrician, Thomas Rowan, presented a paper con-
cluding that “ in every case, ” the correlation between test scores and
subsequent performance reviews “ was not signifi cantly different from
zero. ” 41 The best he could say was that scores on the aptitude test did
correlate somewhat with grades in the programming course. Nevertheless,
SDC continued to use aptitude tests, including those tests that Rowan
had identifi ed as unsatisfactory, as the primary basis for its selection
procedures at least until the late 1960s.

 Why persist in using aptitude testing when it was so obviously inade-
quate? The simple answer seems to be that SDC had no other option.
Having accepted a $20 million contract from the Air Defense Command
to develop the SAGE software, SDC necessarily had to expand rapidly.
Even had SDC managed to hire away all of the computer programmers
then working in the United States, it could still not have adequately
staffed its growing programming division. The entire SDC development
strategy had been constructed around the notion that complex software
systems could be readily broken down into simpler modules that even
relatively novice programmers — properly managed — could adequately
develop. The SDC software factory was a deliberate attempt to industri-
alize the programming process, to impose on it the lessons learned from
traditional industrial manufacturing. Like all industrial systems, the
software factory required not only new organizational forms and pro-
duction technologies (in this case, automated development and testing
utilities) but also new forms of workers. As with the replacement of

64 Chapter 3

skilled machinists with unskilled machine operators in the automobile
factories of the early twentieth century, these new software workers
would require less experience and training than their predecessors,
but the availability of large numbers of them was essential. The mass
production of computer programs necessitated the mass production of
programmers.

 As will be discussed further below, it is questionable whether the SDC
vision of the software factory was ever truly realized — by SDC itself or
any of its many imitators. But for the time being it is enough to say that
the aptitude testing methods that SDC originated and then disseminated
throughout the industry assumed programming to be a well-defi ned,
largely mechanical process. In the words of Thomas Rowan, the person
primarily responsible for the SDC personnel selection process, program-
ming was only “ that activity occurring after an explicit statement of the
problem had been obtained. ” 42 Specifi cally excluded from programming
were any of the creative activities of planning or design. In other words,
SDC had redefi ned computer programming as exactly the type of skill
that aptitude tests were meant to accurately identify: straightforward,
mechanical, and easily isolated. The SDC aptitude tests were not so much
an attempt to identify programmer skill and ability as to embody it.

 IBM PAT

 Despite the seeming inability of the SDC aptitude testing regime to accu-
rately capture the essence of programming ability, similar tests continued
to be widely developed and adopted, not only by SDC, but also increas-
ingly by other large employers. Of these second-generation tests, the
most signifi cant was the IBM Programmer Aptitude Test (PAT). In 1955,
IBM contracted with two psychologists, Walter McNamara and John
Hughes, to develop an aptitude test to identify programming talent. The
programmer test was based on an earlier exam for card punch operators.
Originally called the Aptitude Test for EDPM (Electronic Data Processing
Machine) Programmers, it was renamed PAT in 1959. 43

 Over the next few decades, IBM PAT would become the industry
standard instrument for evaluating programming ability. By 1962 an
estimated 80 percent of all businesses used some form of aptitude test
when hiring programmers, and half of these used IBM PAT. 44 Most of
the many vocational schools that emerged in this period to train
programmers used PAT as a preliminary screening device. In 1967
alone, PAT was administered to more than seven hundred thousand

Chess Players, Music Lovers, and Mathematicians 65

individuals. 45 Well into the 1970s, IBM PAT served as the de facto
gateway into the programming occupation.

 Like the SDC exams, IBM PAT focused primarily on mathematical
aptitude, with most of the questions dealing with number series, fi gure
analogies, and arithmetic reasoning. Although several minor variations
of PAT were introduced over the course of the next several decades, the
overall structure of the exam remained surprisingly consistent. The fi rst
section required examinees to identify the underlying rule defi ning the
pattern of a series of numbers. The second section was similar to the
fi rst, but involved geometric forms rather than number series. The third
and fi nal section posed word problems that could be reduced to algebraic
forms, such as “ How many apples can you buy for sixty cents at the rate
of three for ten cents? ” 46 Examinees had fi fty minutes to answer roughly
one hundred questions, and so speed as well as accuracy was required.

 Critics of PAT argued that its emphasis on mathematics made it
increasingly irrelevant to contemporary programming practices. It might
once have been the case, as Gerald Weinberg acknowledged in his acerbic
critique of IBM PAT in 1971, that programmers would have to add two
or three hexadecimal numbers in order to fi nd an address in a dump of
a machine or assembly language program. But even then the arithmetic
involved was relatively trivial, and the development of high-level pro-
gramming languages had largely eliminated the need for such mental
mathematics. And as for an aptitude for understanding geometric rela-
tionships, Weinberg noted sarcastically, “ I ’ ve never met a programmer
who was asked to tell whether two programs were the same if one was
rotated 90 degrees. ” 47 At best such measures of basic mathematical
ability were a proxy for more general intelligence; more likely, however,
they were worse than useless, a deliberate form of self-deception prac-
ticed by desperate employers and the “ personnel experts ” who preyed
on them. 48

 Weinberg was not alone in his critique of the mathematical focus of
PAT and other exams. As early as the late 1950s, a Bureau of Labor
report had identifi ed the growing sense of corporate disillusionment with
the mathematical approach to computing, contending that “ many
employers no longer stress a strong background in mathematics for
programming of business or other mass data if candidates can demon-
strate an aptitude for the work. ” 49 As more and more computers were
used for business data processing rather than scientifi c computation, the
types of problems that programmers were required to solve changed
accordingly. The mathematical tricks that were so crucial in trimming

66 Chapter 3

valuable processor cycles in scientifi c and engineering applications had
no place in the corporate environment, which privileged legibility and
ease of maintenance over performance. 50 Not surprisingly, scientifi c pro-
grammers scored better on PAT than business programmers. 51

 The relevance of mathematical aptitude to programming ability
remained, and still does, a perennial question in the industry. At least
one study of programmers identifi ed no signifi cant difference in perfor-
mance between those with a background in science or engineering and
those who studied humanities or the social sciences. 52 Even the authors
of IBM PAT concluded that at best, mathematical ability was associated
with particular applications and not programming ability in general. 53

 Some observers went so far as to suggest that by privileging mathe-
matical aptitude, PAT was downright pathological, selecting for “ a type
of logical mind which . . . is not very often supported by maturity or
reasoned thinking ability. ” 54 As a result, these selection processes tended
to segregate individuals whose personality traits made it diffi cult to
cooperate with management and fellow employees. At the very least, the
mathematical mind-set frequently precluded the kinds of complex solu-
tions typical of business programming applications.

 As will be described in more detail in chapter 5, the emerging disci-
pline of computer science, in its own quest for academic respectability,
continued to emphasize mathematics, while industry leaders regularly
dismissed it as irrelevant. 55 For the time being, it is enough to note
that the continuing controversy over mathematics refl ected deeper dis-
agreement, or at least ambiguity, about the true nature of programming
ability.

 The larger question, of course, was whether or not scores on PAT
corresponded with real-world programming performance. On this ques-
tion the data are ambiguous. Most employers did not even attempt to
correlate test scores with objective measures of performance such as
supervisor ratings. 56 The small percentage that did concluded that there
was no relationship between PAT scores and programming performance
at all, at least in the context of business programming. 57 At best, these
studies identifi ed a small correlation between PAT scores and academic
success in training programs . Few argued that such correlations trans-
lated into accurate indicators of future success in the workplace. 58 Even
IBM recommended that PAT be used only in the context of a larger
personnel screening process.

 Over the course of the next decade, there were several attempts to
recalibrate the tests to make them more directly relevant to real-world

Chess Players, Music Lovers, and Mathematicians 67

programming. IBM itself created several modifi cations to its original
PAT, including the Revised Programmer Aptitude Test (1959) and the
Data Processing Aptitude Test (1964), although neither successfully
replaced the popular PAT. 59 The Computer Usage Company ’ s version of
a programmer aptitude test required examinees to solve logical problems
using the console lights on an IBM 1401 computer. 60 The Aptitude
Assessment Battery: Programming, developed in 1967 by Jack Wolfe, a
prominent critic of IBM PAT, eliminated mathematics and concentrated
on an applicant ’ s ability to focus intensively on complex, multiple-step
problems. 61 The Programmer Aptitude and Competence System required
examinees to develop actual programs using a simplifi ed programming
language. 62 The Basic Programmer Knowledge Test (1966) tested every-
thing from design and coding to testing and documentation. 63

 Personality Profi les

 Since even their most enthusiastic advocates recognized the limitations
of aptitude testing, most particularly their narrow focus on mathematics
and logic, many employers also developed personality profi les that they
hoped would help isolate the less tangible characteristics that made for
a good programmer trainee. Some of these characteristics, such as being
task oriented or detail minded, overlapped with the skills measured by
more conventional aptitude tests. Many simply reinforced the conven-
tional wisdom captured by the “ Talk of the Town ” column almost a
decade earlier. “ Creativity is a major attribute of technically oriented
people, ” suggested one representative profi le. “ Look for those who like
intellectual challenge rather than interpersonal relations or managerial
decision-making. Look for the chess player, the solver of mathematical
puzzles. ” 64 But other profi les emphasized different, less obvious personal-
ity traits such as imagination, ingenuity, strong verbal abilities, and a
desire to express oneself. 65 Still others tested for even more elusive quali-
ties, such as emotional stability. 66 Such traits were obviously diffi cult to
capture in a standard, skills-oriented aptitude test. Personality profi les
relied instead on a combination of psychological testing, vocational inter-
est surveys, and personal histories to provide a richer, more nuanced set
of criteria on which to evaluate programmers.

 The idea that particular personality traits might be useful indicators
of programming ability was clearly a legacy of the origins of program-
ming in the early 1950s. The central assumption was that programming
ability was an innate rather than a learned ability, something to be

68 Chapter 3

identifi ed rather than instilled. Good programming was believed to be
dependent on uniquely qualifi ed individuals, and that what defi ned these
people was some indescribable, impalpable quality — a “ twinkle in the
eye, ” an “ indefi nable enthusiasm, ” or what one interviewer depicted as
 “ the programming bug that meant . . . we ’ re going to take a chance on
him despite his background. ” 67 The development of programmer person-
ality profi les seemed to offer empirical evidence for what anecdote had
already determined: the best programmers appeared to have been born,
not made.

 The use of personality profi les to identify programmers began, as with
other industry-standard recruiting practices, at SDC. Applicants at SDC
were fi rst tested for aptitude, then interviewed in person, and only then
profi led for desirable personality characteristics. Like other psychological
profi les from this period, the SDC screens identifi ed as valuable only
those skills and characteristics that would have been assets in any white-
collar occupation: the ability to think logically, work under pressure,
and get along with people; a retentive memory and the desire to see a
problem through to completion; and careful attention to detail.

 By the start of the 1960s, however, SDC psychologists had developed
more sophisticated models based on the extensive employment data that
the company had collected over the previous decade as well as surveys
of members of the Association for Computer Machinery and the Data
Processing Management Association. In a series of papers published in
serious academic journals such as the Journal of Applied Psychology and
 Personnel Psychology , SDC psychologists Dallis Perry and William
Cannon provided a detailed profi le of the “ vocational interests of com-
puter programmers. ” 68 The scientifi c basis for their profi le was the Strong
Vocational Interest Bank (SVIB), which had been widely used in voca-
tional testing since the late 1920s.

 The basic SVIB in this period consisted of four hundred questions
aimed at eliciting an emotional response (“ like, ” “ dislike, ” or “ indiffer-
ent ”) to specifi c occupations, work and recreational activities, types of
people, and personality types. By the 1960s, more than fi fty statistically
signifi cant collections of preferences (“ keys ”) had been developed for
such occupations as artist, mathematician, police offi cer, and airplane
pilot. Perry and Cannon were attempting to develop a similar interest
key for programmer. They hoped to use this key to correlate a unique
programmer personality profi le with self-reported levels of job satisfac-
tion. In the absence of direct measures of job performance, such as
supervisors ’ evaluations, it was assumed that satisfaction tracked closely

Chess Players, Music Lovers, and Mathematicians 69

with performance. The larger assumption behind the use of the SVIB
profi les was that candidates who had interests in common with those
individuals who were successful in a given occupation were themselves
also likely to achieve similar success.

 Many of the traits that Perry and Cannon attributed to successful
programmers were unremarkable: for the most part programmers enjoyed
their work, disliked routine and regimentation, and were especially inter-
ested in problem and puzzle-solving activities. 69 The programmer key
that they developed bore some resemblance to the existing keys for engi-
neering and chemistry, but not to those of physics or mathematics, which
Perry and Cannon saw as contradicting the traditional focus on mathe-
matics training in programmer recruitment. A slight correlation with the
musician key offered “ some, but not very strong, ” support for “ the
prevalent belief in a relationship between programming and musical
ability. ” 70 Otherwise, programmers resembled other white-collar profes-
sionals in such diverse fi elds as optometry, public administration,
accounting, and personnel management.

 In fact, there was only one really “ striking characteristic ” about pro-
grammers that the Perry and Cannon study identifi ed. This was “ their
disinterest in people. ” Compared with other professional men, “ pro-
grammers dislike activities involving close personal interaction. They
prefer to work with things rather than people. ” 71 In a subsequent study,
Perry and Cannon demonstrated this to be true of female programmers
as well. 72

 The idea that computer programmers lacked people skills quickly
became part of the lore of the computer industry. The infl uential industry
analyst Richard Brandon suggested that this was in part a refl ection
of the selection process itself, with its emphasis on mathematics and
logic. The “ Darwinian selection ” mechanism of personnel profi ling,
Brandon maintained, selected for personality traits that performed
well in the artifi cial isolation of the testing environment, but that
proved dysfunctional in the more complex social environment of a
corporate development project. Programmers were “ excessively
independent, ” argued Brandon, to the point of mild paranoia. The pro-
grammer type is “ often egocentric, slightly neurotic, and he borders
upon a limited schizophrenia. The incidence of beards, sandals, and
other symptoms of rugged individualism or nonconformity are notably
greater among this demographic group. Stories about programmers
and their attitudes and peculiarities are legion, and do not bear repeat-
ing here. ” 73

70 Chapter 3

 Although Brandon ’ s evidence was strictly anecdotal, his portrayal of
the neurotic programmers was convincing enough that the psychologist
Theodore Willoughby felt compelled to refute it on scientifi c grounds in
his 1972 article “ Are Programmers Paranoid. ” 74 But whether or not
Brandon ’ s paranoia was, from a strictly medical perspective, an accurate
diagnosis is irrelevant. The idea that “ detached ” individuals made good
programmers was embodied, in the form of the psychological profi le,
into the hiring practices of the industry. 75 Possibly this was a legacy of
the murky origins of programming as a fringe discipline in the early
1950s; perhaps it was self-fulfi lling prophecy. Nevertheless, the idea of
the programmer as being particularly ill equipped for or uninterested in
social interaction did become part of the conventional wisdom of the
industry. Although the short-term effect of this particular occupational
stereotype was negligible, it would later come back to haunt the pro-
gramming community as it attempted to professionalize later in the
decade. As we will see in later chapters, the stereotype of the computer
programmer as a machine obsessed and antisocial was used to great
effect by those who wished to undermine the professional authority of
the computer boys.

 For the most part, however, the personality profi les that Perry and
Cannon as well as others developed simply became one component of a
larger set of tools used by employers to evaluate potential program-
mers. 76 According to one survey of Canadian employers, more than
two-thirds used a combination of aptitude and general intelligence tests,
personality profi les, and interest surveys in their selection processes. 77

 The Situation Can Only Get Worse

 Despite the massive amount of effort that went into developing the
science of programmer personnel selection, the labor market in comput-
ing only seemed to deteriorate. Many of the technological and demo-
graphic trends identifi ed at the Wayne State Conference in 1954 continued
to accelerate. By 1961, industry analysts were fretting publicly about a
 “ gap in programming support ” that “ will get worse in the next several
years before it gets better. ” 78 In 1962, the editors of the powerful indus-
try journal Datamation declared that “ fi rst on anyone ’ s checklist of
professional problems is the manpower shortage of both trained and
even untrained programmers, operators, logical designers and engineers
in a variety of fl avors. ” 79 At a conference held that year at the MIT
School of Industrial Management, the “ programming bottleneck ” was

Chess Players, Music Lovers, and Mathematicians 71

identifi ed as the central dilemma in computer management. 80 In 1966,
the labor situation had gotten so bad that Business Week declared it a
 “ software crisis. ” 81 An informal survey in 1967 of management informa-
tion systems (MIS) managers identifi ed as the primary hurdle “ handicap-
ping the progress of MIS ” to be “ the shortage of good, experienced
people. ” 82 By the late 1960s, the demand for programmers was increas-
ing by more than 50 percent annually, and it was predicted that
 “ the software man will be in even greater demand in 1970 than he is
today. ” 83 Indeed, estimates of the number of programmers that would
be required by 1970 ranged as high as 650,000. 84

 It would be diffi cult to overstate the degree to which concern about
the software labor crisis dominated the industry in this period. The
popular and professional literature during this time was obsessed with
the possible effects of the personnel crisis on the future of the industry.
 “ Competition for programmers has driven salaries up so fast, ” warned
a contemporary article in Fortune magazine, “ that programming has
become probably the country ’ s highest paid technological
occupation. . . . Even so, some companies can ’ t fi nd experienced pro-
grammers at any price. ” 85 A study in 1965 by Automatic Data Processing,
Inc., then one of the largest employers of programmers, predicted that
average salaries in the industry would increase 40 to 50 percent over the
next fi ve years. 86 The ongoing “ shortage of capable programmers, ”
argued Datamation in 1967, “ had profound implications, not only for
the computer industry as it is now, but for how it can be in the future. ” 87
These potentially profound implications included everything from fi nan-
cial collapse to software-related injury or death to the emergence of a
packaged software application industry.

 Faced with a growing shortage of skilled programmers, employers
were forced to expand their recruitment efforts and lower their hiring
standards. Although by 1967 IBM alone was training ten thousand pro-
grammers annually (at a cost of $90 to $100 million), it was becoming
increasingly clear that computer manufacturers alone could not produce
trained programmers fast enough. 88 As a result, many companies reluc-
tantly assumed the costs of expensive internal training programs, “ not
because they want to do it, but because they have found it to be an
absolute necessary adjunct to the operation of their business. ” 89 It is
diffi cult to fi nd accurate data on the size of such programs, as many
organizations refused to disclose details about them to outsiders, “ on the
theory that to do so would only invite raiding ” from other employers. 90
The job market was so competitive in this period that as many as half

72 Chapter 3

of all programmer trainees would leave within a year to pursue more
lucrative opportunities. 91 And since the cost of training or recruiting a
new programmer was estimated at almost an entire year ’ s salary, such
high levels of turnover were expensive. 92 Many employers were thus
extremely secretive about their training and recruitment practices; some
even refused to allow their computer personnel to attend professional
conferences because of the rampant headhunting that occurred at such
gatherings. 93 Because of the low salaries that it paid relative to the indus-
try, the U.S. government had a particular problem retaining skilled
employees, and so in 1963, Congress passed the Vocational Education
Act, which made permanent the provisions of Title VIII of the National
Defense Education Act of 1959 for training highly skilled technicians.
By 1966, the act had paid for the training of thirty-three thousand com-
puter personnel — requiring in exchange only that they work for a certain
time in government agencies. 94

 In numerous cases, the aptitude tests that many corporations hoped
would alleviate their personnel problems had entirely the opposite effect.
Whatever small amount of predictive validity the tests had was soon
compromised by applicants who cheated or took them multiple times.
Since many employers relied on the same basic suite of tests, would-be
programmers simply applied for positions at less-desirable fi rms, mas-
tered the aptitude tests and application process, and then transferred
their newfound testing skills to the companies they were truly interested
in. Taking the same test repeatedly virtually assured top scores. 95 Copies
of IBM PAT were also stolen and placed in fraternity fi les. 96 By the late
1960s it appeared that all of the major aptitude tests had been thor-
oughly compromised. One widely circulated book contained versions of
the IBM, UNIVAC, and NCR exams. Updated versions were published
almost annually. 97

 Paradoxically, even as the value of the aptitude tests diminished, their
use began to increase. All of the major hardware vendors developed their
own versions, such as the National Cash Register Programmer Aptitude
Test and the Burroughs Corporation Computer Programmer Aptitude
Battery. 98 Aptitude testing became the “ Hail Mary pass ” of the computer
industry. Some companies tested all of their employees, including the
secretaries, in the hope that hidden talent could be identifi ed. 99 A group
called the Computer Personnel Development Association was formed to
scour local community centers for promising programmer candidates. 100
Local YMCAs offered the test for a nominal fee, as did local community
colleges. 101 In 1968 computer service bureaus in New York City, desper-

Chess Players, Music Lovers, and Mathematicians 73

ate to fi ll the demand for more programmers, began testing inmates at
the nearby Sing-Sing Prison, promising them permanent positions pending
their release. 102 That same year, Cosmopolitan Magazine urged “ Cosmo
Girls ” to go out and become “ computer girls ” making “ $15,000 a year ”
as programmers. Not only did the widespread personnel problem in
computing make it possible for women to break into the industry but
the fi eld was also currently “ overrun with males, ” making it easy to fi nd
desirable dating prospects. Programming was “ just like planning a
dinner, ” the article quoted software pioneer Admiral Grace Hopper as
saying. “ Women are ‘ naturals ’ at computer programming. ” And in true
 Cosmopolitan fashion, the article was also accompanied by a quiz: in
this case, a mini programmer aptitude test adapted from an exam devel-
oped at NCR. 103 The infl ux of new programmer trainees and vocational

 Figure 3.4
 Cartoon from Datamation magazine, 1962.

74 Chapter 3

school graduates into the software labor market only exacerbated an
already-dire labor situation. The market was fl ooded with aspiring pro-
grammers with little training and no practical experience. As one study
by the Association for Computing Machinery ’ s (ACM) SIGCPR warned,
by 1968 there was a growing oversupply of a certain undesirable species
of software specialist. “ The ranks of the computer world are being
swelled by growing hordes of programmers, systems analysts and related
personnel, ” the SIGCPR argued. “ Educational, performance and profes-
sional standards are virtually nonexistent and confusion grows rampant
in selecting, training, and assigning people to do jobs. ” 104

 It was not just employers who were frustrated by the confused state
of the labor market. “ As long as I have been programming, I have heard
about this ‘ extreme shortage of programmers, ’ ” wrote one Datamation
reader, whose husband had unsuccessfully tried to break into the com-
puter business. “ How does a person . . . get into programming? ” 105
 “ Could you answer for me the question as to what in the eyes of industry
constitutes a ‘ qualifi ed ’ programmer? ” pleaded another aspiring job can-
didate. “ What education, experience, etc. are considered to satisfy the
 ‘ qualifi ed ’ status? ” 106 A background in mathematics seemed increasingly
irrelevant to programming, particularly in the business world, and even
the emerging discipline of computer science appeared to offer no practi-
cal solution to the problem of training programmers en masse. In the
absence of clear educational standards or functional aptitude exams,
would-be programmers and employers alike were preyed on by a growing
number of vocational schools that promised to supply both programmer
training and trained programmers. During the mid-1960s these schools
sprang up all over the country, promising high salaries and dazzling
career opportunities, and fl ooding the market with candidates who were
prepared to pass programming aptitude tests but nothing more.
Advertisements for these vocational schools, which appeared everywhere
from the classifi ed section of newspapers to the back of paper match-
books, emphasized the desperate demand for programmers and the low
barriers of entry to the discipline: “ There ’ s room for everyone. The
industry needs people. You ’ ve got what it takes. ” 107

 The typical vocational school offered between three and nine months
of training, and cost between $1,000 and $2,500. Students at these
schools would receive four to fi ve hours a day of training in various
aspects of electronic data processing, including programming but also
more basic tasks such as keypunch and tabulating machine operation.
What programming training they did receive focused on the memoriza-

Chess Players, Music Lovers, and Mathematicians 75

tion of syntax rather than hands-on problem solving. Because of the high
costs associated with renting computer time, the curriculum was often
padded with material only tangentially related to computing — such as
several days ’ worth of review of basic arithmetic. A few schools did lease
their own computers, but these were typically the low-end IBM/360
Model 20, which did not possess its own disk or tape mechanism. At
some schools students could expect to only receive as little as one hour
total of machine time, which had to be shared among a class of up to
fi fteen students. 108

 These schools were generally profi t-oriented enterprises more inter-
ested in quantity than quality. The entrance examinations, curriculum,
and fee structure of these programs were carefully constructed to comply
with the requirements of the GI Bill. Aggressive salespeople promised
guaranteed placement and starting salaries of up to $700 per week — at
a time when the industry average weekly salary for junior programmers
was closer to $400 to $500. Since these salespeople were paid on com-
mission, and could earn as much as $150 for every student who enrolled
in a $1,000 course of study, they encouraged almost anyone to apply;
for many of the vocational schools, the “ only meaningful entrance
requirements are a high school diploma, 18 years of age . . . and the

 Figure 3.5
 Cartoon from New Yorker magazine, May 31, 1969. © Vahan Shirvanian/The
New Yorker Collection/www.cartoonbank.com.

76 Chapter 3

ability to pay. ” 109 Instructors were also compensated on a pay-as-you-go
basis, which encouraged them to retain even the least competent of their
students. Some of these instructors were working programmers moon-
lighting for additional cash, but given the overall shortage of experienced
programmers in this period, most had little, if any, industry experience.
Some had only the training that they had received as students in the very
programs in which they were now serving as instructors.

 Since these schools had an interest in recruiting as many students
as possible, they made wide use of aptitude testing. Most included
watered-down versions of IBM PAT in their marketing brochures,
although a few offered coupons for independent testing bureaus. The
version of PAT that many schools relied on was graded differently from
the standardized test. A student could receive a passing grade after
answering as few as 50 percent of the questions correctly, and a grade
of A required only a score of 70 percent. The scores on these entrance
examinations was basically irrelevant, with C and D students frequently
receiving admission, but graduating students were required take the full
version of PAT. Only the top-scoring students were passed on to employ-
ment agencies, thereby boosting the school ’ s claims about placement
records. 110

 There were some vocational training programs that were legitimate.
The Chicago-based Automation Institute, for example — sponsored by
the Council for Economic and Industrial Research (itself largely spon-
sored by the computer manufacturer Control Data Corporation) — main-
tained relatively strict standards in its nationwide chain of franchises. In
1967, the Automation Institute became the fi rst EDP school to be accred-
ited by the Accrediting Commission for Business Schools. There were
also programs offered by community colleges and junior colleges (and
even some high schools) that at least attempted to provide substantial
EDP training. The more legitimate schools oriented their curricula toward
the requirements of industry. But the requirements of the industry were
poorly understood or articulated, and vocational schools suffered from
many of the same problems that plagued industry personnel managers:
a shortage of experienced instructors, the lack of established standards
and curricula, and general uncertainty about what skills and aptitudes
made for a qualifi ed programmer. For the most part, the conditions at
most vocational EDP schools was so scandalous that by the end of the
decade many companies imposed strict “ no EDP school graduate ” poli-
cies. 111 A 1970 report by an ACM ad-hoc committee on private EDP
schools confi rmed this reluctance on the part of employers and concluded

Chess Players, Music Lovers, and Mathematicians 77

that fewer than 60 percent of EDP school graduates were able to land
jobs in the EDP fi eld. 112

 Making Programming Masculine

 One unintended consequence of the uncertainty in the labor market
for programming personnel refl ected in — and in part created by — the
widespread use of aptitude tests and personality profi les by corporate
employers and vocational schools was the continued masculinization of
the computing professions. We have already seen how the successful
(re)construction of programming in the 1950s as a black art depended,
in part, on particularly male notions of mastery, creativity, and auton-
omy. The increasingly male subculture of computer hacking (an anach-
ronistic term in this period, but appropriately descriptive nevertheless)
was reinforced and institutionalized by the hiring practices of the
industry.

 At fi rst glance, the representation of programming ability as innate,
rather than an acquired skill or the product of a particular form of tech-
nical education, might be seen as gender neutral or even female friendly.
The aptitude tests for programming ability were, after all, widely distrib-
uted among female employees, including clerical workers and secretaries.
And according to one 1968 study, it was found that a successful team
of computer specialists included an “ ex-farmer, a former tabulating
machine operator, an ex-key punch operator, a girl who had done sec-
retarial work, a musician and a graduate in mathematics. ” The last, the
mathematician, “ was considered the least competent. ” 113 As hiring prac-
tices went, aptitude testing at least had the virtue of being impersonal
and seemingly objective. Being a member of the old boys ’ club does not
do much for one ’ s scores on a standardized exam (Except to the extent
that fraternities and other male social organizations served as clearing-
houses for stolen copies of popular aptitude tests such as IBM PAT. Such
theft and other forms of cheating were rampant in the industry, and
taking the test more than once was almost certain to lead to a passing
grade.)

 Yet aptitude tests and personality profi les did embody and privilege
masculine characteristics. For instance, despite the growing consensus
within the industry (especially in business data processing) that mathe-
matical training was irrelevant to the performance of most commercial
programming tasks, popular aptitude tests such as IBM PAT still empha-
sized mathematical ability. 114 Some of the mathematical questions tested

78 Chapter 3

only logical thinking and pattern recognition, but others required formal
training in mathematics — a fact that even Cosmopolitan recognized as
discriminating against women. Still, the kinds of questions that could be
easily tested using multiple-choice aptitude tests and mass-administered
personality profi les necessarily focused on mathematical trivia, logic
puzzles, and word games. The test format simply did not allow for any
more nuanced, meaningful, or context-specifi c problem solving. And in
the 1950s and 1960s at least, such questions did privilege the typical
male educational experience.

 Even more obviously gendered were the personality profi les that rein-
forced the ideal of the “ detached ” (read male) programmer. It is almost
certainly the case that these profi les represented, at best, deeply fl awed
scientifi c methodology. But they almost equally certainly created a
gender-biased feedback cycle that ultimately selected for programmers
with stereotypically masculine characteristics. The primary selection
mechanism used by the industry selected for antisocial, mathematically

 Figure 3.6
 According to the original caption for this cartoon, “ Programmers are crazy about
puzzles, tend to like research applications and risk-taking, and don ’ t like people. ”
William M. Cannon and Dallis K. Perry, “ A Vocational Interest Scale for
Computer Programmers, ” Proceedings of the Fourth SIGCPR Conference on
Computer Personnel Research (Los Angeles: ACM, 1966), 61 – 82.

Chess Players, Music Lovers, and Mathematicians 79

inclined males, and therefore antisocial, mathematically inclined males
were overrepresented in the programmer population; this in turn rein-
forced the popular perception that programmers ought to be antisocial
and mathematically inclined (and therefore male), and so on ad
infi nitum. Combined with the often-explicit association of programming
personnel with beards, sandals, and scruffi ness, it is no wonder that
women felt increasingly excluded from the center of the computing
community.

 Finally, the explosion of unscrupulous vocational schools in this
period may also have contributed to the marginalization of women in
computing. Not only were these schools constructed deliberately on the
model of the older — and female-oriented — typing academies and busi-
ness colleges, but they also preyed specifi cally on those aspirants to the
programming professions who most lacked access to traditional occupa-
tional and fi nancial assets, such as those without technical educations,
college degrees, personal connections, or business experience. It was
frequently women who fell into this category. At the very least, by
sowing confusion in the programmer labor market through encouraging
false expectations, infl ating standards, and rigging aptitude tests, the
schools made it even more diffi cult for women and other unconventional
candidates to enter the profession.

 This bias toward male programmers was not so much deliberate as it
was convenient — a combination of laziness, ambiguity, and traditional
male privilege. The fact that the use of lazy screening practices inadver-
tently excluded large numbers of potential female trainees was simply
never considered. But the increasing assumption that the average pro-
grammer was also male did play a key role in the establishment of a
highly masculine programming subculture.

 The Search for Solutions

 Given that aptitude tests were perceived by many within the industry to
be inaccurate, irrelevant, and susceptible to widespread cheating, why
did so many employers continue to make extensive use of them well into
the 1980s? The most obvious reason is that they had few other options.
The rapid expansion of the commercial computer industry in the early
1960s demanded the recruitment of large armies of new professional
programmers. At the same time, the increasing diversity and complexity
of software systems in this period — driven in large part by the shift
in focus from scientifi c to business computing — meant that traditional

80 Chapter 3

measures of programming ability, most specifi cally formal training in
mathematics or logic, were becoming ever less relevant to the quotidian
practice of programming. The general lack of consensus about what
constituted relevant knowledge or experience in the computer fi elds
undermined attempts to systematize the production of programmers.
Vocational EDP schools were seen as being too lax in their standards,
and the emerging academic discipline of computer science was viewed
as too stringent. Neither was believed to be a reliable short-term solution
to the burgeoning labor shortage in programming.

 In the face of such uncertainty and ambiguity, aptitude testing and
personality profi ling promised at least the illusion of managerial control.
While many of the methods used by employers at this time appear hope-
lessly naive to modern observers, they represented the cutting edge of
personnel research. Since at least the 1920s, personnel managers had
been attempting to professionalize along the lines of a scientifi c disci-
pline. 115 The large-scale use of psychometric technologies for personnel
selection during the fi rst and second world wars had seemed to many to
validate their claims to scientifi c legitimacy. 116 In the immediate postwar
period, personnel researchers established new academic journals, profes-
sional societies, and academic programs. It is no coincidence that the
heyday of aptitude testing in the software industry corresponded with
this period of intense professionalization in the fi elds that would eventu-
ally come to be known collectively as human resources management. The
programmer labor crisis of the 1950s provided the perfect opportunity
for these emerging experts to practice their craft.

 On an even more pragmatic level, however, aptitude testing offered a
signifi cant advantage over the available alternatives. To borrow a phrase
from contemporary computer industry parlance, aptitude testing was a
solution that scaled effi ciently . That is to say, the costs of aptitude testing
grew only linearly (as opposed to exponentially) with the number of
applicants. It was possible, in short, to administer aptitude tests quickly
and inexpensively to thousands of aspiring programmers. Compared to
such time-consuming and expensive alternatives such as individual inter-
views or formal educational requirements, aptitude testing was a cheap
and easy solution. And since the contemporary emphasis on individual
genius over experience or education meant that a star programmer
was as likely to come from the secretarial pool as the engineering depart-
ment, the ability to screen large numbers of potential trainees was
preeminent.

Chess Players, Music Lovers, and Mathematicians 81

 Finally, in addition to its practical economic advantages, large-scale
aptitude testing programs represented for many corporate employers a
small but important step toward the eventual goal of mass-producing
programmer trainees. Such tests were obviously not intended to evaluate
the skills and abilities of experienced programmers; they were clearly
tools for identifying the lowest common denominator among program-
mer talent. The explicit goal of testing programs at large employers like
SDC was to reduce the overall level of skill among the programming
workforce. By identifying the minimum level of aptitude required to be
a competent programmer, SDC could reduce its dependence on individ-
ual programmers. It could construct a software factory out of the inter-
changeable parts produced by the impersonal and industrial processes of
its aptitude test regimes.

 It is this last consequence of aptitude testing that is the most interest-
ing and perplexing. Like all of the proposed solutions to the labor short-
age in programming, aptitude testing also embodied certain assumptions
about the nature of the underlying problem. At fi rst glance, the continued
emphasis that aptitude tests and personality profi les placed on innate
ability and creativity appeared to have served the interests of program-
ming professionals. By reinforcing the contemporary belief that good
programmers were born, not made, they provided individual program-
mers with substantial leverage in the job market. Experienced program-
mers made good money, had numerous opportunities for horizontal
mobility within the industry, and were relatively immune from manage-
rial imperatives. On the other hand, aptitude tests and personality
profi les also emphasized the negative perception of programmers as
idiosyncratic, antisocial, and potentially unreliable. Many computer spe-
cialists were keenly aware of the crisis of labor and the tension it was
producing in their industry and profession as well as in their own indi-
vidual careers. Although many appreciated the short-term benefi ts of the
ongoing programmer shortage, many believed that the continued crisis
threatened the long-term stability and reputation of their industry and
profession.

 As aptitude tests were increasingly used in a haphazard and irrespon-
sible fashion, their value to both employers and computer specialists
degraded considerably. Over the course of the late 1960s, new approaches
to solving the personnel crisis emerged, each of which embodied different
attitudes toward the nature of programming expertise. Beginning in the
early 1960s aspiring professional societies, such as the Data Processing

82 Chapter 3

Management Association, developed certifi cation programs for specifi c
fi elds in computer programming, systems analysis, and software design. 117
These were really certifi cation exams, intended to validate the credentials
of society members, not aptitude tests. But they suggested that a new
approach to personnel management — the cultivation of professional
norms and institutions — might be the solution to the personnel crisis. At
the same time, academically minded researchers worked to elaborate a
theory of computer science that would place the discipline of program-
ming on a fi rm scientifi c foundation. For the time being, however, the
preferred solution was technological rather than professional or theoreti-
cal: drawing from traditional industrial approaches to increasing pro-
ductivity and eliminating human labor, computer manufacturers worked
to automate the programming process. For managers and employers in
the late 1950s and early 1960s, the development of “ automatic program-
ming systems ” seemed to offer the perfect solution to the labor crisis in
programming.

 4

 Is a language really going to solve this problem? Do we really design languages
for use by what we might call professional programmers or are we designing
them for use by some sub-human species in order to get around training and
having good programmers? Is a language ever going to get around the training
and having good programmers?

 — RAND Symposium on Programming Languages, 1962

 Automatic Programmers

 The fi rst commercial electronic digital computers became available in the
early 1950s. For a short period, the focus of most manufacturers was on
the development of innovative hardware. Most of the users of these early
computers were large and technically sophisticated corporations and
government agencies. In the middle of the decade, however, users and
manufacturers alike became increasingly concerned with the rising cost
of software development. By the beginning of the 1960s, the origins of
 “ software turmoil ” that would soon become a full-blown software crisis
were readily apparent. 1

 As larger and more ambitious software projects were attempted, and
the shortage of experienced programmers became more pronounced,
industry managers began to look for ways to reduce costs by simplifying
the programming process. A number of potential solutions were pro-
posed: the use of aptitude tests and personnel profi les to identify the
truly gifted superprogrammers; updated training standards and com-
puter science curricula; and new management methods that would
allow for the use of less-skilled laborers. The most popular and widely
adopted solution, however, was the development of automatic program-
ming technologies. These new tools promised to “ eliminate the middle-
man ” by allowing users to program their computers directly, without

 Tower of Babel

84 Chapter 4

the need for expensive programming talent. 2 The computer would
program itself.

 Despite their associations with deskilling and routinization, automatic
programming systems could also work to the benefi t of occupational
programmers and academic computer scientists. High-level program-
ming promised to reduce the tedium associated with machine coding,
and allowed programmers to focus on more system-oriented — and high-
status — tasks such as analysis and design. Language design and develop-
ment served as a focus for productive theoretical research, and helped
establish computer science as a legitimate academic discipline. And auto-
matic programming systems never did succeed in eliminating the need
for skilled programmers. In many ways, they contributed to the elevation
of the profession, rather than the reverse, as was originally intended by
some and feared by others.

 In order to understand why automatic programming languages were
such an appealing solution to the software crisis as well as why they
apparently had so little effect on the outcome or severity of the crisis, it
is essential to consider these languages as parts of larger social and
technological systems. This chapter will describe the emergence of pro-
gramming languages as a means of managing the complexity of the
programming process. It will trace the development of several of the most
prominent automatic programming languages, particularly FORTRAN
and COBOL, and situate these technologies in their appropriate histori-
cal context. Finally, it will explore the signifi cance of these technologies
as potential solutions to the ongoing software crisis of the late 1950s
and early 1960s.

 Assemblers, Compilers, and the Origins of the Subroutine

 At the heart of every automatic programming system was the notion that
a computer could be used, at least in certain limited situations, to gener-
ate the machine code required to run itself or other computers. This was
an idea with great practical appeal: although programming was increas-
ingly seen as a legitimate and challenging intellectual activity, the actual
coding of a program still involved tedious and painstaking clerical work.
For example, the single instruction to “ add the short number in memory
location 25, ” when written out in the machine code understood by most
computers, was stored as a binary number such as 111000000000110010.
This binary notation was obviously diffi cult for humans to remember
and manipulate. As early as 1948, researchers at Cambridge University

Tower of Babel 85

began working on a system to represent the same instruction in a more
comprehensible format. The same instruction to “ add the short number
in memory location 25 ” could be written out as A 25 S, where A stood
for “ add, ” 25 was the decimal address of the memory location, and S
indicated that a “ short ” number was to be used. 3 A Cambridge PhD
student named David Wheeler wrote a small program called Initial
Orders that automatically translated this symbolic notation into the
binary machine code required by the computer.

 The focus of early attempts to develop automatic programming utili-
ties was on eliminating the more unpleasant aspects of computer coding.
Although in theory the actual process of programming was relatively
straightforward, in practice it was quite diffi cult and time-consuming. A
single error in any one of a thousand instructions could cause an entire
program to fail. It often took hours or days of laborious effort simply
to get a program to work properly. The lack of tools made fi nding errors
next to impossible. As Maurice Wilkes, another Cambridge researcher,
would later vividly recall, “ It had not occurred to me that there was
going to be any diffi culty about getting programs working. And it was
with somewhat of a shock that I realized that for the rest of my life I
was going to spend a good deal of my time fi nding mistakes that I had
made in my programs. ” 4

 These errors, or bugs as they soon came to be known, were often
introduced in the process of transcribing or reusing code fragments.
Wilkes and others quickly realized that there was a great deal of code
that was common to different programs — a set of instructions to calcu-
late the sine function, for example. In addition to assigning his student
Wheeler to the development of the Initial Orders program, Wilkes set
him to the task of assembling a library of such common subroutines.
This method of reusing previously existing code became one of the most
powerful techniques available for increasing programmer effi ciency. The
publication in 1951 of the fi rst textbook on the Preparation of Programs
for an Electronic Digital Computer by Wilkes, Wheeler, and Cambridge
colleague Stanley Gill helped disseminate these ideas throughout the
nascent programming community. 5

 While Wilkes, Wheeler, and Gill were refi ning their notions of a sub-
routine library, programmers in the United States were developing their
own techniques for eliminating some of the tedium associated with
coding. In 1949, John Mauchly of UNIVAC created his Short Order
Code for the BINAC computer. The Short Order Code allowed Mauchly
to directly enter equations into the BINAC using a fairly conventional

86 Chapter 4

algebraic notation. The system did not actually produce program code,
however: it was an interpretative system that merely called up predefi ned
subroutines and displayed the result. Nevertheless, the Short Order Code
represented a considerable improvement over the standard binary instruc-
tion set.

 In 1951 Grace Hopper, another UNIVAC employee, wrote the fi rst
automatic program compiler. Although Hopper, like many other pro-
grammers, had benefi ted from the development of a subroutine library,
she also perceived the limitations connected with its use. In order to be
widely applicable, subroutines had to be written as generically as possi-
ble. They all started at line 0 and were numbered sequentially from there.
They also used a standard set of register addresses. In order to make use
of a subroutine, a programmer had to both copy the routine code exactly
and make the necessary adjustments to the register addresses by adding
an offset appropriate to the particular program at hand. And as Hopper
was later fond of asserting, programmers were both “ lousy adders ”
and “ lousy copyists. ” 6 The process of utilizing the subroutine code
almost inevitably added to the number of errors that eventually had to
be debugged.

 To avoid the problems associated with manually copying and manipu-
lating subroutine libraries, Hopper developed a system to automatically
gather subroutine code and make the appropriate address adjustments.
The system then compiled the subroutines into a complete machine
program. Her A-0 compiler dramatically reduced the time required to
put together a working application. In 1952 she extended the language
to include a simpler mnemonic interface. For example, the mathematical
statement X + Y = Z could be written as ADD 00X 00Y 00Z. Multiplying
Z by T to give W was MUL 00Z 00T 00W. The combination of an
algebraic-language interface and a subroutine compiler became the basis
for almost all modern programming languages. By the end of 1953 the
A-2 compiler, as it was then known, was in use at the Army Map Service,
Lawrence Livermore Laboratories, New York University, the Bureau of
Ships, and the David Taylor Model Basin. Although it would take some
time before automatic programming systems were universally adopted,
by the mid-1950s the technology was well on its way to becoming an
essential element of programming practice.

 Over the course of the next several decades, more than a thousand
code assemblers, programming languages, and other automatic program-
ming systems were developed in the United States alone. Understanding
how these systems were used, how and to whom they were marketed,

Tower of Babel 87

and why there were so many of them is a crucial aspect of the history
of the programming professions. Automatic programming languages
were the fi rst and perhaps the most popular response to the burgeoning
software crisis of the late 1950s and early 1960s. In many ways the entire
history of computer programming — both social and technical — has been
defi ned by the search for a silver bullet capable of slaying what Frederick
Brooks famously referred to as the werewolf of “ missed schedules, blown
budgets, and fl awed products. ” 7 The most obvious solution to what was
often perceived to be a technical problem was, not surprisingly, the
development of better technology.

 Automatic programming languages were an appealing solution to the
software crisis for a number of reasons. Computer manufacturers were
interested in making software development as straightforward and inex-
pensive as possible. After all, as an early introduction to programming
on the UNIVAC pointedly reminded its readers, “ The sale and accep-
tance of these machines is, to some extent, related to the ease with which
they can be programmed. As a result, a great deal of research has been
done, or is being done, to make programming simpler and more under-
standable. ” 8 Advertisements for early automatic programming systems
made outrageous and unsubstantiated claims about the ability of their
systems to simplify the programming process. 9 In many cases, they were
specifi cally marketed as a replacement for human programmers. Fred
Gruenberger noted this tendency as early as 1962 in a widely dissemi-
nated transcript of a RAND Symposium on Programming Languages:
 “ You know, I ’ ve never seen a hot dog language come out yet in the last
14 years — beginning with Mrs. Hopper ’ s A-0 compiler . . . that didn ’ t
have tied to it the claim in its brochure that this one will eliminate all
programmers. The last one we got was just three days ago from General
Electric (making the same claim for the G-WIZ compiler) that this one
will eliminate programmers. Managers can now do their own program-
ming; engineers can do their own programming, etc. As always, the claim
seems to be made that programmers are not needed anymore. ” 10

 Advertisements for these new automatic programming technologies,
which appeared in management-oriented publications such as Business
Week and the Wall Street Journal rather than Datamation or the
 Communications of the ACM , were clearly aimed at a pressing concern:
the rising costs associated with fi nding and recruiting talented program-
ming personnel. This perceived shortage of programmers was an issue
that loomed large in the minds of many industry observers. “ First on
anyone ’ s checklist of professional problems, ” declared a Datamation

88 Chapter 4

 Figure 4.1
 “ Susie Meyers Meets PL/1 ” advertisement, IBM Corporation, 1968.

Tower of Babel 89

editorial in 1962, “ is the manpower shortage of both trained and even
untrained programmers, operators, logical designers and engineers in
a variety of fl avors. ” 11 The so-called programmer problem became
an increasingly important feature of contemporary crisis rhetoric. “ The
number of computers in use in the U.S. is expected to leap from the
present 35,000 to 60,000 by 1970 and to 85,000 in 1975, ” Fortune
magazine ominously predicted in 1967; “ The software man will be in
even greater demand in 1970 than he is today. ” 12 Automatic program-
ming systems held an obvious appeal for managers concerned with the
rising costs of software development.

 Figure 4.1 shows one of a series of advertisements that presented an
unambiguous appeal to gender associations: machines could not only
replace their human female equivalents but also were an improvement
on them. In its “ Meet Susie Meyers ” advertisements for its PL/1 pro-
gramming language, the IBM Corporation asked its users an obviously
rhetorical question: “ Can a young girl with no previous programming
experience fi nd happiness handling both commercial and scientifi c appli-
cations, without resorting to an assembler language? ” The answer, of
course, was an enthusiastic “ yes! ” Although the advertisement promised
a “ brighter future for your programmers ” (who would be free to “ con-
centrate more on the job, less on the language ”), it also implied a low-
cost solution to the labor crisis in software. The subtext of appeals like
this was none too subtle: if pretty little Susie Meyers, with her spunky
miniskirt and utter lack of programming experience, could develop soft-
ware effectively in PL/1, so could just about anyone.

 It should be noted that use of women as proxies for low-cost or low-
skill labor was not confi ned to the computer industry. One of the time-
honored strategies for dealing with labor “ problems ” in the United States
has been the use of female workers. There is a vast historical literature
on this topic; from the origins of the U.S. industrial system, women have
been seen as a source of cheap, compliant, and undemanding labor. 13
The same dynamic was at work in computer programming. In a 1963
 Datamation article lauding the virtues of the female computer program-
mer, for example, Valerie Rockmael focused specifi cally on her stability,
reliability, and relative docility: “ Women are less aggressive and more
content in one position. . . . Women consider fringe benefi ts of more
importance than their male peers and are more prone to stay on the job
if they are content, regardless of a lack of advancement. They also main-
tain their original geographic roots and are less willing to travel or
change job locations, particularly if they are married or engaged. ” In an

90 Chapter 4

era in which turnover rates for programmers averaged 20 percent annu-
ally, this was a compelling argument for employers, since their substan-
tial initial expenditures on training “ pays a greater dividend ” when
invested in female employees. Note that this was something of a back-
handed compliment, aimed more at the needs of employers than female
programmers. In fact, the “ most undesirable category of programmers, ”
Rockmael contended, was “ the female about 21 years old and unmar-
ried, ” because “ when she would start thinking about her social commit-
ments for the weekend, her work suffered proportionately. ” 14

 Whatever the motivation behind the development and adoption of
any particular automatic programming system, by the mid-1950s,
a number of these systems were being proposed by various manufac-
turers. Two of the most popular and signifi cant were FORTRAN and
COBOL, each developed by different groups and intended for different
purposes.

 FORTRAN

 Although Hopper ’ s A-2 compiler was arguably the fi rst modern auto-
matic programming system, the fi rst widely used and disseminated pro-
gramming language was FORTRAN, developed in 1954 – 1957 by a team
of researchers at the IBM Corporation. As early as 1953, the mathemati-
cian and programmer John Backus had proposed to his IBM employers
the development of a new, scientifi cally oriented programming language.
This new system for mathematical FORmula TRANslation would be
designed specifi cally for use with the soon-to-be-released IBM 704 sci-
entifi c computer. It would “ enable the IBM 704 to accept a concise for-
mulation of a problem in terms of a mathematical notation and [would]
produce automatically a high-speed 704 program for the solution of the
problem. ” 15 The result would be faster, more reliable, and less expensive
software development. FORTRAN would not only “ virtually eliminate
programming and debugging ” but also reduce operation time, double
machine output, and provide a means of feasibly investigating complex
mathematical models. In January 1954 Backus was given the go-ahead
by his IBM superiors, and a completed FORTRAN compiler was released
to all 704 installations in April 1957.

 From the beginning, development of the FORTRAN language was
focused around a single overarching design objective: the creation of
effi cient machine code. Project leader Backus was highly critical of exist-

Tower of Babel 91

ing automatic programming systems, which he saw as little more than
mnemonic code assemblers or collections of subroutines. He also felt
little regard for most contemporary human programmers, who he often
derisively insisted on referring to as coders. When asked about the trans-
formation of the coder into the programmer, for instance, Backus dismis-
sively suggested that “ it ’ s the same reason that janitors are now called
 ‘ custodians. ’ ‘ Programmer ’ was considered a higher class enterprise than
 ‘ coder, ’ and things have a tendency to move in that direction. ” 16

 A truly automatic programming language, believed Backus, would
allow scientists and engineers to communicate directly with the com-
puter, thus eliminating the need for ineffi cient and unreliable program-
mers. 17 The only way that such a system would be widely adopted,
however, was to ensure that the code it produced would be at least as
effi cient, in terms of size and performance, as that produced by its human
counterparts. 18 Indeed, one of the primary objections raised against
automatic programming languages in this period was their relative inef-
fi ciency: one of the higher-level languages used by SAGE developers
produced programs that ran an order of magnitude slower than those
hand coded by a top-notch programmer. 19 In an era when programming
skill was considered to be a uniquely creative and innate ability, and
when the state of contemporary hardware made performance consider-
ations paramount, users were understandably skeptical of the value of
automatically generated machine code. 20

 The focus of the FORTRAN developers was therefore on the construc-
tion of an effi cient compiler, rather than on the design of the language.

 In order to ensure that the object code produced by the FORTRAN
compiler was as effi cient as possible, several design compromises had to
be made. FORTRAN was originally intended primarily for use on the
IBM 704, and contained several device-specifi c instructions. Little thought
was given to making FORTRAN machine independent, and early imple-
mentations varied greatly from computer to computer, even those devel-
oped by the same manufacturer. The language was also designed solely
for use in numerical computations, and was therefore diffi cult to use for
applications requiring the manipulation of alphanumeric data. The fi rst
FORTRAN manual made this focus on mathematical problem solving
clear: “ The FORTRAN language is intended to be capable of expressing
any problem of numerical computation. In particular, it deals easily with
problems containing large sets of formulae and many variables and it
permits any variable to have up to three independent subscripts. ” For

92 Chapter 4

problems in which machine words have a logical rather than numerical
meaning, however, FORTRAN is less satisfactory, and it may fail entirely
to express some such problems. Nevertheless many logical operations
not directly expressible in the FORTRAN language can be obtained by
making use of provisions for incorporating library routines. 21

 The power of the FORTRAN language for scientifi c computation can
be clearly demonstrated by a simple real-world example. The mathemati-
cal expression described by the function Z i A X BYi i i i() = +2 could be
written in FORTRAN using the following syntax:

 Z(I) = SQRTF(A(I)*X(I)**2 + B(I)*Y(I))

 Using such straightforward algorithmic expressions, a programmer could
write extremely sophisticated programs with relatively little training and
experience. 22

 Although greeted initially with skepticism, the FORTRAN project was
enormously successful in the long term. A report on FORTRAN usage
written just one year after the fi rst release of the language indicated that
 “ over half [of the 26 installations of the 704] used FORTRAN for more
than half of their problems. ” 23 By the end of 1958, IBM produced
FORTRAN systems for its 709 and 650 machines. As early as January
1961 Remington Rand UNIVAC became the fi rst non-IBM manufacturer
to provide FORTRAN, and by 1963 a version of the FORTRAN com-
piler was available for almost every computer then in existence. 24 The
language was updated substantially in 1958 and again in 1962. In 1962,
FORTRAN became the fi rst programming language to be standardized
through the American Standards Association, which further established
FORTRAN as an industrywide standard. 25

 The academic community was an early and crucial supporter of
FORTRAN, contributing directly to its growing popularity. The
FORTRAN designers in general, and Backus in particular, were regular
participants in academic forums and conferences. Backus himself had
delivered a paper at the seminal Symposium on Automatic Programming
for Digital Computers hosted by the Offi ce of Naval Research in 1954.
One of his top priorities, after the compilation of the FORTRAN
 Programmer ’ s Reference Manual (itself a model of scholarly elegance
and simplicity), was to publish an academically oriented article that
would introduce the new language to the scientifi c community. 26 Backus
would later become widely known throughout the academic community
as the codeveloper of the Backus-Naur Form, the notational system used
to describe most modern programming languages.

Tower of Babel 93

 FORTRAN was appealing to scientists and other academics for a
number of reasons. First of all, it was designed and developed by one of
their own. Backus spoke their language, published in their journals, and
shared their disdain for coders and other “ technicians. ” Second,
FORTRAN was designed specifi cally to solve the kinds of problems that
interested academics. Its use of algebraic expressions greatly simplifi ed
the process of defi ning mathematical problems in machine-readable
syntax. Finally, and perhaps most signifi cantly, FORTRAN provided
them more direct access to the computer. Its introduction “ caused a
partial revolution in the way in which computer installations were run
because it became not only possible but quite practical to have engineers,
scientists, and other people actually programming their own problems
without the intermediary of a professional programmer. ” 27 The use of
FORTRAN actually became the centerpiece of an ongoing debate about
 “ open ” versus “ closed ” programming “ shops. ” The closed shops allowed
only professional programmers to have access to the computers; open
shops made these machines directly available to their users.

 The association of FORTRAN with scientifi c computing was a self-
replicating phenomenon. Academics preferred FORTRAN to other lan-
guages because they believed it allowed them to do their work more
effectively and they therefore made FORTRAN the foundation of their
computing curricula. Students learned the language in university courses
and were thus more effective at getting their work done in FORTRAN.
A positive feedback loop was established between FORTRAN and aca-
demia. A survey in 1973 of more than thirty-fi ve thousand students
taking college-level computing courses revealed that 70 percent were
learning to program using FORTRAN. The next most widely used alter-
native, BASIC, was used by only 13 percent, and less than 3 percent were
exposed to business-oriented languages such as COBOL. 28 Throughout
the 1960s and 1970s, FORTRAN was clearly the dominant language of
scientifi c computation.

 COBOL

 On April 8, 1959, a group of computer manufacturers, users, and aca-
demics met at the University of Pennsylvania ’ s Computing Center to
discuss a proposal to develop “ the specifi cations for a common business
language [CBL] for automatic digital computers. ” 29 The goal was to
develop a programming language specifi cally aimed at the needs of the
business data processing community. This new language would rely on

94 Chapter 4

simple Englishlike commands, would be easier to use and understand
than existing scientifi c languages, and would provide machine-indepen-
dent compatibility: that is, the same program could be run on a wide
variety of hardware with little modifi cation.

 Although this proposal originated in the ElectroData Division of the
Burroughs Corporation, from the beginning it had broad industrial and
governmental support. The director of data systems for the U.S.
Department of Defense readily agreed to sponsor a formal meeting on
the proposal, and his enthusiastic support indicates a widespread con-
temporary interest in business-oriented programming: “ The Department
of Defense was pleased to undertake this project: in fact, we were embar-
rassed that the idea for such a common language had not had its origin
in Defense since we would benefi t so greatly from such a project. ” 30

 The fi rst meeting to discuss a CBL was held at the Pentagon on May
28 – 29, 1959. Attending the meeting were fi fteen offi cials from seven
government organizations; fi fteen representatives of the major computer
manufacturers (including Burroughs, GE, Honeywell, IBM, NCR,
Phillips, RCA, Remington Rand UNIVAC, Sylvania, and ICT); and
eleven users and consultants (signifi cantly, only one member of this last
group was from a university). Despite the diversity of the participants,
the meeting produced both consensus and a tangible plan of action. The
group not only decided that CBL was necessary and desirable but also
agreed on its basic characteristics: a problem-oriented, Englishlike syntax;
a focus on the ease of use rather than power or performance; and a
machine-independent design. Three committees were established, under
the auspices of a single Executive Committee of the Conference on
Data Systems Languages (CODASYL), to suggest short-term, intermedi-
ate, and long-range solutions, respectively. As it turned out, it was the
short-term committee that produced the most lasting and infl uential
proposals.

 The original purpose of the Short-Range Committee was to evaluate
the strengths and weaknesses of existing automatic compilers, and rec-
ommend a “ short term composite approach (good for the next year or
two) to a common business language for programming digital comput-
ers. ” 31 There were three existing compiler systems that the committee
was particularly interested in considering: FLOW-MATIC, which had
been developed for Remington Rand UNIVAC by Grace Hopper (as an
outgrowth of her A-series algebraic and B-series business compilers), and
which was actually in use by customers at the time; AIMACO, developed
for the Air Force Air Materiel Command; and COMTRAN (soon to be

Tower of Babel 95

 Figure 4.2
 NCR, Quickdraw programming language, 1968.

96 Chapter 4

renamed the Commercial Translator), a proposed IBM product that
existed only as a specifi cation document. Other manufacturers such as
Sylvania and RCA were also working on the development of similar
languages. Indeed, one of the primary goals of the Short-Range Committee
was to “ nip these projects in the bud ” and provide incentives for manu-
facturers to standardize on the CBL rather than pursue their own inde-
pendent agendas. Other languages considered were Autocoder III,
SURGE, FORTRAN, RCA 501 Assembler, Report Generator, and APG-
1. 32 At the fi rst meeting of one of the Short-Range Committee task
groups, for example, most of the time was spent getting statements of
commitment from the various manufacturers. 33

 From the start, the process of designing the CBL was characterized
by a spirit of pragmatism and compromise. The Short-Range Committee,
referred to by insiders as the PDQ (“ pretty darn quick ”) Committee,
took seriously its charge to work quickly to produce an interim solution.
Remarkably enough, less than three months later the committee had
produced a nearly complete draft of a proposed CBL specifi cation. In
doing so, the CBL designers borrowed freely from models provided by
Remington Rand UNIVAC ’ s FLOW-MATIC language and the IBM
Commercial Translator. In a September report to the Executive Committee
of CODASYL, the Short-Range Committee requested permission to con-
tinue development on the CBL specifi cation, to be completed by December
1, 1959. The name COBOL (Common Business Oriented Language) was
formally adopted shortly thereafter. Working around the clock for the
next several months, the PDQ group was able to produce its fi nished
report just in time for its December deadline. The report was approved
by CODASYL, and in January 1960 the offi cial COBOL-60 specifi cation
was released by the U.S. Government Printing Offi ce.

 The structure of the COBOL-60 specifi cation reveals its mixed origins
and commercial orientation. Although from the beginning the COBOL
designers were concerned with “ business data processing, ” there was
never any attempt to provide a real defi nition of that phrase. 34 It was
clearly intended that the language could be used by novice programmers
and read by managers. For example, an instruction to compute an
employee ’ s overtime pay might be written as follows:

 MULTIPLY NUMBER-OVTIME-HRS BY OVTIME-PAY-RATE

 GIVING OVTIME-PAY-TOTAL

 It was felt that this readability would result from the use of English-
language instructions, although no formal criteria or tests for readability

Tower of Babel 97

were provided. In many cases, compromises were made that allowed for
confl icting interpretations of what made for “ readable ” computer code.
Arithmetic formulas, for instance, could either be written using a com-
bination of arithmetic verbs — that is, ADD, SUBTRACT, MULTIPLY,
or DIVIDE — or as symbolic formulas. The use of arithmetic verbs was
adapted directly from the FLOW-MATIC language, and refl ected the
belief that business data processing users could not — and should not — be
forced to use formulas. The capability to write symbolic formulas was
included (after much contentious debate) as a means of providing power
and fl exibility to more mathematically sophisticated programmers. Such
traditional mathematical functions such as SINE and COSINE, however,
were deliberately excluded as being unnecessary to business data process-
ing applications.

 Another concession to the objective of readability was the inclusion
of extraneous “ noise words. ” These were words or phrases that were
allowable but not necessary: for example, in the statement

 READ fi le1 RECORD INTO variable1 AT END goto procedure2

 the words RECORD and AT are syntactically superfl uous. The statement
would be equally valid written as

 READ fi le1 INTO variable1 END goto procedure2 .

 The inclusion of the noise words RECORD and AT was perceived by
the designers to enhance readability. Users had the option of including
or excluding them according to individual preference or corporate
policy.

 In addition to designing COBOL to be Englishlike and readable,
the committee was careful to make it as machine-independent as
possible. Most contemporary programming systems were tied to a spe-
cifi c processor or product line. If the user wanted to replace or upgrade
their computer, or switch to machines from a different manufacturer,
they had to completely rewrite their software from scratch, typically an
expensive, risky, and time-consuming operation. Users often became
bound to outdated and ineffi cient hardware systems simply because
of the enormous costs associated with upgrading their software
applications. This was especially true for commercial data processing
operations, where computers were generally embedded in large, complex
systems of people, procedures, and technology. A truly machine-
independent language would allow corporations to reuse application
code, thereby reducing the programming and maintenance costs. It would

98 Chapter 4

also allow manufacturers to sell or lease more of their most recent (and
profi table) computers.

 The COBOL language was deliberately organized in such a way as to
encourage portability from one machine to another. Every element of a
COBOL application was assigned to one of four functional divisions:
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE.
The IDENTIFICATION division offered a high-level description of
the program, including its name, author, and creation date. The
ENVIRONMENT division contained information about the specifi c
hardware on which the program was to be compiled and run. The DATA
division described the fi le and record layout of the data used or created
by the rest of application. The PROCEDURE division included the algo-
rithms and procedures that the user wished the computer to follow.
Ideally, this rigid separation of functional divisions would allow a user
to take a deck of cards from one machine to another without making
signifi cant alterations to anything but the ENVIRONMENT description.
In reality, this degree of portability was almost impossible to achieve in
real-world applications in which performance was a primary consider-
ation. For example, the most effi cient method of laying out a fi le for a
twenty-four-bit computer was not necessarily optimal for a thirty-six-bit
machine. Nevertheless, machine independence “ was a major, if not the
major, ” design objective of the Short-Range Committee. 35 Achieving this
objective proved diffi cult both technically and politically, and greatly
infl uenced both the design of the COBOL specifi cation and its subse-
quent reception within the computing community.

 One of the greatest obstacles to achieving machine independence was
the computer manufacturers themselves. Each manufacturer wanted to
make sure that COBOL included only features that would run effi ciently
on their devices. For instance, a number of users wanted the language
to include the ability to read a fi le in reverse order. For those machines
that had a basic machine command to read a tape backward this was an
easy feature to implement. Even those computers without this explicit
capability could achieve the same functionality by backing the tape up
two records and then reading forward one. Although this potential
READ REVERSE command could therefore be logically implemented
by everyone, it signifi cantly penalized those devices without the
basic machine capability. It was therefore not included in the fi nal
specifi cation.

 There were other compromises that were made for the sake of machine
independence. In order to maintain compatibility among different

Tower of Babel 99

machines with different arithmetic capabilities, eighteen decimal digits
were chosen as the maximum degree of precision supported. This par-
ticular degree of precision was chosen “ for the simple reason that it was
 dis advantageous to every computer thought to be a potential candidate
for having a COBOL compiler. ” 36 No particular manufacturer would
thus have an inherent advantage in terms of performance. In a similar
manner, provisions were made for the use of binary computers, despite
the fact that such machines were generally not considered appropriate
for business data processing. The decision to allow only a limited char-
acter set in statement defi nitions — using only those characters that were
physically available on almost all data-entry machines — was a self-
imposed constraint that had “ an enormous infl uence on the syntax of
the language, ” but was nevertheless considered essential to widespread
industry adoption. The use of such a minimal character set also pre-
vented the designers from using the sophisticated reference language
techniques that had so enamored theoretical computer scientists of the
ALGOL 58 specifi cation.

 This dedication to the ideal of portability set the Short-Term
Committee at odds with some of its fellow members of CODASYL. In
October 1959, the Intermediate-Range Committee passed a motion
declaring that the FACT programming language — recently released by
the Honeywell Corporation — was a better language than that produced
by the Short-Range Committee and hence should form the basis of the
CBL. 37 Although many members of the Short-Range Committee agreed
that FACT was indeed a technically advanced and superior language,
they rejected any solution that was tied to any particular manufacturer.
In order to ensure that the CBL would be a truly common business lan-
guage, elegance and effi ciency had to be compromised for the sake of
readability and machine independence. Despite the opposition of the
Intermediate-Range Committee (and the Honeywell representatives), the
Executive Committee of CODASYL eventually agreed with the design
priorities advocated by the PDQ group.

 The fi rst COBOL compilers were developed in 1960 by Remington
Rand UNIVAC and RCA. In December of that year, the two companies
hosted a dramatic demonstration of the cross-platform compatibility of
their individual compilers: the same COBOL program, with only the
ENVIRONMENT division needing to be modifi ed, was run successfully
on machines from both manufacturers. Although this was a compelling
demonstration of COBOL ’ s potential, other manufacturers were slow to
develop their own COBOL compilers. Honeywell and IBM, for example,

100 Chapter 4

were loath to abandon their own independent business languages.
Honeywell ’ s FACT had been widely praised for its technical excellence,
and the IBM Commercial Translator already had an established cus-
tomer base. 38 By the end of 1960, however, the U.S. military had put the
full weight of its prestige and purchasing power behind COBOL. The
Department of Defense announced that it would not lease or purchase
any new computer without a COBOL compiler unless its manufacturer
could demonstrate that its performance would not be enhanced by the
availability of COBOL. 39 No manufacturer ever attempted such a dem-
onstration, and within a year COBOL was well on its way toward
becoming an industry standard.

 It is diffi cult to establish empirically how widely COBOL was adopted,
but anecdotal evidence suggests that it is by far the most popular and
widely used computer language ever . 40 A recent study undertaken
in response to the perceived Y2K crisis suggests that there are
seventy billion lines of COBOL code currently in operation in the
United States alone. Despite its obvious popularity, though, from the
beginning COBOL has faced severe criticism and opposition, especially
from within the computer science community. One programming lan-
guage textbook from 1977 judged COBOL ’ s programming features as
fair, its implementation dependent features as poor, and its overall
writing as fair to poor. It also noted its “ tortuously poor compactness
and poor uniformity. ” 41 The noted computer scientist Edsger Dijkstra
wrote that “ COBOL cripples the mind, ” and another of his colleagues
called it “ terrible ” and “ ugly. ” 42 Several notable textbooks on program-
ming languages from the 1980s did not even include COBOL in the
index.

 There are a number of reasons why computer scientists have been so
harsh in their evaluation of COBOL. Some of these objections are techni-
cal in nature, but most are aesthetic, historical, or political. Most of the
technical criticisms have to do with COBOL ’ s verbosity, its inclusion of
superfl uous noise words, and its lack of certain features (such as pro-
tected module variables). Although many of these shortcomings were
addressed in subsequent versions of the COBOL specifi cation, the aca-
demic world continued to vilify the language. In an article from 1985
titled “ The Relationship between COBOL and Computer Science, ” the
computer scientist Ben Schneiderman identifi ed several explanations
for this continued hostility. First of all, no academics were asked to
participate on the initial design team. In fact, the COBOL developers

Tower of Babel 101

apparently had little interest in the academic or scientifi c aspects of their
work. All of the articles included in a May 1962 Communications of the
ACM issue devoted to COBOL were written by industry or government
practitioners. Only four of the thirteen included even the most basic
references to previous and related work; the lack of academic sensibilities
was immediately apparent. Also noticeably lacking was any reference to
the recently developed Backus-Naur Form notation that had already
become popular as a metalanguage for describing other programming
languages. No attempt was made to produce a textbook explaining the
conceptual foundations of COBOL until 1963. Most signifi cant, however,
was the sense that the problem domain addressed by the COBOL design-
ers — that is, business data processing — was not theoretically sophisti-
cated or interesting. One programming language textbook from 1974
portrayed COBOL as having “ an orientation toward business data pro-
cessing . . . in which the problems are . . . relatively simple algorithms
coupled with high-volume input-output (e.g., computing the payroll for
a large organization). ” Although this dismissive account hardly captures
the complexities of many large-scale business applications, it does appear
to accurately represent a prevailing attitude among computer scientists.
COBOL was considered a “ trade-school ” language rather than a serious
intellectual accomplishment. 43

 Despite these objections, COBOL has proven remarkably successful.
Certainly the support of the U.S. government had a great deal to do with
its initial widespread adoption. But COBOL was attractive to users —
 business corporations in particular — for other reasons as well. The belief
that Englishlike COBOL code could be read and understood by nonpro-
grammers was appealing to traditional managers who were worried
about the dangers of “ letting the ‘ computer boys ’ take over. ” 44 It was
also hoped that COBOL would achieve true machine independence —
 arguably the holy grail of language designers — and of all its competitors,
COBOL did perhaps come closest to achieving this ideal. Although critics
have derided COBOL as the inelegant result of “ design by committee, ”
the broad inclusiveness of CODASYL helped ensure that no one manu-
facturer ’ s hardware would be favored. Committee control over the lan-
guage specifi cation also prevented splintering: whereas numerous
competing dialects of FORTRAN and ALGOL were developed, COBOL
implementations remained relatively homogeneous. The CODASYL
structure also provided a mechanism for ongoing language maintenance
with periodic “ offi cial ” updates and releases.

102 Chapter 4

 ALGOL, Pascal, ADA, and Beyond

 Although FORTRAN and COBOL were by far the most popular pro-
gramming languages developed in the United States during this period,
they were by no means the only ones to appear. Jean Sammet, editor of
one of the fi rst comprehensive treatments of the history of programming
languages, has estimated that by 1981, there were a least one thousand
programming languages in use nationwide. It would be impossible to
even enumerate, much less describe, the history and development of each
of these languages. Figure 4.3 contains a “ genealogical ” listing of some
of the more widely used programming languages developed prior to
1970. This section will focus on a few of the more historically signifi cant
alternatives to FORTRAN and COBOL.

 More than a year before the Executive Committee of CODASYL
convened to discuss the need for a common business-oriented program-
ming language, an ad hoc committee of users, academics, and federal
offi cials met to study the possibility of creating a universal programming
language. This committee, which was brought together under the
auspices of the ACM, could not have been more different from the
group organized by CODASYL. Whereas the fi fteen-member Executive
Committee had contained only one university representative, the identi-
cally sized ACM-sponsored committee was dominated by academics. At
itsr fi rst meeting, this committee decided to follow the model of
FORTRAN in designing an algebraic language. FORTRAN itself was
not acceptable because of its association with IBM.

 The ACM “ universal language ” project soon expanded into an
international initiative. Europeans in particular were deeply interested
in a language that would both transcend political boundaries and
help avoid the domination of Europe by the IBM Corporation. During
an eight-day meeting in Zurich, a rough specifi cation for the new
International Algebraic Language (IAL) was hashed out. Actually, three
distinct versions of the IAL were created: reference, publication, and
hardware. The reference language was the abstract representation of
the language as envisioned by the Zurich committee. The publication
and hardware languages would be isomorphic implementations of
the abstract reference language. Since these specifi c implementations
required careful attention to such messy details as character sets and
delimiters (decimal points being standard in the United States and
commas being standard in Europe), they were left for a later and unspeci-
fi ed date. The reference language was released in 1958 under the

Tower of Babel 103

 Fi
gu

re
 4

.3

 Pr
og

ra
m

m
in

g
la

ng
ua

ge
s,

 1
95

2 –
 19

70
.

B
as

ed
 o

n
a

ch
ar

t
fi r

st
 d

ev
el

op
ed

 b
y

Je
an

 S
am

m
et

.
R

ep
ro

du
ce

d
w

it
h

th
e

pe
rm

is
si

on

of
 t

he
 A

C
M

.

104 Chapter 4

more popular and less pretentious name ALGOL (from ALGOrithmic
Language).

 In many ways, ALGOL was a remarkable achievement in the nascent
discipline of computer science. ALGOL 58 was something of a work in
progress; ALGOL 60, which was released shortly thereafter, is widely
considered to be a model of completeness and clarity. The ALGOL 60
version of the language was described using an elegant metalanguage
known as Backus Normal Form (BNF), developed specifi cally for that
purpose. BNF, which resembles the notation used by linguists and logi-
cians to describe formal languages, has since become the standard tech-
nique for representing programming languages. The elegant sophistication
of the ALGOL 60 report appealed particularly to computer scientists. In
the words of one well-respected admirer, “ The language proved to be an
object of stunning beauty. . . . Nicely organized, tantalizingly incom-
plete, slightly ambiguous, diffi cult to read, consistent in format, and
brief, it was a perfect canvas for a language that possessed those same
properties. Like the Bible, it was meant not merely to be read, but inter-
preted. ” 45 ALGOL 60 soon became the standard by which all subsequent
language developments were measured and evaluated.

 Despite its intellectual appeal, and the enthusiasm with which it was
greeted in academic and European circles, ALGOL was never widely
adopted in the United States. Although many Americans recognized
that ALGOL was an elegant synthesis, most saw language design as
just one step in a lengthy process leading to language acceptance
and use. In addition, in the United States there were already several
strong competitors currently in development. IBM and its infl uential
users group SHARE supported FORTRAN, and business data processors
preferred COBOL. Even those installations that preferred ALGOL often
used it only as a starting point for further development, more “ as a rich
set of guidelines for a language than a standard to be adhered to. ” 46
Numerous dialects or spin-off languages emerged, most signifi cantly
JOVIAL, MAD, and NELIAC, developed at the SDC, the University
of Michigan, and the Naval Electronics Laboratory, respectively.
Although these languages benefi ted from ALGOL, they only detracted
from its efforts to emerge as a standard. With a few noticeable
exceptions — the ACM continued to use it as the language of choice in
its publications, for example — ALGOL was generally regarded in the
United States as an intellectual curiosity rather than a functional pro-
gramming language.

Tower of Babel 105

 The real question of historical interest, of course, is not so much why
specifi c individual programming languages were created but rather why
 so many . In the late 1940s and early 1950s there was no real program-
ming community per se, only particular projects being developed at
various institutions. Each project necessarily developed its own tech-
niques for facilitating programming. By the mid-1950s, however, there
were established mechanisms for communicating new research and
development, and there were deliberate attempts to promote industry-
wide programming standards. Nevertheless, there were literally hundreds
of languages developed in the decades of the 1950s and 1960s. FORTRAN
and COBOL have emerged as important standards in the scientifi c and
business communities, respectively, and yet new languages continued —
 and still do — to be created. 47 What can explain this curious Cambrian
explosion in the evolutionary history of programming languages?

 Some of the many divergent species of programming languages can
be understood by looking at their functional characteristics. Although
general-purpose languages such as FORTRAN and COBOL were suit-
able for a wide variety of problem domains, certain applications required
more specialized functions to perform most effi ciently. The General-
Purpose Simulation System was designed specifi cally for the simulation
of system elements in discrete numerical analysis, for example. APT was
commissioned by the Aircraft Industries Association and the U.S. Air
Force to be used primarily to control automatic milling machines. Other
languages were designed not so much for specialized problem domains
as for particular pedagogical purposes — in the case of BASIC, for instance,
the teaching of basic computer literacy. Some languages were known for
their fast compilation times, and others for the effi ciency of their object
code. Individual manufacturers produced languages that were optimized
for their own hardware, or as part of a larger marketing strategy.

 Different languages were also developed with different users in mind.
In this sense, they embodied the organizational and professional politics
of programming in this period. At the RAND Symposium on Programming
Languages in 1962, for example, Jack Little, a RAND consultant,
lamented the tendency of manufacturers to design languages “ for use by
some sub-human species in order to get around training and having good
programmers. ” 48 Dick Talmadge and Barry Gordon of IBM admitted to
thinking in terms of an imaginary “ Joe Accountant ” user; the problem
that IBM faced, according to Bernard Galler, of the University of
Michigan Computing Center, was that “ if you can design a language

106 Chapter 4

 Figure 4.4
 This now-famous “ Tower of Babel ” cover appeared fi rst in the Communications
of the ACM , January 1961. Reproduced with permission of the ACM.

Tower of Babel 107

that Joe Accountant can learn easily, then you ’ re still going to have
problems because you ’ re probably going to have a lousy language. ” 49
Fred Gruenberger, a staff mathematician at RAND, later summed up the
essence of the entire debate: “ COBOL, in the hands of a master, is a
beautiful tool — a very powerful tool. COBOL, as it ’ s going to be handled
by a low grade clerk somewhere, will be a miserable mess. . . . Some guys
are just not as smart as others. They can distort anything. ” 50

 There were also less obviously utilitarian reasons for developing new
programming languages, however. Many common objections raised
against existing languages were more matters of style rather than sub-
stance. The rationale given for creating a new language often boiled
down to a declaration that “ this new language will be easier to use or
better to read or write than any of its predecessors. ” Since there were
generally no standards for what was meant by “ easier to use or better
to read or write, ” such declarations can only be considered statements
of personal preference. As Jean Sammet has suggested, although lengthy
arguments have been advanced on all sides of the major programming
language controversies, “ in the last analysis it almost always boils down
to a question of personal style or taste. ” 51

 For the more academically oriented programmers, designing a new
language was a relatively easy way to attract grant money and publish
articles. There have been numerous languages that have been rigorously
described but never implemented. They served only to prove a theoretical
point or advance an individual ’ s career. In addition, many in the aca-
demic community seemed to be affl icted with the NIH (“ not invented
here ”) syndrome: any language or technology that was designed by
someone else could not possibly be as good as one that you invented
yourself, and so a new version needed to be created to fi ll some ostensible
personal or functional need. As Herbert Grosch lamented in 1961, fi lling
these needs was personally satisfying yet ultimately self-serving and
divisive: “ Pride shades easily into purism, the sin of the mathematicians.
To be the leading authority, indeed the only authority, on ALGOL 61B
mod 12, the version that permits black letter as well as Hebrew sub-
scripts, is a satisfying thing indeed, and many of us have constructed
comfortable private universes to explore. ” 52

 One fi nal and closely related reason for the proliferation of program-
ming languages is that designing programming languages was (and is)
fun. The adoption of metalanguages and the BNF allowed for the rapid
development and implementation of creative new languages and dialects.
If programming was enjoyable, even more so was language design. 53

108 Chapter 4

 No Silver Bullet

 In 1987, Frederick Brooks published an essay describing the major devel-
opments in automatic programming technologies that had occurred over
the past several decades. As an accomplished academic and experienced
industry manager, Brooks was a respected fi gure within the program-
ming community. Using characteristically vivid language, his “ No Silver
Bullet: Essence and Accidents of Software Engineering, ” refl ected on the
inability of these technologies to bring an end to the ongoing software
crisis:

 Of all the monsters that fi ll the nightmares of our folklore, none terrify more
than werewolves, because they transform unexpectedly from the familiar into
horrors. For these, one seeks bullets of silver that can magically lay them to
rest.

 The familiar software project, at least as seen by the nontechnical manager,
has something of this character; it is usually innocent and straightforward, but
is capable of becoming a monster of missed schedules, blown budgets, and fl awed
products. So we hear desperate cries for a — silver bullet — something to make
software costs drop as rapidly as computer hardware costs do.

 But, as we look to the horizon of a decade hence, we see no silver bullet.
There is no single development, in either technology or in management tech-
nique, that by itself promises even one order-of-magnitude improvement in
productivity, in reliability, in simplicity. 54

 Brook ’ s article provoked an immediate reaction, both positive and
negative. The object-oriented programming (OOP) advocate Brad Cox
insisted, for example, in his aptly titled “ There Is a Silver Bullet, ” that
new techniques in OOP promised to bring about “ a software industrial
revolution based on reusable and interchangeable parts that will alter
the software universe as surely as the industrial revolution changed
manufacturing. ” 55 Whatever they might have believed about the possibil-
ity of such a silver bullet being developed in the future, though, most
programmers and managers agreed that none existed in the present. In
the late 1980s, almost three decades after the fi rst high-level automatic
programming systems were introduced, concern about the software crisis
was greater than ever. The same year that Brooks published his “ No
Silver Bullet, ” the Department of Defense warned against the real possi-
bility of “ software-induced catastrophic failure ” disrupting its strategic
weapons systems. 56 Two years later, Congress released a report titled
 “ Bugs in the Program: Problems in Federal Government Computer
Software Development and Regulation, ” initiating yet another full-blown
attack on the fundamental causes of the software crisis. 57 Ironically, the

Tower of Babel 109

Department of Defense decided that what was needed to deal with this
most recent outbreak of crisis was yet another new programming lan-
guage — in this case ADA, which was trumpeted as a means of “ replacing
the idiosyncratic ‘ artistic ’ ethos that has long governed software writing
with a more effi cient, cost-effective engineering mind-set. ” 58

 Why have automatic programming languages and other technologies
thus far failed to resolve — or apparently even mitigate — the seemingly
perpetual software crisis? First of all, it is clear that many of these lan-
guages and systems were not able to live up to their marketing hype.
Even those systems that were more than a “ complex, exception-ridden
performer of clerical tasks which was diffi cult to use and ineffi cient ” (as
John Backus characterized the programming tools of the early 1950s)
could not eliminate the need for careful analysis and skilled program-
ming. 59 As Willis Ware portrayed the situation in 1965, “ We lament the
cost of programming; we regret the time it takes. What we really are
unhappy with is the total programming process, not programming (i.e.,
writing routines) per se. Nonetheless, people generally smear the details
into one big blur; and the consequence is, we tend to conclude errone-
ously that all our problems will vanish if we can improve the language
which stands between the machine and the programmer. T ’ aint neces-
sarily so. ” All the programming language improvement in the world will
not shorten the intellectual activity, thinking, and analysis that is inher-
ent in the programming process. Another name for the programming
process is “ problem solving by machine; perhaps it suggests more point-
edly the inherent intellectual content of preparing large problems for
machine handling. ” 60

 Although programming languages could reduce the amount of clerical
work associated with programming, and did help eliminate certain types
of errors (mostly those associated with transcription errors or syntax
mistakes), they also introduced new sources of error. In the late 1960s,
a heated controversy broke out in the programming community over
the use of the “ GOTO statement. ” 61 At the heart of this debate was the
question of professionalism: although high-level languages gave the
impression that just about anyone could program, many programmers
felt this was a misconception disastrous to both their profession and the
industry in general.

 The designers and advocates of various automatic programming
systems never succeeded in addressing the larger issues posed by the dif-
fi culties inherent in the programming process. High-level languages were
necessary but not suffi cient: that is, the use of these languages became

110 Chapter 4

an essential component of software development, but could not in them-
selves ensure a successful development effort. Programming remained a
highly skilled occupation, and programmers continued to defy tradi-
tional methods of job categorization and management. By the end of the
1960s the search for a silver bullet solution to the software crisis had
turned away from programming languages and toward more compre-
hensive techniques for managing the programming process. Many of
these new techniques involved the creation of new automatic program-
ming technologies, but most revolved around more systemic solutions as
well as new methods of programmer education, management, and pro-
fessional development.

 5

 At present there is a fl avor of “ game-playing ” about many courses in computer
science. I hear repeatedly from friends who want to hire good software people
that they have found the specialist in computer science is someone they do not
want. Their experience is that graduates in our programs seem to be mainly
interested in playing games, making fancy programs that really do not work,
writing trick programs, etc.

 — Richard Hamming, “ One Man ’ s View of Computer Science, ” 1968

 The Humble Programmer

 The fi rst computer programmers came from a wide variety of occupa-
tional and educational backgrounds. Some were recruited from the ranks
of the female “ human computers ” who had participated in wartime
manual computation projects. Others were former clerical workers or
tabulating machine operators with experience in corporate data process-
ing. A few were erstwhile scientists and engineers drawn into computing
in pursuit of intellectual or professional opportunities.

 For this last group of well-educated “ converts ” to computing, it was
not always clear where their adopted discipline stood in relation to
more traditional intellectual activities. Although the electronic computers
were increasingly used in this period as instruments of scientifi c produc-
tion, their status as legitimate objects of scientifi c and professional scru-
tiny had not yet been established. Scientists and engineers who drifted
out of the “ respectable ” disciplines into the uncharted waters of elec-
tronic computing faced self-doubt, professional uncertainty, and even
ridicule.

 One such emigrant from the sciences was the physicist-turned-
programmer Edsger Dijkstra. In the early 1950s, as a result of “ a long
series of coincidences ” associated with his doctoral research in theoreti-
cal physics, Dijkstra became the fi rst person in his native Holland to

 The Rise of Computer Science

112 Chapter 5

program a computer. The experience was life changing, and by 1955 he
had decided to relinquish physics to take up computing full-time. His
dissertation in 1959 on “ communication with an automatic computer ”
described his development of an assembly code for the mathematical
computation center at the University of Amsterdam. 1

 Like many of his fellow scientists, Dijkstra was not so much interested
in the electronic computer as a technology as he was in computing as an
intellectual activity. While the electronic computer itself would no doubt
have an enormous impact on society, it would be “ but a ripple on the
surface of our culture ” compared to the potential infl uence of the science
of computing. The emergence of the computing sciences, Dijkstra
declared, represented an intellectual opportunity “ without precedent in
the cultural history of mankind. ” To program a computer effi ciently was
to master complexity, and the mastery of complexity was the fundamen-
tal challenge of modern science and society. 2

 Despite his enthusiasm for the challenge and potential of computing,
however, Dijkstra ’ s decision to abandon physics for computing was
fraught with doubt and uncertainty. As Dijkstra would later recall in
his 1972 Turing Award Lecture (revealingly titled “ The Humble
Programmer ”),

 I had to make up my mind, either to stop programming and become a real,
respectable theoretical physicist, or to carry my study of physics to formal com-
pletion only, with a minimum of effort, and to become . . . what? A programmer?
But was that a respectable profession? After all what was programming? Where
was the sound body of knowledge that could support it as an intellectually
respectable discipline? I remember quite vividly how I envied my hardware
colleagues, who, when asked about their professional competence, could at
least point out that they knew everything about vacuum tubes, amplifi ers
and the rest, whereas I felt that, when faced with that question, I would stand
empty-handed.

 The principal problem with programming in this early period, according
to Dijkstra, was the persistence of a black art mentality among many of
its practitioners. Programmers too often saw their work as temporary
solutions to local problems, rather than as an opportunity to develop a
more permanent body of knowledge and technique. They reveled in the
popular notion that programmers were idiosyncratic geniuses, and that
 “ a really competent programmer should be puzzle-minded and very
fond of clever tricks. ” To Dijkstra these were pernicious anachronisms
that encouraged a provincial, “ tinkering ” approach to software develop-
ment. Such “ clumsy and expensive ” processes might have been tolerated
when computer software, like computer hardware, was still relatively

The Rise of Computer Science 113

primitive. But the increased power and reliability of contemporary com-
puters “ made solutions feasible that programmers had not dared to
dream about a few years ago. ” What computing needed to realize its
true revolutionary potential, Dijkstra argued, was a more rigorous
approach to programming — one modeled after the science of applied
mathematics. 3

 Dijkstra ’ s lament about the deplorable lack of theoretical rigor in
computing would have resonated with his audience. The ACM member-
ship, to whom Dijkstra addressed his reminiscences, was dominated by
those in the computing community who advocated a more scientifi c
approach to computing. The majority of ACM members had college
degrees (often in science, engineering, or mathematics) and the ACM as
an organization worked for decades to draw distinct boundaries between
computer science as an academic discipline and computer programming
as an occupational activity. It was an ACM journal that fi rst introduced
the discipline of computer science, and an ACM committee that devel-
oped its fi rst standardized curriculum. The Turing Award itself was an
ACM invention, intended to recognize — and stimulate — theoretical work
in the emerging discipline of computer science. By the beginning of the
early 1970s, when Dijkstra received his Turing Award, computer science
seemed well on its way to becoming just the sort of “ sound body of
knowledge ” whose absence Dijkstra had so regretted when fi rst he started
to program. 4

 There were many reasons for Dijkstra and his fellows to aspire to
academic legitimacy. To begin with, there seemed a compelling intellec-
tual rationale for doing so. Beginning with John von Neumann ’ s work
on numerical meteorology in the late 1940s, computational models were
increasingly being used to provide solutions — approximate solutions in
many cases, but solutions nonetheless — to scientifi c problems that had
previously been thought intractable. 5 Over the course of the 1950s, in
fi elds as diverse as economics, linguistics, physics, biology, ecology, psy-
chology, and cognitive science, techniques and concepts drawn from
computing promised dramatic new insights and capabilities. 6 As was the
case with Dijkstra, many of the most enthusiastic advocates of computer
science had come from fi elds that had been transformed by the electronic
computer. Computing was “ as broad as our culture, as deep as inter-
planetary space, ” declared Herbert Grosch, a former astronomer (and
future president of the ACM). 7 “ Never before in the history of mankind ”
had there been a phenomenon of equal importance to “ the pervasion of
computers and computing into every other science fi eld and discipline, ”

114 Chapter 5

argued Paul Armer, the head of computing at the RAND Corporation
(and another future ACM president). “ We ’ ve always thought of mathe-
matics as the queen of the sciences pervading every other fi eld, but
computing is going to go much farther than that. ” 8 For many of these
pioneering computer scientists, not only was theirs a “ real ” scientifi c
discipline, it was perhaps the scientifi c discipline.

 Even for those computer specialists whose professional aspirations
were more commercial than academic, there were powerful incentives to
encourage the establishment of an independent discipline of theoretical
computer science. The late 1950s and 1960s was a period in which many
white-collar occupations were actively working to “ professionalize ”
their discipline. 9 And according to the growing body of sociological lit-
erature of this period, a necessary precondition to professional develop-
ment was the control over an organized body of knowledge. Without a
fi rm basis in science and theory, computer programming and data pro-
cessing were doomed to remain low-status, technical occupations.
The primary distinction between professionals and technicians, it was
generally believed in this period, was that professionals underwent a
 “ prolonged course of specialized, intellectual instruction and study, ”
contended Malcolm Gotterer in letter to the editors of the industry
journal Datamation . 10 Establishing computer science as a legitimate
 theoretical discipline was therefore an essential component in the profes-
sionalization agenda of all of its practitioners, whether or not they
intended to pursue careers as research scientists. “ A profession is under
an obligation to develop and base itself on a body of knowledge rather
than upon a body of applications, ” maintained C. M. Sidlo in a letter
to the editors of the Communications of the ACM in 1961. “ As a profes-
sion becomes mature it realizes that the science (not technology) needed
by the profession must continually be extended to more basic content
rather than restricted only to the obvious applied science. ” 11 Within the
status hierarchy of the university, of course, theory ranked higher than
practice, and was therefore desirable for its own sake. Outside of the
academy, theoretical knowledge offered a potential key to professional
advancement. It provided a means of distinguishing the competent pro-
fessional from the mere technician.

 Computer manufacturers and corporate employers also had a stake
in the development of computer science. One popular explanation for
the seemingly perpetual “ personnel crisis ” in computer programming
was the “ virtual nonexistence ” of educational standards in the indus-
try. 12 The establishment of formal academic programs and standardized

The Rise of Computer Science 115

curriculum would allow manufacturers and employers to off-load the
work of training and certifying programmers on the universities. Just
what this training would look like, and how it would balance theory
with practice, would become a subject of much contention, but the need
for some form of academic discipline devoted to computing must have
seemed evident to almost everyone in the industry.

 In retrospect, the emergence of an academic discipline devoted to
computer science seems almost overdetermined. How could the defi ning
technology of our modern information age, the device most widely asso-
ciated in the popular mind with progress in contemporary science and
technology, not have attracted the attention of a wide variety of aca-
demic scientists and engineers? One would imagine that any number of
disciplines would be clamoring for control over the science of computing
and information technology. And indeed, by all of the traditional mea-
sures of academic accomplishment, including papers published, students
graduated, and funding controlled, computer science has proven itself a
resounding success. Within a few years of the founding of the fi rst com-
puter science programs in the United States, thousands of computer sci-
entists were being graduated nationwide. For almost two decades
afterward, the number of degrees granted in computer science would
grow on average more than 20 percent annually. At the height of its
popularity, more than 5 percent of all U.S. male college undergraduates
would graduate with a degree in the computer and information sci-
ences. 13 The remarkable rise to dominance of computer science as an
autonomous discipline represents one of the great success stories of aca-
demic entrepreneurship of the late twentieth century.

 But the development of a new technology, no matter how powerful
or infl uential, did not necessarily justify the creation of a new academic
discipline. There are many examples of scientifi c or technological accom-
plishments that were interesting, useful, and productive, but that did not
require or deserve the development of their own disciplines or depart-
ments. “ The creation of computer science departments is analogous to
creating new departments for the railroad, automobile, radio, airplane
or television technologies, ” argued one letter to the editors of the
 Communications of the ACM . 14 “ These industrial developments were all
tremendous innovations embodied in machinery, as is the development
of computers, but this is not enough for a discipline or a major academic
fi eld. ” 15 According to this line of reasoning, no matter how powerful or
even revolutionary, in the end the electronic computer was simply another
tool or instrument, similar to the microscope or telephone. No one

116 Chapter 5

denied that such tools and instruments were essential to the practice of
modern science and technology, but neither did they call for the creation
of departments of microscopy or telephony.

 There were, in fact, many objections raised against the establishment
of an independent discipline of computer science. In his “ Presidential
Letter to the ACM Membership ” in 1966, Anthony Oettinger outlined
what he called these “ numerous misconceptions ” about computer
science:

 The computer is just a tool, and not [a] proper intellectual discipline. . . . It is
not the business of universities to train computer center managers or systems
experts. . . . The training of faculty and students in computer usage can better
be done by people in the various disciplines who have acquired computer experi-
ence, rather than by a separate cadre of computer scientists. . . . The [future
potential] of computers has been overrated, and when the current fad subsides,
many universities will have . . . badly overextended themselves with respect to
both equipment and teaching/research commitments in computer science per
se. . . . Computer science is not a coherent intellectual discipline but rather a
heterogeneous collection of bits and pieces from other disciplines. 16

 Some of these objections must have seemed absurd even to contem-
poraries; the suggestion that the electronic computer was simply a passing
 “ fad ” was unreasonable even in the early 1960s. But other critiques,
such as the characterization of computer science as a grab bag of theories
and techniques drawn from other disciplines, were much more salient.
Judging from the reaction that Oettinger ’ s list provoked from the ACM
membership, there was a real fear within the nascent computer science
community that its discipline was not being taken seriously, that it was
considered by many little more than a “ momentary aberration in the
fi elds of mathematics and electrical engineering. ” 17 Oettinger himself
later confessed to having doubts about whether or not computing, with
its mix of the “ purest mathematics ” and the “ dirtiest of engineering, ”
would ever truly be considered a science. 18

 In order to demonstrate that computer science was a real, respectable
intellectual activity, computer scientists needed to clearly defi ne the body
of theory that was at the center of their discipline. But what exactly was
computer science the science of? Computers were, after all, human-made
objects. Could there be such a thing, as Herbert Simon would later come
to argue, as a “ science of the artifi cial? ” 19 Or was the computer ulti-
mately incidental to computer science, which would turn out to be
the study of some more basic entity, such as information or algorithms?
Even among those who called themselves computer scientists, there were
disagreements about what the science should look like or where it would

The Rise of Computer Science 117

fi t into the established hierarchy of the university. 20 Some pushed for a
theoretical approach akin to philosophy or mathematics, and others for
engineering-oriented programs emphasizing practical techniques. A few
departments continued to view hardware development as relevant, while
others dismissed it entirely. How much to stress programming training
was a perennial question, with industrial sponsors encouraging one
approach and the academic hierarchy encouraging another.

 Throughout the 1960s, aspiring computer scientists struggled to defi ne
a compelling, coherent agenda for their discipline. The ultimate success
that they achieved conceals the messy social and intellectual work that
was required to carve out a niche for computer science in an already-
crowded university hierarchy. As William Aspray has suggested, the
nascent discipline of computer science crossed virtually every academic
boundary then established within the university, drawing content and
people from mathematics, electrical engineering, psychology, and busi-
ness. 21 These are not boundaries to be transgressed casually; academic
departments are notoriously fi erce about protecting their intellectual and
curricular territory. 22 For example, at many research universities comput-
ing activity had been traditionally located within departments of mathe-
matics or electrical engineering. By the end of the 1950s, an even broader
range of disciplines in the sciences, engineering, and business not only
controlled their own computing resources but were also offering their
own courses in practical computer programming. It was not clear at all
to these established departments that specialists in computer science had
anything to offer, intellectually or otherwise. Indeed, as computer science
threatened to draw resources and students from these traditional disci-
plines, heated battles erupted over faculty slots, graduate admissions, and
courses.

 This chapter explores the rise to dominance of theoretical computer
science as the representative science of modern computing. It suggests
that this rise was anything but inevitable, and that the academic disci-
pline of computer science as it emerged in the period between 1955 and
1975 refl ects a series of messy compromises about what the academic
study of computing should look like, what subjects it should address,
and how it should relate to other, more established disciplines — as well
as to the rapidly growing commercial computer industry. It argues that
the advocates of theoretical computer science pursued a strategy that
served them well within the university, but that increasingly alienated
them from their colleagues in industry. As the software crisis heated up
in the late 1960s, university computer science programs served as a

118 Chapter 5

resource for practitioners in their struggle for professional legitimacy,
but they also represented a battleground in which various groups com-
peted for control over occupational and intellectual territory.

 Comptologist, Turingeer, or Applied Epistomologist?

 The fi rst rigorous description of the discipline that would eventually
become known as computer science appeared in a September 1959 article
in the newly founded Communications of the ACM journal. This new
discipline, claimed its author, the physicist Louis Fein, would consolidate
the many computing activities that were currently dispersed across the
university in departments of mathematics, business and economics,
library science, physics, and electrical engineering. It would serve as the
conduit for basic research in computing, the link between computing and
the larger scientifi c community, and the training ground for students and
industrial programmers. It would rationalize the currently haphazard
and dispersed efforts of industry, academia, and government. And by
establishing a truly scientifi c approach to computing, it would unleash
the “ enormous potential ” of the electronic computer to revolutionize
society. 23 Fein proposed several possible names for this new discipline,
including “ information science, ” “ intellitronics, ” “ synnoetics ” (the term
that he himself would later come to prefer), and “ computer science. ” 24
Others would add “ datalogy, ” “ hypology ” (derived from the Greek
root hypologi , meaning “ to compute ”), “ applied epistemology, ” and
 “ Turingineering ” to this list. 25 Computer science was the name that
stuck.

 The idea that the various fi elds associated with computing deserved
their own unifying discipline was not entirely original to Fein — a year
earlier, a researcher at IBM ’ s Applied Programming Division had sug-
gested the umbrella term “ comptology ” — but Fein was the fi rst to back
up his proposal with specifi c recommendations for curriculum, depart-
ments, and research agendas. 26 Fein had been commissioned by Stanford
University in 1957 to study computing education, and had emerged as
an outspoken advocate of the formation of autonomous departments of
computer science independent of existing programs in mathematics
and electrical engineering. 27 In 1960 he was appointed the chair of the
ACM Education Committee, and a year later published a fi ctionalized
description (written from the perspective of a 1975 observer) of the
program he had developed for Stanford. Interestingly enough, the name
of his idealized department was synnoetics (from the Greek for the

The Rise of Computer Science 119

 “ science of the mind ”) rather than computer science. Synnoetics was
Fein ’ s term for “ the cooperative interaction, or symbiosis of people,
mechanisms, plant or animal organisms, and automata into a system that
results in a mental power (power of knowing) greater than that of its
individual components. ” In many ways, synnoetics was much more akin
to the contemporary discipline of cybernetics that to the modern disci-
pline of computer science.

 Computer Bureaus and Computing Laboratories

 Computing in the universities did not begin with the electronic computer.
Small-scale computing projects organized around mechanical calculators
and human computers had existed for decades in departments of physics
and astronomy. 28 For the most part, however, these human computing
projects had no identity independent of that of their host department.
They were funded and staffed locally, and regarded computing as impor-
tant only in the context of a larger scientifi c agenda.

 By the 1930s a few research universities had established computing
centers that did serve multiple faculties. Many of these were operated in
collaboration with computing equipment manufacturers. IBM started
donating tabulating equipment to Columbia University in the 1920s, for
example, and in 1934 helped establish what would become the Thomas
J. Watson Astronomical Computing Bureau, operated jointly by IBM,
Columbia, and the American Astronomical Society. The bureau attracted
researchers from mathematics and physics as well as astronomy, and in
1945 was transformed into the Watson Scientifi c Computing Laboratory,
which provided computing services to a broad range of scientists
at Columbia and beyond. In 1946 the laboratory began offering an
introductory course in scientifi c computing that over the next two
decades enrolled more than sixteen hundred researchers from twenty
countries. 29

 At Harvard, a young graduate student in physics named Howard
Aiken convinced the IBM Corporation to construct for him an electro-
mechanical computer intended to help fulfi ll the pressing need “ for more
powerful calculating methods in the mathematical and physical sci-
ences. ” 30 The Harvard Mark I, as it came to be known, was a truly
massive machine: fi fty feet long, weighing more than fi ve tons, comprised
of more than seven hundred thousand individual parts. During the war
the Mark I served as the foundation for the Harvard Computational
Laboratory (commanded by Aiken, who was a Naval Reserve offi cer).

120 Chapter 5

After the war Aiken transformed the laboratory into a center for training
and research in the emerging fi elds of computer science. By 1947, Harvard
had established a one-year master ’ s degree program in applied mathe-
matics “ with special reference to computing machinery. ” 31 The following
year, with funding from the U.S. Air Force, the program began offering
doctoral degrees. By 1954, it had graduated nineteen MA and eight PhD
students. It was not until 1962 that an academic program in computer
science was established outside the Computational Laboratory. 32

 MIT had a similarly long tradition of scientifi c computing that began
in the 1920s with Vannevar Bush and his colleagues in the electrical
engineering department. By this time MIT was already known for its
close ties to business and government, and its infl uential electrical engi-
neering department represented the cutting edge of scientifi c computing
in this period. Bush ’ s differential analyzer, which solved differential
equations by mechanical integration, was only the most well-known of
the analog computing devices developed at MIT during the interwar
period. In the late 1930s, funding from the Carnegie Corporation helped
found the MIT Center for Analysis, in which differential analyzers,
network analyzers, and IBM punch card calculators were harnessed to
serve the computational needs of a wide variety of faculty, industry, and
government users. Although the Center for Analysis collapsed, somewhat
inexplicably, shortly after the end of the war, other computing activities
helped propel MIT to the forefront of computing research. 33 The
real-time computing Project Whirlwind was not only transformed, in
1951, into the Digital Computing Laboratory but also spun off the
infl uential Lincoln Laboratory (and ultimately, the System Development
Corporation). Project MAC was an Advanced Research Project Agency –
 funded project that produced important innovations in time-sharing and
networking, and in 1975 became the MIT Laboratory for Computer
Science. Other projects and laboratories at MIT incorporated computing
into programs in communications, library science, and operations
research. 34

 Despite the central role that MIT played in postwar computing
research, it was not until 1969 that the university offered an undergradu-
ate major in computer science. Its graduate program in computer science
would not be established for another decade. This is not to say that
courses in computing were not offered at MIT prior to this period;
indeed, as early as 1935 Samuel Caldwell was teaching a graduate
seminar in machine computation. But prior to the late 1960s, instruction
in computer science was distributed throughout various departments and

The Rise of Computer Science 121

laboratories. When computing did enter the formal MIT undergraduate
curriculum, it did so under the auspices of the powerful electrical engi-
neering department. The program that was established in 1969 was only
an optional major within electrical engineering. And even then the cur-
riculum was at best a combination of basic computer science and com-
puter engineering. 35 Theory clearly took a backseat to practical circuit
design and basic physics. It was not until 1975 that the students could
receive a BS degree in computer science — rather than a BSE in electrical
engineering — from the newly renamed Department of Electrical
Engineering and Computer Science.

 Other universities had similar arrangements. The Moore School of
Electrical Engineering had long served as a computing center for both
the University of Pennsylvania and the nearby Naval Ballistics Laboratory
in Aberdeen, Maryland. In addition to its large staff of human comput-
ers, the Moore School had also acquired a copy of a Bush differential
analyzer. In 1954, Princeton University acquired the computer that John
von Neumann had built for the Princeton Institute for Advanced Study.
The responsibility for operating the computer was given to the mathe-
matics department, which despite having a strong tradition in just the
types of mathematical logic that were becoming central to theoretical
computer science, was not much interested in making use of it. The
statistician John Tukey did have an interest in practical computing, as
did the electrical engineering department, and in the early 1960s it was
agreed that the statistics department would take over responsibility for
computing science, while electrical engineering would provide training
in computer science. 36 In the end it was the electrical engineering depart-
ment, in part because of its control over the Princeton Computing Center,
that incorporated both. It was not until 1984 that Princeton was to have
a separate department of computer science.

 Trading Zones

 The adoption of the new technology of electronic computing seems to
have followed, at most universities, the pattern established by the pre-
existing computing centers: the cost of expensive equipment was justifi ed
by its ability to serve the needs of researchers in established disciplines
such as physics, astronomy, mathematics, and electrical engineering.

 In many ways this arrangement was advantageous for the emerging
computer sciences. As Atsushi Akera has described in his study of
early scientifi c computing activities, many of the pioneering academic

122 Chapter 5

computing scientists learned their trade in the centralized computing
facilities that provided computational services to other researchers. 37
Akera compares such centers to the “ trading zones ” examined by the
historian of physics Peter Galison in his work on bubble chambers. Like
the bubble chamber, the electronic computer created around it an inter-
disciplinary space in which researchers from a variety of backgrounds
could productively interact. In such trading zones, researchers did not
have to agree on the universal meaning or signifi cance of the instrument
but only on local protocols and practices. And so a physicist using the
computer to perform Monte Carlo simulations could regard the com-
puter as a simply another experimental apparatus, while the computer
programmer that he or she was working with might imagine it as an
object of study in and of itself. 38 In the computer that the theorists con-
sidered only in terms of its logical architecture, the electrical engineers
saw circuits and wiring diagrams. Both could be interested in the same
machine for different reasons, and still have interactions in the trading
zone that were productive and signifi cant.

 The trading zone did have its limits. For those who saw the computer
as a tool of more universal interest and applicability, the confi nes of the
computing centers could be limiting. The isolation of computing in com-
puting centers was at once physical, professional, and intellectual. Early
computers were large, power hungry, and because of the extensive
cooling required to dissipate the heat they produced, noisy. They required
constant maintenance. They generally never left the engineering labs in
which they were constructed, reinforcing their status as experimental and
highly specialized instruments. Each machine was unique, and the tech-
nology was changing so rapidly that every new machine was essentially
a prototype. It is hardly surprising that computing appeared to be a
subset of electrical engineering.

 Compared to the massive machinery of the computer engineers, the
contributions of the computer theorists seemed intangible and insignifi -
cant. This was a particular problem for programmers, whose work
lacked even the subdued glamour of mathematical equations or the claim
to fundamental scientifi c knowledge. Demonstrating a new machine to
visitors was “ orders of magnitude more spectacular ” than showing them
a few handwritten sheets of code. 39 The image of the blinking “ giant
electronic brain ” captured both the public and scientifi c imagination in
a way that mere concepts or procedures never could. 40 And of course at
this point the word software, or even the concept it would come to
embody, simply did not exist. Where the hardware engineers were able

The Rise of Computer Science 123

to demonstrate constant progress toward machines that were smaller,
faster, and more reliable, their colleagues in software only seemed to
discover new and more perplexing challenges and diffi culties.

 That computing itself was a curious amalgam of disciplinary tech-
niques and traditions drawn from mathematics and engineering was both
an asset and a liability. There is no question that nascent computer pro-
fessionals benefi ted immensely from their ability to make themselves
useful to a broad range of academic researchers. But having interdisci-
plinary appeal was not the same as owning your own discipline. Computer
center personnel had diffi culty shedding their image as service providers
rather than legitimate researchers. In a report to the ACM Curriculum
Committee in 1966, the noted computer scientist David Parnas warned
that computer science was “ viewed by other disciplines as a rather easily
mastered tool. ” “ It is easy, in any fi eld, to confuse the work of a techni-
cian with the work of a professional, ” suggested Parnas, “ but this is
easier in computer science because a worker in another discipline will
consider himself an ‘ expert ’ after learning to use a computer to process
his data. ” 41

 The development of high-level programming languages exacerbated
this situation. For example, by 1958 the majority of users of IBM ’ s line
of scientifi c computers were using FORTRAN to develop their software.
FORTRAN had been developed specifi cally for scientists, with its syntax
deliberately mirroring conventional arithmetic notation. 42 There was no
reason why a department of mathematics or physics could not offer a
FORTRAN programming course suffi cient for the needs of its faculty
and graduate students.

 In fact, this is just what happened. Departments of mathematics,
engineering, and business were able to develop what they saw as perfectly
serviceable courses of instruction in computer programming. Anticipating
a debate that would soon develop in the commercial computing industry,
they considered disciplinary-specifi c training as being more relevant than
that provided by computer specialists. It was not computing per se that
was important or interesting; what mattered was the application of
computing to a particular problem domain, and who was better qualifi ed
to teach scientifi c programming than a specialist in that domain. A good
physicist could easily pick up enough programming to get by on, but
even the best programmers could never learn enough physics to become
truly useful. If the physicist ’ s code was not quite as optimal as the pro-
fessional programmer ’ s, it was always possible to buy a more powerful
computer.

124 Chapter 5

 As we have seen in the case of all the early academic centers of elec-
tronic computing — Columbia, Harvard, MIT, and the University of
Pennsylvania — computing activity itself was confi ned to the computing
laboratories, while theoretical work and practical instruction in comput-
ing tended to be distributed throughout the university, with departments
of mathematics and electrical engineering serving as de facto administra-
tors of computer-related education. This was certainly the situation as
Fein described it in his 1959 report. It was not inevitable, at least through
the end of the 1960s, that computer science would be able to distance
itself from its origins in other disciplines. As long as courses in computing
theory or at least practical programming were being offered by individual
departments, it was not obvious that it needed to. Some of the traditional
disciplines clearly felt threatened by the newcomer. At Harvard and
Princeton, for example, undergraduate enrollments grew rapidly in com-
puter science while they stagnated in other areas of applied science and
engineering. At Penn and MIT, an increasing number of electrical engi-
neering students chose to focus on computer-related subjects rather than
on other areas of electrical engineering. As computer-related subfi elds
began drawing resources and students from traditional disciplines, heated
battles erupted over faculty slots, graduate admissions, and courses. Its
early success at attracting students and resources notwithstanding, com-
puter science was repeatedly forced to defend its academic legitimacy.
And so the real historical question seems to be not why it took so long
for an autonomous discipline of computer science to be established but
why it ever got established in the fi rst place.

 Is Computer Science Science?

 The most obvious answer is that computer science exists because the
computer scientists wanted it to. The community of computing research-
ers that emerged out of the digital computing laboratories of the 1950s
represented a defi nitive break from the earlier tradition of the scientifi c
computing bureau. These were not the female human computers or tabu-
lating machine operators of the previous generation; they were men with
MAs or PhDs in fi elds like physics, mathematics, and astronomy. They
had been attracted to computing because they found the work challeng-
ing and rewarding, not because they had no other options. A few already
had positions as university faculty; most had academic aspirations;
all believed computing, as a generalized phenomenon, was a subject
worthy of sustained and concentrated scientifi c attention. It seemed both

The Rise of Computer Science 125

essential and inevitable that their professional identity as computer sci-
entists would be constructed around a solid foundation of theoretical
knowledge.

 Such academically minded individuals were naturally drawn to the
ACM. The ACM had been founded in 1947 by MIT professor Samuel
Caldwell. Although as its name implies the ACM had been established
with computing machinery in mind, by the early 1950s it had distanced
itself from the more engineering-oriented aspects of computing in favor
of the “ other phases ” of computing, including numerical analysis, logical
design, and programming. 43 As will be discussed further in chapter 7,
the ACM deliberately styled itself an as academic organization; its annual
meetings resembled academic conferences, with published proceedings,
and the articles in its journals, the fi rst of which appeared in 1953, were
peer reviewed, highly technical, and generally theoretically oriented.
Many of the original members either were or had been associated with
a major university computation project, and most were university edu-
cated. The ACM was the fi rst computing association to impose educa-
tional standards on its members, develop standardized computer science
curricula, and join national scientifi c organizations such as the American
Association for the Advancement of Science and the National Academy
of Sciences. Almost half of the institutional members of the ACM were
educational organizations, and after 1962 a thriving student membership
program was developed. In 1966, the ACM established the prestigious
Turing Award, which remains to this day the highest academic honor
awarded in computer science. The ACM clearly attracted those comput-
ing specialists most invested in a particular vision of computer science
in which the “ sole abstract purpose of advancing truth and knowledge ”
remained primary. 44

 Of course, it was not enough for computer scientists to call themselves
scientists. Although by the early 1960s the term computer science was
being used widely within both academia and industry to describe the
formal study of computing, the broader recognition of computer science
as a legitimate science had yet to be established. 45 The elevation of uni-
versity computing centers to departments of computer science did not
necessarily change the widespread perception that computing was still
essentially a service activity. “ Any fi eld that has the word science in its
name, ” argued the mathematician Frank Harary, “ is guaranteed thereby
not to be a science. ” 46 The historical association of computing with low-
skilled, feminized labor did nothing to improve this perception, nor did
the more recent dominance by the technology of the electronic computer.

126 Chapter 5

In order to gain real academic respectability, computer scientists had
to convince others not only that having such a discipline was desirable
and necessary but also that it addressed some fundamental scientifi c
objective.

 On this fi rst point computer scientists were greatly assisted by the
contemporary boom in commercial electronic computing. As has been
discussed previously, this was more than just a function of the increasing
availability of fast, reliable, and (relatively) low-cost computing power.
The growing realization that software could be used to transform the
general-purpose electronic computer into a broad range of information-
and decision-related devices greatly expanded the range of applications
to which this computing power could be productively applied. By the
early 1960s, the electronic computer had become a signifi cant presence
not only in the research laboratory and the military but in the corporate
and government sectors as well. It was no great rhetorical leap to argue,
as did the computer scientist Peter Wegner in a 1966 essay, that society
was on the verge “ of a computer revolution that will be as profound in
its effects as the industrial revolution of the eighteenth and nineteenth
centuries. ” 47 Similar assertions were being made by numerous business
leaders and government offi cials in this period. The real question was
not whether or not, as Wegner went on to contend, there was “ a growing
organized body of knowledge and theory relating to computers, ” but
whether “ this body of knowledge and theory is called computer
science. ” 48

 The general excitement generated by the rapid expansion of the com-
mercial computer industry lent support to the claims of computer scien-
tists that their discipline was of central economic and social signifi cance.
The burgeoning personnel crisis in the computing fi elds described in
previous chapters was just one sign of a larger interest in computer-
related training and education. But although computer scientists clearly
benefi ted from the growing demand for practical training in computer
programming, their relationship with commercial computing was from
the beginning ambivalent. On the one hand, the practical and commer-
cial potential of the electronic computer is what attracted attention and
funding from industry as well as the government. On the other hand, in
order to differentiate themselves from mathematics or electrical engineer-
ing, and establish computing as more than just a service industry, they
had to distance themselves from the more technical activities associated
with computing.

The Rise of Computer Science 127

 There were attempts in this period to defi ne computer science in terms
of computer technology. In a letter to the editors of Science in 1967, the
noted computer scientists Herbert Simon, Allen Newell, and Alan Perlis
maintained that the answer to the perennial question of “ Is there such a
thing as computer science, and if there is, what is it? ” was really quite
simple: just as biology was the study of life, and astronomy the study of
stars, computer science was the study of computers. That the former
were natural phenomenon and the latter was artifi cial was irrelevant (an
argument that the Nobel Prize – winning Simon would make more thor-
oughly in 1967 in his The Sciences of the Artifi cial). 49 Yes, computers
involved technology as well as science. Yes, computing represented a
dirty mix of mathematics, electronics, psychology, and many other already-
established disciplines. But computers produced interesting, novel, and
complex phenomenon, and that was justifi cation enough for a science of
computing.

 For most aspiring computer scientists, however, this was not a satis-
factory defi nition. It smacked too much of the physicality of engineering.
 “ Computer science is no more about the computer than astronomy is
about telescopes, ” Edsger Dijkstra famously declared. 50 “ We were
blinded by the huge success of computers as practical tools, ” Louis Fein
argued, and therefore “ overemphasized the importance of computer
design and programming. ” 51 A fi rst-rate program in the computer sci-
ences “ should be possible without any computing equipment at all, just
as a fi rst-rate program in certain areas of physics can exist without a
cyclotron. ” 52 It was a “ widespread misconception ” that computer science
was “ simply concerned with the design of computing devices, ” echoed
a report by the ACM Curriculum Committee in 1965. 53 Even the choice
to include machinery in the title of their association seemed increasingly
improvident to many ACM members. Over the course of the next several
decades, regular attempts would be made to change the name of the
ACM to something more science oriented. 54

 For a growing number of computer scientists, the computer itself was
increasingly just an abstraction, a “ universal machine ” that could be
transformed into whatever particular solution happened to be required.
It was the process of transformation, and its possibilities and constraints,
that was of central theoretical importance; the physical characteristics of
the underlying object of that transformation were immaterial.

 The fi rst important step toward the establishment of a science of
computing independent of the computer had originated with John von

128 Chapter 5

Neumann, the peripatetic physicist, mathematician, and economist who,
during the Second World War and its immediate aftermath, was inti-
mately involved with the development of both the electronic computer
and the hydrogen bomb. In the course of his work at Los Alamos on the
modeling of thermonuclear reactions, von Neumann became aware of
the ENIAC project at the University of Pennsylvania. There he began
working with the ENIAC designers on a successor machine called the
EDVAC, which was in concept the fi rst modern, stored-program elec-
tronic computer. In 1945 – 1946, von Neumann circulated an informal
 “ First Draft of a Report on the EDVAC, ” which described the EDVAC
in terms of its logical structure, using notation borrowed from neuro-
physiology. Ignoring most of the physical details of the EDVAC design,
such as its vacuum tube circuitry, von Neumann focused instead on the
main functional units of the computer: its arithmetic unit, memory, and
input and output. The “ von Neumann architecture, ” as it came to be
known, served as the logical basis for almost all computers designed in
subsequent decades.

 By abstracting the logical design of the digital computer from any
particular physical implementation, von Neumann took a crucial fi rst
step in the development of a modern theory of computation. 55 His was
not the only contribution; in 1937, for example, Turing had described,
for the purposes of demonstrating the limits of computation, what would
become known as the Universal Turing Machine. Eventually, the
Universal Turing Machine would become an even more fundamental
construct of modern computer science. According to the Church-Turing
thesis, fi rst articulated in 1943 by the mathematician Stephen Kleene,
any function that can be physically computed can be computed by a
Universal Turing Machine.

 The abstraction of the technology of computing in the theoretical
construct of the Turing Machine mirrored the shift toward software that
was occurring in the larger commercial computing industry. Independent
of the work of theoretical computer scientists, working programmers —
 and their corporate employers — were discovering to their chagrin that
computer software was even more complicated and expensive to develop
than computer hardware. It was the growing number of data processing
departments and commercial programming houses that provided the
majority of employment opportunities for the graduates of fl edgling
programs in computer science. Establishing computer science as a disci-
pline substantially different from computer engineering had been rela-
tively easy given the growing (and visible) distinction between software

The Rise of Computer Science 129

and hardware. Clearly defi ning the relationship between computer science
and computer programming was much more diffi cult and problematic.

 On the surface, the relationship between the two seems obvious:
computer science was the theoretical basis underlying the practical occu-
pation of computer programming. Dijkstra had implied as much in his
 “ Humble Programmer ” lecture, and most of his contemporaries would
have agreed that there was at least some relationship between the two.
But what exactly was the nature of this relationship? As we have seen,
computer programming in the 1950s was generally regarded as an inher-
ently undisciplined and unscientifi c activity. Computer programmers
prided themselves on their clever and idiosyncratic solutions to problems.
Most working programmers in this period had no formal education in
computing, and many did not even possess a college degree. By the end
of the 1950s, as discussed earlier, many employers had started question-
ing the value of mathematics to most commercial programming. Indeed,
the only fi rm conclusion one review of the literature on the selection of
computer programmers at this time identifi ed was that “ majoring in
mathematics was not found to be signifi cantly related to performance as
a programmer! ” 56 Computer scientists expressed disdain for professional
programmers, and professional programmers responded by accusing
computer science of being overly abstract or irrelevant. 57 Much more will
be said about this confl ict between theory and practice in this and sub-
sequent chapters. For the time being, it is important only to note that
the professionalization strategies pursued by academic computer scien-
tists were distinct from those of professional business programmers. The
skills and abilities that were rewarded within the university hierarchy
were not necessarily valued within the corporate environment.

 The struggle to defi ne a unique intellectual identity for computer
science played itself out over the course of the 1960s in the development
of specifi c programs, departments, and curriculum. The fi rst of these
refl ected the origins of computing research in computing centers and
mathematics departments. They included a mix of courses in numerical
analysis, Boolean algebra, and statistics, combined with more practical
training in programming. 58 Over the next decade, the more research-
oriented programs expanded to include offerings in artifi cial intelligence,
automata theory, and computational complexity. As the historian
Michael Mahoney has argued, this conglomeration of concepts and
techniques did represent a convergence on a shared intellectual agenda
for theoretical computer science. 59 But to a certain degree, computer
science in the early 1960s did also appear, at least from the outside,

130 Chapter 5

as just the kind of conceptual grab bag that its opponents accused it
of being.

 In 1965, the ACM Curriculum Committee attempted to bring unity
to computer science by defi ning it in terms of a single fundamental unit
of analysis: computer science “ is concerned with information in much
the same sense that physics is concerned with energy; it is devoted to the
 representation, storage, manipulation , and presentation of informa-
tion. ” 60 This redefi nition of computer science around the study of infor-
mation offered several immediate benefi ts. Not only did it lay claim to
the valuable intellectual territory suggested by the commonsense under-
standing of information as knowledge or data but it also linked the dis-
cipline to the specifi c formulation of information developed in the late
1940s by the mathematician Claude Shannon. In his seminal book with
Warren Weaver from 1949, A Mathematical Theory of Communication ,
Shannon had defi ned information in terms of the physical concept of
negative entropy. 61 His information theory appealed to scientists in a
wide variety of disciplines, and for a time it appeared as if information
might serve as a broadly unifying concept in the sciences. 62 But despite
its intellectual appeal, Shannon ’ s mathematical defi nition of information
was never widely applicable outside of communications engineering. And
as for more commonsense notions of information, there already seemed
to be claimants to that problem domain. Librarians were already experts
at classifi cation, storage, and data retrieval. Statisticians specialized in
numerical data. Most academic disciplines, to a certain degree, were
devoted to the management and analysis of information. In Europe,
various versions of the German word informatik (including the French
 informatique , the Spanish informatica , and the English informatics) had
been successfully mobilized to organize the emerging “ computing sci-
ences ” (a minor but signifi cant difference in terminology) around the
study of information, rather than computers per se, but in the United
States such efforts achieved much traction. 63

 In the end, though, it would not be information that emerged as
the foundational concept of modern computer science but rather the
algorithm.

 Fundamental Algorithms

 A revolution in science can only be considered complete, according to
the infl uential philosopher of science Thomas Kuhn, when it has written
its own textbook history. Textbook histories are the short, celebratory

The Rise of Computer Science 131

narratives that accompany most textbook introductions to a scientifi c
discipline. Their purpose is to provide aspiring practitioners with a sense
of participation in a heroic and coherent disciplinary tradition. They do
so not by celebrating revolutionary developments but instead by conceal-
ing them. By emphasizing only those details of past discoveries that
contribute directly to present-day understandings, highly selective histo-
ries situate contemporary theories and practices in a larger tradition of
continuity and cumulative discovery. In doing so, they allow practitio-
ners to locate themselves within a disciplinary tradition more mythical
than realistic. The construction of such inherently selective histories is
an essential move toward the development of what Kuhn called “ normal
science. ” The practice of normal science is what defi nes and perpetuates
a discipline. Without normal science, there is no discipline. 64

 Computer science became normal science in the late 1960s. In the
same year that the ACM defi ned the fi rst standard curriculum in com-
puter science, one of its most noted practitioners published its fi rst offi -
cial history. In 1968, the Stanford University computer scientist Donald
Knuth opened the fi rst volume of his canonical The Art of Computer
Programming with a survey overview of the history of computing. As
Kuhn would have anticipated, Knuth ’ s history closely mirrored his
theory. It located the origins of the discipline in a treatise by the ninth-
century Persian mathematician Muhammad ibn M ū s ā al-Khw ā rizm ī . It
is from al-Khw ā rizm ī that we derive the modern word algorithm, and
for Knuth it was the study of the algorithm that defi ned the modern
discipline of computer science. A history of computing in which the
algorithm was fundamental was the ideal companion to a volume subti-
tled Fundamental Algorithms . 65

 As Paul Ceruzzi has convincingly demonstrated, by the beginning of
the 1970s Knuth and his colleagues had successfully established the
algorithm as the fundamental unit of analysis of computer science. 66 In
his compelling interweaving of history and mathematics, Knuth not only
defi ned for computer science an intellectual lineage worthy of the most
basic and fundamental of sciences but also skillfully distanced electronic
computing from its origins in mechanical computation and electrical
engineering. One of the most common objections raised against com-
puter science was that it was a technical rather than a scientifi c enter-
prise, the study of local particularities rather than fundamental entities.
Despite what Herbert Simon might suggest about the legitimacy of the
sciences of the artifi cial, computing still seemed to many to be the domain
of the engineer and accountant rather than the theoretician or scientist.

132 Chapter 5

But the algorithm was by defi nition an abstraction, that aspect of com-
puting that most lent itself to isolation and formalization. Algorithms
were the mechanical procedures followed by a computer, but they were
not limited to the computer itself. In theory, algorithms lay at the heart
of all self-directed activity, whether mechanical, electrical, or biological.
Algorithms were the essence of intelligence, isolated and refi ned into a
precisely defi ned series of instructions for completing a task. One did not
even need a computer to study algorithms; in fact, actual computers were
more often than not simply a distraction. Where computers were clearly
human-made and particular, algorithms were conceptual and therefore
universal. “ The notion of a mechanical process and of an algorithm, ”
Peter Wegner would declare, “ are as fundamental and general as the
concepts that underlie the empirical and mathematical sciences. ” 67 By
suggesting that the algorithm was as fundamental to the technical activity
of computing as Sir Isaac Newton ’ s laws of motion were to physics,
Knuth and his fellow computer scientists could claim full fellowship with
the larger community of scientists.

 In addition to its claims to fundamental metaphysical signifi cance, the
algorithm provided aspiring computer scientists with a practical agenda
for advancing their discipline. Algorithms were amenable to mathemati-
cal analysis, which encouraged formalization and abstraction, but not
so much that they could be subsumed under applied mathematics, which
allowed the computer scientists to claim disciplinary autonomy. The
development of effi cient algorithms provided clear and well-defi ned
problems (along with some exemplary solutions) for students of the dis-
cipline to study and pursue. To borrow once again from Kuhn, algo-
rithms represent the ideal “ puzzles ” for normal scientists to solve:
challenging but not insoluble, intellectually interesting and yet still
technically familiar. As a disciplinary agenda, the study of the algorithm
has proved enormously productive. Knuth ’ s The Art of Computer
Programming alone now spans three volumes and more than twenty-
one hundred pages — with four more volumes anticipated before it is
completed.

 But while textbook histories are essential for the articulation of disci-
plinary identity, it is in the establishment of specifi c educational curricula
that such identities become tangible. It was the publication of the ACM ’ s
 “ Curriculum ‘ 68 ” recommendations that fi rmly embedded the study of
the algorithm in the fabric of computer science education and research.
Curriculum ‘ 68 provided detailed guidelines for computer science pro-
grams at both the undergraduate and graduate levels. The curriculum it

The Rise of Computer Science 133

proposed was unabashedly theoretical: although it recognized that prac-
tical training in programming was “ an important by-product ” of an
education in computer science, the development of programming skill
was “ by no means its main purpose. ” Numerical analysis fi gured heavily,
as did computability theory, formal languages, and automata theory.

 As Goshal Gupta has suggested, although Curriculum ‘ 68 did not end
all debate about what computer science should look like or where it
should fi t into the university, it did represent a landmark moment in the
history of the discipline. 68 Curriculum ‘ 68 “ established computer science
as an academic fi eld of study and specifi ed to a great extent its content, ”
concluded a follow-up report from the late 1970s. Within two years of
their publication the Curriculum ‘ 68 guidelines had been implemented
in at least twenty-six universities. 69 The special committee assembled by
the ACM to produce the Curriculum ‘ 68 report, the Curriculum
Committee on Computer Science (C 3 S), followed up with a series of
articles in the Communications of the ACM highlighting specifi c topics
from the recommendations, including computational linguistics, formal
languages, automata, and abstract switching and computability. In col-
laboration with the National Science Foundation, the C 3 S also hosted
a series of conferences aimed at enabling smaller universities and
teaching colleges to implement Curriculum ‘ 68. 70 Over the course of
the next decade, the C 3 S would continue to refi ne and monitor its
recommendations.

 “ Cute Programming Tricks ”

 Not everyone agreed with the theoretical turn that computer science took
in the late 1960s. For many occupational computer programmers, most
of what was happening in theoretical computer science seemed irrelevant
or even counterproductive, a “ sort of holier than thou academic intel-
lectual sort of enterprise ” divorced from practical concerns of commer-
cial computing. 71 Even as computer science succeeded in its quest to
establish itself as an academic discipline, industry observers were noting
that academic success did not necessarily translate into real-world accom-
plishments. In the keynote address at the Conference on Personnel
Research in 1968, IBM researcher Hal Sackman acknowledged the need
for “ proper education ” for programmers, yet then asked, “ But who can
we look to for such education? Not the new departments of computer
science in the universities. . . . [T]hey are too busy teaching simon-pure
courses in their struggle for academic recognition to pay serious time and

134 Chapter 5

attention to the applied work necessary to educate programmers and
systems analysts for the real world. ” 72 Later that same year, in his Turing
Award lecture titled “ One Man ’ s View of Computer Science, ” Bell
Laboratories research scientist Richard Hamming criticized the ACM ’ s
recently released Curriculum ‘ 68 report for its overemphasis on theory:

 At present there is a fl avor of “ game-playing ” about many courses in computer
science. I hear repeatedly from friends who want to hire good software people
that they have found the specialist in computer science is someone they do not
want. Their experience is that graduates in our programs seem to be mainly
interested in playing games, making fancy programs that really do not work,
writing trick programs, etc., and are unable to discipline their own efforts so
that what they say they will do gets done on time and in practical form.

 Although Hamming was a fi rm believer in the inclusion of advanced
mathematics in the computer science curriculum, he held that if the dis-
cipline were going to turn out “ responsible, effective people who meet
the real needs of our society, ” it would need to abandon its love affair
with pure mathematics and embrace a hands-on engineering approach
to computer science education. 73

 Industrial employers in particular were becoming increasingly dis-
gruntled with the products of the academic computer science depart-
ments. “ Possibly the most blatant failure of our industry has been its
ineffective efforts at communicating with the academic community, ”
argued one article in 1970 on the so-called people problem: “ Ours is the
fi rst major industry in modern history to develop with only limited
support from colleges and universities. . . . [M]ost colleges and universi-
ties still have not initiated degree programs leading to data processing
careers. Those who do offer computer training frequently give the cur-
riculum a scientifi c orientation, thus ignoring the additional skills needed
by our industry. ” 74 Abraham Kandel noted the “ vicious circle ” of intel-
lectual introspection that followed the minimization of practical pro-
gramming training in the Curriculum ‘ 68 guidelines. “ Some computer
science departments have done such a magnifi cent job of de-emphasizing
the importance of the experimental laboratory in their program that their
graduates emerge thoroughly unprepared to tackle the intricacies associ-
ated with design work in the real-life world. ” 75

 Given the perceived incompatibility between the needs of business and
the output of the universities, the rise of computer science as an academic
discipline contributed little to the professionalization of data processing.
Corporate employers began turning to other sources of educated practi-
tioners. A Datamation survey in 1972 of corporate data processing

The Rise of Computer Science 135

managers noticed “ another attitude common to most of Datamation ’ s
wise men: the relative uselessness of departments of computer sciences
. . . and the people they are capable of turning out. ” For those people
thinking about entering the fi eld, the article recommended, “ the consen-
sus advice seems to be: stay out of computer sciences. Take a bachelor ’ s
degree in a technical subject, add a master ’ s in business administra-
tion. ” 76 Fred Gruenberger, himself a computer science educator, sug-
gested that “ most programming managers in large corporations tell the
same story repeatedly (although regrettably few people listen). Please,
they say, give us well-educated MBAs, not Computer Science graduates. ”
Why business training and not computer science? “ It has been repeatedly
proven in both scientifi c and commercial data processing that program-
ming can be taught to bright, well-motivated and well-educated people,
but that company identifi cation and a general feeling for ‘ business ’
can almost never be taught. ” 77 Employers also began to look at mecha-
nisms other than education for ensuring the quality of their workforce,
especially professional certifi cation exams. This will be the subject of
chapter 7.

 Science as Professional Identity

 In his pathbreaking work on the intellectual history of theoretical com-
puter science, Michael Mahoney has described the emergence of that
discipline in terms of the setting of intellectual agendas. An agenda, in
Mahoney ’ s formulation, is “ what practitioners of the discipline agree
ought to be done, a consensus concerning the problems of the fi eld, their
order of importance or priority, the means of solving them, and perhaps
most importantly, what constitute solutions. ” 78 It is the ability to set
agendas and make progress toward achieving them that determines the
intellectual standing of a discipline. In the years between 1955 and 1975,
Mahoney argues, theoretical computer science did manage to converge
on a set of agendas — automata theory, formal languages, computational
complexity, and formal semantics — that provided it with a coherent
disciplinary identity. By the end of this period, computer science had
unquestionably established itself as a mathematically oriented discipline
with real scientifi c credibility.

 The desire to set an academic agenda was itself a form of agenda, or
at least a strategy for pursuing a larger agenda. In this case the larger
agenda was the professionalization of the computer industry. As will be
argued more completely in the following chapter, the accomplishment

136 Chapter 5

of professional status for “ computer people ” was a goal shared by almost
everyone in the computer industry: occupational programmers, aspiring
computer scientists, computer manufacturers, software development
fi rms, human resources departments, corporate managers, and regula-
tory agencies. 79 The real question was not whether the industry should
professionalize but instead what form this professionalization should
follow. The model of the research scientist or the scientifi cally informed
software engineer were both powerful paradigms of professional devel-
opment, but as we shall see, they were by no means the only models
available; the certifi ed public accountant was, for many data processing
personnel, an even more compelling example of autonomous profes-
sional expertise. The point is that the emergence of computer science as
an academic discipline can only be understood in terms of the larger
pursuit of professional status.

 6

 We are at once the most unmanageable and the most poorly managed specialism
in our society. Actors and artists pale by comparison. Only pure mathematicians
are as cantankerous, and it ’ s a calamity that so many of them get recruited by
simplistic personnel men.

 — Herbert Grosch, “ Programmers: The Industry ’ s Cosa Nostra, ” 1966

 Unsettling the Desk Set

 The 1957 fi lm Desk Set is best known to movie buffs as a lightweight
but enjoyable romantic comedy, the eighth of nine pictures in which
Spencer Tracy and Katherine Hepburn acted together, and the fi rst to be
fi lmed in color. The fi lm is generally considered frivolous yet enjoyable,
not one of the famous pair ’ s best, though still popular and durable. The
plot is fairly straightforward: Tracy, as Richard Sumner, is an effi ciency
expert charged with introducing computer technology into the reference
library at the fi ctional Federal Broadcasting Network. There he encoun-
ters Bunny Watson, the Hepburn character, and her spirited troop of
female reference librarians. Watson and her fellow librarians, who spend
their days researching the answers to such profound questions as “ What
kind of car does the king of the Watusis drive? ” and “ How much damage
is caused annually to American forests by the spruce budworm? ” imme-
diately suspect Sumner of trying to put them all out of a job. After the
usual course of conventional romantic comedy fare — mutual mistrust,
false assumptions, sublimated sexual tension, and humorous misunder-
standings — Watson comes to see Sumner as he truly is: a stand-up guy
who was only seeking to make her work as a librarian easier and more
enjoyable.

 What is less widely remembered about Desk Set is that it was spon-
sored in part by the IBM Corporation. The fi lm opens with a wide-angle

 The Cosa Nostra of the Data Processing
Industry

138 Chapter 6

view of an IBM showroom, which then closes to a tight shot of a single
machine bearing the IBM logo. The equipment on the set was provided
by IBM, and the credits at the end of the fi lm — in which an acknowledg-
ment of IBM ’ s involvement and assistance features prominently — appear
as if printed on an IBM machine. IBM also supplied equipment operators
and training.

 The IBM Corporation ’ s involvement with Desk Set was more than an
early example of opportunistic product placement. Underneath the trap-
pings of a lighthearted comedy, Desk Set was the fi rst fi lm of its era to
deal seriously with the organizational and professional implications of
the electronic computer. In the midst of the general enthusiasm that
characterized popular coverage of the computer in this period crept hints
of unease about the possibility of electronic brains displacing humans in
domains previously thought to have been free from the threat of mecha-
nization. In 1949 the computer consultant Edmund Berkeley, in the fi rst
popular book devoted to the electronic computer, had dubbed them
 “ Giant Brains; or, Machines That Think. ” The giant brain metaphor
suggested a potential confl ict between human and machine — a confl ict
that was picked up by the popular press. “ Can Man Build a Superman? ”
 Time magazine asked in a cover story in 1950 on the Harvard Mark III
computer. 1 More pressingly, asked Colliers magazine a few years later,
 “ Can a Mechanical Brain Replace You? ” 2 Probably it could, concluded
 Fortune magazine, at least if you worked in an offi ce, where “ offi ce
robots ” were poised to “ eliminate the human element. ” 3 IBM ’ s participa-
tion in production of Desk Set can only be understood in terms of its
ongoing efforts, which started in the early 1950s, to reassure the public
that despite rumors to the contrary, computers were not poised “ to take
over the world ’ s affairs from the human inhabitants. ” 4

 Seen as a maneuver in this larger public relations campaign, Desk Set
was an unalloyed triumph for IBM. 5 The fi lm is unambiguously positive
about the electronic computer. The idea that human beings might ever
be replaced by machines is represented as amusingly naive. Sumner ’ s
Electronic-Magnetic Memory and Research Arithmetic Calculator
(EMERAC) is clearly no threat to Watson ’ s commanding personality and
effi ciency. In fact, “ Emmy ” turns out to be charmingly simpleminded.
When a technician mistakenly asks the computer for information on the
Island “ Curfew ” (as opposed to Corfu), Emmy goes amusingly haywire.
Fortunately, she could easily be put right using only a bobby pin, judi-
ciously applied. The reassuring message was that computers were useful
but dimwitted servants, and unlikely masters. As one reviewer described

The Cosa Nostra of the Data Processing Industry 139

the situation, “ It simply does not seem very ominous when they threaten
to put a mechanical brain in a broadcasting company ’ s reference library,
over which the effi cient Miss Hepburn has sway. . . . The prospect of
automation is plainly no menace to Kate. ” 6

 But if the computer held no dangers for Hepburn, it did for many of
the real-life offi ce workers watching the fi lm. Like Watson and her librar-
ians, most would have greeted the arrival of a computer-toting effi ciency
expert with fear and trepidation. Although Tracy imbued the character
of Sumner with his trademark gruff-but-likable persona, such experts
were generally seen as the harbingers of reorganization, mechanization,
and what the economist Thorstein Veblen described as the “ degradation
of labor. ” 7 And as Thomas Haigh has suggested, it was no coincidence
that Sumner was both an effi ciency expert and a computer designer;
many of the “ systems men ” of the early electronic computer era were
effi ciency experts turned computer consultants. In any case, the specter
of computer-driven unemployment looms large over Desk Set , if only as
the source of initial confl ict between Sumner and Watson. But even the
most casual viewers of Desk Set might have suspected that absent the
feisty Hepburn, the librarians at the Federal Broadcasting Network might
not have gotten off so easily. Although the fi lm alluded to a second
EMERAC that had been installed in the payroll department, no mention
was made of the payroll workers having a Watson of their own. Even if
the skilled reference librarians and accountants were immune from com-
puterization, though, what about other, less specialized workers? Did
anyone really expect the two Emmies to remain confi ned to the library
and payroll departments? It seemed inevitable that at least some Federal
Broadcasting Network employees would be reduced to the status of mere
machine operators, or perhaps replaced altogether.

 Insofar as the Desk Set has been interpreted critically, it is in the
context of these larger concerns about the replacement of human beings
with computers. The struggle of human versus machine (or more precise,
woman versus machine) depicted in the fi lm is often seen as a metaphor
for worker resistance to computerization. Although the possibility that
computers might supersede humans was much discussed in the popular
press during the 1950s and early 1960s, with the exception of a small
number of occupational categories the adoption of computer technology
generally did not involve large-scale worker displacement. For the most
part, what resistance to corporate computerization efforts did emerge
came not from ordinary workers but rather from their managers. It was
these managers who frequently saw their work most directly affected by

140 Chapter 6

the applications developed by computer programmers and systems ana-
lysts. Over the course of the 1950s corporations had discovered that the
electronic computer was more than just an improved version of the
mechanical calculator or Hollerith machine. What was originally envi-
sioned as a “ chromium-plated tabulator, ” as Haigh has portrayed it, was
increasingly seen as a tool for managerial control and communication. 8
As the electronic computer was gradually reinterpreted in larger organi-
zational terms, fi rst as an “ electronic data processing ” device and then
again as a “ management information system, ” it was increasingly seen
as a source of institutional and professional power.

 Computers Can ’ t Solve Everything

 The 1960s were something of a golden age for the computer industry.
The industry grew at an average annual rate of 27 percent during this
period. 9 At the beginning of the decade there were roughly fi fty-four
hundred computers installed in the United States; by 1970 this number
had grown to more than seventy-four thousand. 10 In 1969 alone U.S.
fi rms purchased $7 billion worth of electronic computers and related
equipment. An additional $14 billion was spent on computer personnel
and materials. The corporate world ’ s total investment in computing that
year represented 10 percent of the nation ’ s total annual expenditure on
capital equipment. 11 These corporate investors were also getting increas-
ingly more for their money. In the fi rst half of the decade, innovations
in transistor and integrated circuit technology had increased the memory
size and processor speed of computers by a factor of ten, providing an
effective performance improvement of almost a hundred. By the end of
the decade, the inexorable march toward smaller, faster, and cheaper
computing predicted by Gordon Moore in 1965 was clearly in
evidence. 12

 It was during this period that the IBM Corporation rose to worldwide
dominance, establishing in the process a series of institutional structures
and technological standards that shaped developments in the industry
for the next several decades. Under IBM ’ s substantial umbrella a broad
and diverse set of subsidiary industries fl ourished, including not just
manufacturers of complementary (or even competing) hardware prod-
ucts but also programming services companies, time-sharing “ computer
utilities, ” and independent data processing service providers. When we
consider such subsidiary industries, our estimate of the total size of the
computer industry almost doubles. 13

The Cosa Nostra of the Data Processing Industry 141

 And yet by the late 1960s there were signs of trouble in paradise.
Foreshadowing the “ productivity paradox ” debate of later decades, hints
began to appear in the literature that a growing number of corporations
were questioning the value of their investment in computing. As an
article in 1969 in Fortune magazine entitled “ Computers Can ’ t Solve
Everything ” described the situation, “ After buying or leasing some
60,000 computers during the past fi fteen years, businessmen are less and
less able to state with assurance that it ’ s all worth it. ” The article recited
a litany of overambitious and ultimately unsuccessful attempts to com-
puterize planning and management processes at such fi rms as Pillsbury,
Westinghouse, and the International Minerals and Chemical Corporation.
The success that many companies experienced in computerizing their
clerical operations in the 1950s, argued industry reporter Thomas
Alexander, had generated unrealistic expectations about their ability to
apply computing power to more sophisticated applications, such as con-
trolling manufacturing operations, optimizing inventory and transporta-
tion fl ows, and improving the quality of managerial decision making.
But perhaps one in ten businesses was “ showing expertise in the manage-
ment of the computer ” to higher-order activities. The rest were slowly
and uncomfortably “ waking up to the fact that they were oversold ” on
computer technology — not just by self-interested manufacturers and
computer consultants, but by their own data processing personnel. 14

 Fortune was not alone in its assessment of the apparent unprofi tability
of many corporate computerization efforts. Beginning in the mid-1960s,
the noted Harvard Business School professor John Dearden published
a series of articles in the Harvard Business Review dismissing as
“ myths ” and “ mirages ” the alleged benefi ts of computerized corporate
information systems. 15 Prominent industry analyst John Diebold com-
plained, also in the pages of the Harvard Business Review , about the
 “ naive standards ” that many businesses used to evaluate the costs and
benefi ts of computer technology. “ Nowhere is this lack of [business]
sophistication more apparent than in the way in which computers are
applied in American industry today. ” 16 Management consultant David
Hertz argued that computers were “ oversold and underemployed. ” 17 A
survey in 1968 by the Research Institute for America had determined
that only half of all corporate computer users were convinced that their
investment in computing had paid off. The inability of computerization
projects to justify their own existence signaled “ the fi zzle in the ‘ com-
puter revolution, ’ ” suggested the accounting fi rm Touche Ross and
Company. 18

142 Chapter 6

 Perhaps the most devastating critique of corporate computing came
from the venerable consulting fi rm McKinsey and Company. In 1968
McKinsey released a report titled “ Unlocking the Computer ’ s Profi t
Potential, ” in which it claimed that “ computer efforts, in all but a few
exceptional companies, are in real, if often unacknowledged, trouble. ”
Despite years of investment in “ sophisticated hardware, ” “ larger and
increasingly costly computer staffs, ” and “ complex and ingenious appli-
cations, ” most of these companies were nowhere near realizing their
anticipated returns on the investment in electronic computing. Instead,
they were increasingly characterized by rising costs, lost opportunities,
and diminishing returns. Although the computer had transformed the
administrative and accounting operations of many U.S. businesses, “ the
computer has had little impact on most companies ’ key operating and
management problems. ” 19

 The McKinsey report was widely cited within the business and techni-
cal literature. The editors of Datamation endorsed it almost immediately,
declaring that it “ lays waste to the cherished dream that computers create
profi ts. ” 20 Computers and Automation reprinted it in its entirety several
months later. References to the report appear in a diverse range of jour-
nals for at least two decades after its initial publication. 21

 The dissatisfaction with corporate computerization efforts expressed
in the McKinsey report and elsewhere must be interpreted within the
context of a larger critique of software that was percolating in this
period. As mentioned earlier, the “ gap in programming support ” that
emerged in 1950s had worsened to “ software turmoil ” in the early
1960s, and by the end of the decade was being referred to as a full-blown
 “ software crisis. ” 22 And in 1968, the fi rst NATO Conference on Software
Engineering fi rmly established the language of the software crisis in the
vernacular of the computer community. Large software development
projects had acquired a reputation for being behind schedule, over
budget, and bug ridden. Software had become “ a scare item for man-
agement . . . an unprofi table morass, costly and unending. ” 23

 It is important to note that the use of the word software in this period
was somewhat inconsistent. As Thomas Haigh has suggested, the meaning
of the word software was changing rapidly during the 1960s, and could
refer alternatively to something specifi c — the systems software and utili-
ties that today we would describe as an operating system — or more
generally to the applications, personnel, and processes associated with
computing. He argues that the software crisis as it was understood by
the NATO conference organizers referred only to the former defi nition. 24

The Cosa Nostra of the Data Processing Industry 143

Substantial evidence shows that as early as 1962 the term “ software ”
was being used much more broadly to refer to a broad range of com-
puter-based applications. 25 But even if one were to insist on a narrow
systems-oriented defi nition of the word “ software, ” however, then the
predicament described by the McKinsey report might simply be rechar-
acterized as an “ applications crisis. ” 26 From a more modern understand-
ing of software as the heterogeneous collection of tools, applications,
personnel, and procedures that together comprise the system of comput-
ing in action, the distinction is immaterial.

 Whether we call them a software crisis or an applications crisis, the
concerns of corporate managers were clearly about the “ softer ” elements
of computer-based systems. The crucial distinction to be made between
the applications crisis discussed in the business literature and the more
technical literature on the software crisis lies not in its identifi cation of
symptoms but rather in its diagnosis of the underlying disease. Both
communities were concerned with the apparent inability of existing
software development methods to produce cost-effective and reliable
commercial applications. But where the technical experts identifi ed the
root causes of the crisis in terms of production — in other words, as a
function of the diffi culties inherent in building software right — many
corporate managers believed that the real challenge was in determining
the right software to build . Faced with exponentially rising software
costs, and threatened by the unprecedented degree of autonomy that
top-level executives seemed to grant to computer people, many corporate
managers began to reevaluate their largely hands-off policies toward
programmer management. Whereas in the previous decade computer
programming had been widely considered to be a uniquely creative
activity — and therefore almost impossible to manage using conventional
methods — by the end of the 1960s new perspectives on these problems
began to appear in the industry literature. The real reason that most data
processing installations were unprofi table, according to the McKinsey
report, was that “ many otherwise effective top managements . . . have
abdicated control to staff specialists. ” These specialists might be “ good
technicians, ” but they had “ neither the operation experience to know
the jobs that need doing nor the authority to get them done right. ” 27 Or
as another contemporary report summarized the situation, “ many man-
agers sat back and let the computer boys monkey around with systems
that were doomed to failure or mediocrity. ” 28

 The dramatic shift in tone of the management literature during this
time is striking. Prior to the late 1960s the conventional wisdom was

144 Chapter 6

that computer programming was a uniquely creative activity — genuine
 “ ‘ brain business, ’ often an agonizingly diffi cult intellectual effort ” — and
therefore almost impossible to manage using conventional methods. 29
But by the end of the decade, the same journals that had previously
considered programming unmanageable were fi lled with exhortations
toward better software development management: “ Controlling
Computer Programming ” ; New Power for Management; “ Managing the
Programming Effort ” ; and The Management of Computer Programming
Efforts . 30 The same qualities that had previously been seen as essential
indicators of programming ability, such as creativity and a mild degree
of personal eccentricity, now began to be perceived as merely unprofes-
sional. As part of their rhetorical construction of the applications crisis
as a crisis of programmer management, corporate managers accused
programmers of lacking professional standards and loyalties: “ too fre-
quently these people [programmers], while exhibiting excellent technical
skills, are non-professional in every other aspect of their work. ” 31 A
widely quoted psychological study that identifi ed as a “ striking charac-
teristic of programmers . . . their disinterest in people, ” reinforced the
managers ’ contention that programmers were insuffi ciently concerned
with the larger interests of the company. 32 Computer specialists were
increasingly cast as self-interested peddlers of whizbang technologies. “ In
all too many cases the data processing technician does not really under-
stand the problems of management and is merely looking for the applica-
tion of his specialty, ” wrote William Walker in a letter to the editor in
the management-oriented journal Business Automation . 33 Calling pro-
grammers the “ Cosa Nostra ” of the industry, the colorful former-
programmer-turned-technology-management-consultant Herbert Grosch
declared that computer specialists “ are at once the most unmanageable
and the most poorly managed specialism in our society. Actors and
artists pale by comparison. Only pure mathematicians are as cantanker-
ous, and it ’ s a calamity that so many of them get recruited by simplistic
personnel men. ” He warned managers to “ refuse to embark on grandiose
or unworthy schemes, and refuse to let their recalcitrant charges waste
skill, time and money on the fashionable idiocies of our [computer]
racket. ” 34

 The most obvious explanation for the sudden reversal in management
attitudes toward computer people is that just as corporate investment in
computing assets escalated rapidly in this period, so did its economic
interest in managing these assets effectively. And since the costs of
computer software, broadly defi ned to include people, planning, and

The Cosa Nostra of the Data Processing Industry 145

processes, were growing rapidly in relation to hardware — for every dollar
spent on computer hardware, claimed the McKinsey report, two dollars
were spent on staff and operations — it should be no surprise that person-
nel issues were the focus of particular attention. Computer programmers
alone required at least 35 percent of the total operational budget. The
size of the average computer department had doubled in the years
between 1962 and 1968, and was expected to double again by 1975. A
report in 1966 by the American Federation of Information Processing
Societies (AFIPS) estimated that in 1960, there were already 60,000
systems analysts and as many as 120,000 computer programmers working
in the industry. AFIPS expected this number to more than double by the
end of the decade. 35

 There is no question that the rising costs of software development
caused tension between computer personnel and their corporate manag-
ers. The continuous gap between the demand and supply of qualifi ed
computer personnel had in recent years pushed up their salary levels far
faster (and in many cases higher) than those of other professionals and
managers. In 1965 the ADP (Automatic Data Processing, Inc.) newsletter
predicted average salary increases in data processing in the range of 40
to 50 percent over the next fi ve years. 36 Programming professionals had
a “ personal monopoly ” that “ manifests itself in the market place, ” which
provided them with considerable opportunities for horizontal mobility,
either in pursuit of higher salaries or more challenging positions. 37 Simply
maintaining existing programming staff levels proved a real trial for
personnel managers. 38 One large employer experienced a sustained
turnover rate of 10 percent per month . 39 For entry-level programmers
whose marketability increased rapidly the turnover rate was a high as
100 percent, one personnel manager estimated, which further exacer-
bated the problem of training and recruitment. 40 Who was willing to
train programmers only to see them leverage that investment into a
higher salary elsewhere? The problem of “ body snatching ” of computer
personnel by search fi rms and other personnel consultants became so bad
that AFIPS banned recruiters from the annual Joint Computer
Conferences. 41 This simply shifted the action to nearby bars and hotel
rooms, where headhunters would slip blanket job offers under every
door.

 But although the rising cost of software and software personnel was
certainly a factor in the perceived applications crisis of the late 1960s,
this was more than simply a recapitulation of the personnel problems of
the previous decade. Then it had been largely accepted that the work

146 Chapter 6

that the computer specialists did was valuable enough to deserve special
consideration. It might be a problem for the industry that good computer
programmers and systems analysts were hard to fi nd and develop, but
this was because software development was inherently diffi cult. The
solutions proposed to this problem generally involved elevating the com-
puter personnel: developing better tools for screening potential program-
mer trainees, establishing programs for computer science education and
fundamental research, and encouraging programmers to professionalize.
Even the development of new automatic programming systems such as
FORTRAN and COBOL, although originally intended to eliminate the
need for skilled programmers altogether, had the unintended effect of
elevating their status. For those interested in advancing the academic
status of computer science, the design of programming languages pro-
vided an ideal forum for exploring the theoretical aspects of their disci-
pline. More practical-minded programmers saw programming languages
as a means of eliminating the more onerous and error-prone aspects of
software development. By eliminating much of the tedium associated
with low-level machine coding, they allowed programmers to focus less
on technical minutia and more on high-status activities such as design
and analysis. In any case, the organizational confl icts that defi ne the
applications crisis of the late 1960s were rarely mentioned in the fi rst
decade or so of commercial computing. As late as 1963 a survey of pro-
grammers found that the majority (59 percent) reported that the general
attitude toward them and their work was positive. 42

 What is novel and signifi cant about the applications crisis of the late
1960s is that it marked a fundamental change in attitude toward com-
puter personnel. This change was refl ected in both the increasingly dis-
missive language used by corporate managers to refer to their computer
personnel — not only did the formerly affectionate computer boys acquire
a new, patronizing edge but even less fl attering titles appeared, such as
 “ the new theocracy, ” “ prima donnas, ” and “ industrial carpetbaggers ” —
 and also the solutions that were proposed to the now seemingly perpetual
crisis in software development. 43 It was in this period that the rhetoric
of crisis became fi rmly established in the industry literature. But more
important, it was during this time that the emerging crisis became defi ned
as fundamentally managerial in nature. Many of the technological, man-
agerial, and economic woes of the software industry became wrapped
up in the problem of programmer management. Indeed, as will be
described in a subsequent chapter, many of the most signifi cant innova-
tions in software engineering to be developed in the immediate NATO

The Cosa Nostra of the Data Processing Industry 147

conference era were as much managerial innovations as they were tech-
nological or professional ones.

 By reconstructing the emerging software crisis as a problem of man-
agement technique rather than technological innovation, advocates of
these new management-oriented approaches also relocated the focus of
its solution, removing it from the domain of the computer specialist and
placing it fi rmly in the hands of traditional managers. Programmers and
systems analysts, it was argued, “ may be superbly equipped, technically
speaking, to respond to management ’ s expectations, ” but they are
 “ seldom strategically placed (or managerially trained) — to fully assess
the economics of operations or to judge operational feasibility. ” 44 By
representing programmers as shortsighted, self-serving technicians, man-
agers reinforced the notion that they were ill equipped to handle the big
picture, mission-critical responsibilities. After all, according to the
McKinsey report, “ only managers can manage the computer in the best
interests of the business. ” 45 And not just any managers would do: only
those managers who had traditional business training and experience
were acceptable, since “ managers promoted from the programming and
analysis ranks are singularly ill-adapted for management. ” 46 It would be
this struggle for organizational authority and managerial control that
would come to dominate later discussions about the nature and causes
of the software crisis.

 Seat-of-the-Pants Management

 Computer specialists had always posed something of a conundrum for
managers. The expectation that they would quietly occupy the same
position in the organizational hierarchy as the earlier generation of data
processing personnel was quickly proven unrealistic. Unlike a tabulating
machine, the electronic computer was a large, expensive technology that
required a high level of technical competence to operate effectively. The
decision to purchase a computer had to be made at the highest levels of
the organization. But although the high-tech character of electronic
computing appealed to upper management, few executives had any idea
how to integrate this novel technology effectively into their existing
social, political, and technological networks. Many of them granted their
computer specialists an unprecedented degree of independence and
authority.

 Even the lowest ranking of these specialists possessed an unusual
degree of autonomy. To be sure, the occupations of machine technician

148 Chapter 6

and keypunch operators remained relatively unskilled and, to a certain
degree, feminized. Yet the largest and fastest-growing segment of this
population, the computer programmers, were increasingly being recog-
nized as being valuable — perhaps even irreplaceable — corporate employ-
ees. This was certainly true of the fi rst generation of programmers, whose
idiosyncratic techniques for coaxing maximum performance out of prim-
itive equipment were absolutely indispensable. The fact that the tech-
nology of computing was changing so rapidly in this period further
complicated the ability of even data processing managers — who generally
lacked practical programming experience — to understand and supervise
the activities of programmers. The “ best practice ” guidelines that applied
to one particular generation of equipment were quickly superseded by a
different set of techniques and methodologies. 47 Even as the technology
of computing stabilized over the course of the early 1950s, though, pro-
grammers maintained their position of central importance. Perhaps even
more crucial, programming acquired a reputation for being a uniquely
creative endeavor, one relatively immune from traditional managerial
controls. The discovery (allegedly) of great disparities between program-
mers reinforced the conventional wisdom that good programmers were
born, not made. One widely cited IBM study determined that code pro-
duced by a truly excellent programmer was twenty-six times more effi -
cient than that produced by their merely average colleagues. 48 Despite
the serious methodological fl aws that compromised this particular study
(including a sample population of only twelve individuals), the twenty-
six to one performance ratio quickly became part of the standard lore
of the industry. The implication was that talented programmers were
effectively irreplaceable. “ The vast range of programmer performance
indicated earlier may mean that it is diffi cult to obtain better size-
performance software using machine code written by an army of pro-
grammers of lesser than average caliber, ” argued Dr. Edward E. David
of Bell Telephone Laboratories. 49 All of this suggested that “ the major
managerial task ” was fi nding — and keeping — “ the right people ” : “ with
the right people, all problems vanish. ” 50

 The idea that computer programmers possessed an innate and inar-
ticulable skill was soon embodied in the hiring practices of the industry,
which selected programmers on the basis of aptitude tests and personal-
ity profi les that emphasized mathematical ability and logical thinking
over business knowledge or managerial savvy. In fact, many of these
early selection mechanisms seemed to pick traits that were entirely
opposed to traditional corporate virtues. “ Look for those who like

The Cosa Nostra of the Data Processing Industry 149

intellectual challenge rather than interpersonal relations or managerial
decision-making. … Do not consider the impulsive, the glad hander, or
the ‘ operator. ’ ” 51 The one personality characteristic of programmers that
appeared to be universally recognized was their “ disinterest in people. ”
According to an infl uential study by the SDC personnel psychologists
Dallis Perry and William Cannon, compared with other corporate
employees, “ programmers dislike activities involving close personal
interaction. They prefer to work with things rather than people. ” 52
Whether this lack of sociability was an inherent trait of talented pro-
grammers, a refl ection of self-selection within the profession, or an
undeserved stereotype is largely irrelevant: the point is that the percep-
tion that programmers were “ diffi cult ” was widespread in the industry.
As the management consultant Richard Brandon described it, the average
programmer was “ often egocentric, slightly neurotic, and he borders
upon a limited schizophrenia. ” As a group, programmers could be singled
out in any corporation by their higher incidence of “ beards, sandals,
and other symptoms of rugged individualism or nonconformity. ” 53
Programmers were hardly a group that seemed destined to get along well
with traditional managers.

 There is some truth to the perception that the “ longest-haired com-
puter theorists ” were seen as corporate outsiders. 54 Leaving aside the fact
that apparently enough working programmers took their artistic persona
seriously enough to fl aunt corporate conventions of dress and appear-
ance, the need to keep expensive computers running as continuously as
possible meant that many programmers worked nonstandard hours.
During the day the machine operators had privileged access to the
machines, so programmers frequently worked at night and were there-
fore not always available during traditional business hours. The need to
work nights appeared to have a particular problem for female program-
mers, who were frequently barred by company policy from being on the
premises during the off-hours. 55 Combined with their sometimes slovenly
appearance, this practice of keeping odd hours suggested to more con-
ventional employees that programmers considered themselves superior.
The direct supervisors of computer personnel might have understood the
underlying reasons for these apparent eccentricities, but the majority of
managers did not. The fact that data processing was seen as a service
department within the larger organization also did nothing to help ingra-
tiate programmers to their colleagues. Whereas most other employees
saw themselves as part of a collective endeavor to make things or provide
services, service staffs were seen as a necessary though nonproductive

150 Chapter 6

second-class citizens. They were essentially just an overhead cost, like
heat or electricity.

 But despite this latent, low-level corporate resentment of computer
specialists, there were few overt expressions of outright hostility. The
general consensus through the mid-1960s seemed to be that computer
programming was somehow an “ exceptional ” activity, unconstrained by
the standard organizational hierarchy and controls. “ Generating soft-
ware is ‘ brain business, ’ often an agonizingly diffi cult intellectual effort, ”
argued one article in Fortune magazine in 1967. “ It is not yet a science,
but an art that lacks standards, defi nitions, agreement on theories and
approaches. ” 56 The anecdotal evidence seemed to indicate that “ the past
management techniques so successful in other disciplines do not work in
programming development. . . . Nothing works except a fl ying-by-the-

 Figure 6.1
 Datamation cartoon, 1963.

The Cosa Nostra of the Data Processing Industry 151

seat-of-the-pants approach. ” 57 The general consensus was that computer
programming was “ the kind of work that is called creative [and] creative
work just cannot be managed. ” 58

 The word creative and its various analogs have frequently been used
to describe the work of computer specialists — and computer program-
mers in particular — most often in the context of discussions about their
alleged unmanageability. But what did it mean to do creative work in
the corporate context? Surely computer programming is not the only
white-collar occupation that requires skill, ingenuity, and imagination?
And why did the supposed creativity of programmers suddenly, in a
relatively short period in the late 1960s, become a major professional
liability rather than the asset it had been just a few years earlier?

 The earliest and most obvious references to programmer creativity
appear in discussions of the black art of programming in the 1950s. For
the most part these references are disparaging, referring to the arcane and
idiosyncratic techniques as well as mysterious — and quite possibly chime-
rical — genius of individual programmers. John Backus, for example, had
no use for such expressions of programmer creativity. 59 Yet for many
others the idea of the programmer as artist was compelling and captured
useful truths. When Frederick Brooks described the programmer as a
poet, building “ castles in the air, from air, creating by exertion of the
imagination, ” he meant the metaphor to be taken seriously. 60 The noted
computer scientist Donald Knuth also frequently portrayed programming
as a legitimate literary genre, and went so far as to suggest that it “ is best
regarded as the process of creating literature, which are meant to be
read. ” 61 Although references to programming as an creative activity in
this artistic sense pervade the technical and popular literature on comput-
ing, and play an important role in defi ning the programming community ’ s
self-identity from the 1950s to the present, this is not the sense in which
programming was considered creative by most corporate managers. 62

 The meaning of creativity most often mobilized in the corporate
context was intended to differentiate the mechanical tasks associated
with programming — the coding of machine instructions, for example —
 from the more intellectual activities associated with design and analysis.
As was described in chapter 2, early attempts to defi ne programming in
terms of coding did not long survive their infancy. Translating even the
simplest and most well-defi ned algorithm into the limited set of instruc-
tions understood by a computer turned out to require a great deal of
human ingenuity. This is one expression of programmer creativity. But
more important, the process of constructing the algorithm in the fi rst

152 Chapter 6

place turned out to be even more challenging. Even the most basic human
cognitive processes are surprisingly diffi cult to reduce to a series of dis-
crete and unambiguous activities. The skills required to do so were not
just technical but also social and organizational. In order to computerize
a payroll system, for instance, an applications developer had to interview
everyone currently involved in the payroll process, comprehend and
document their contributions to the process in explicit detail — not failing
to account for exceptional cases and infrequent variations to normal
procedures — and then translate these complex activities fi rst into a form
that other programmers could understand and eventually into the precise
commands required by the computer. Since the payroll department did
not operate in isolation, it had to work with other departments to coor-
dinate activities, standardize the required inputs and outputs to the pro-
cedures, and negotiate points of confl ict and contention. It also had to
produce documentation, train users, arrange testing and verifi cation
procedures, and manage the logistics of implementation and rollout. All
of this had to happen without a major interruption of service, since
missing a payroll cycle would make everyone in the company extremely
unhappy. These were all of the activities associated with the broad term
software development. It is not hard to see why such development
required creativity, or also why such expressions of creativity could be
perceived as threatening. As Carl Reynolds of the Computer Usage
Corporation described the situation, “ There ’ s a tremendous gap between
what the programmers do and what the managers want, and they can ’ t
express these things to each other. ” 63

 In many companies, the various activities associated with software
development were split among several categories of computer personnel.
The primary division was between programmers and systems analysts.
The systems analysts were charged with the more organizational and
design-related activities, and programmers with the more technical
elements. But although many companies maintained seemingly rigid
hierarchies of occupational categories — junior programmer, senior pro-
grammer, systems analyst, and senior systems analyst — in practice these
neat divisions of labor quickly broke down. 64 In any case, to the rest of
the corporation, both groups were generally referred to as programmers.
Computer programming, broadly defi ned to include the entire range of
activities associated with designing, producing, and maintaining hetero-
geneous software systems, remained an activity with ambiguous bound-
aries, a combination of technical, intellectual, and organizational

The Cosa Nostra of the Data Processing Industry 153

expertise that increasingly brought programmers into confl ict with other
white-collar employees.

 The fi rst glimpse of this potential can be seen in a Price Waterhouse
report from 1959 called Business Experience with Electronic Computers .
The report was the fi rst book-length, comprehensive, publicly available
study of corporate computing efforts, and appears to have been made
widely available. In it, a group of Price Waterhouse consultants con-
cludes that the secret to success in computing was the availability of
high-quality programming, and confi rmed the conventional wisdom that
 “ high quality individuals ” were the “ key to top grade programming. ”
Why? Because “ to ‘ teach ’ the equipment, as is amply evident from expe-
rience to date, requires considerable skill, ingenuity, perseverance, orga-
nizing ability, etc. The human element is crucial in programming. ” In
emphasizing the “ considerable skill, ingenuity, perseverance, [and] orga-
nizing ability ” required of programmers, the study deliberately confl ated
the roles of programmer and analyst. In fact, its authors suggested, “ the
term ‘ programmer ’ . . . is unfortunate since it seems to indicate that the
work is largely machine oriented when this is not at all the case.
. . . [T]raining in systems analysis and design is as important to a pro-
grammer as training in machine coding techniques; it may well become
increasingly important as systems get more complex and coding becomes
more automatic. ” Perhaps even more signifi cantly, the study blurred the
boundary between business experience and technical expertise. If any-
thing, it privileged the technical, since “ a knowledge of business opera-
tions can usually be obtained by an adequate expenditure of time and
effort, ” whereas “ innate ability . . . seems to have a great deal to do with
a man ’ s capacity to perform effectively in . . . systems design. ” 65

 Management, Information, and Systems

 As software projects expanded in scope to encompass not only tradi-
tional data processing applications (payroll, for example) but also man-
agement and control, computer personnel began to encroach on the
domains of operational managers. The changing role of the computer in
corporate management and the rising power of EDP professionals did
not go unnoticed by other midlevel managers. As early as 1959, observ-
ers were noting a sense of “ disenchantment ” on the part of many manag-
ers. Overambitious computerization efforts had “ placed stresses on
established organizational relationships, ” and demanded skills “ not

154 Chapter 6

provided by the previous experience of people assigned to the task. ” 66
The increasing inclusion of computer personnel as active participants in
all phases of software development, from design to implementation,
brought them into increasing contact — and confl ict — with other corpo-
rate employees.

 The situation was complicated by the publication in 1958 of an article
in the Harvard Business Review titled “ Management in the 1980s, ” in
which Howard Leavitt and Thomas Whisler predicted a coming revolu-
tion in U.S. business management. Driven by the emergence of what they
called “ information technology, ” this revolution would radically reshape
the landscape of the modern corporation, completely reversing the recent
trend toward participative management, recentralizing power in the
hands of a few top executives, and utterly decimating the ranks of middle
management. And although “ major resistance ” could be expected during
the process of transforming “ relatively autonomous and unprogrammed
middle-management jobs ” into “ highly routinized programs, ” the bene-
fi ts offered to top-level executives meant that an information technology
revolution would be inevitable. 67

 The central premise of Leavitt and Whisler ’ s vision was that informa-
tion technology — which they described as a heterogeneous system com-
prised of the electronic computer, operations research techniques, and
sophisticated decision-support software — would largely eliminate the
need for autonomous middle managers. Jobs that had previously required
the discernment and experience of skilled managers would be replaced
by scientifi cally “ programmed ” systems and procedures. “ Just as plan-
ning was taken from the hourly worker and given to the industrial engi-
neer, ” so too would it be taken from the operational managers.
Information technology allowed “ the top to control the middle just as
Taylorism allowed the middle to control the bottom. ” The top would
increasingly include what Leavitt and Whisler called a “ programmer
elite. ” And although the programmer being referred to here was obvi-
ously a logistical or mathematical planner rather than a computer pro-
grammer, it was also clear that this new elite would be intimately familiar
with computer technology and software design. 68

 Although “ Management in the 1980s ” is most generally cited for its
role in introducing the term information technology, it is best understood
in the context of a more general shift in management practices in the
decades after the Second World War. The war had produced a series of
 “ managerial sciences ” — including operations research, game theory, and
systems analysis — all of which promised a more mathematical and tech-

The Cosa Nostra of the Data Processing Industry 155

nologically oriented approach to business management. As Philip
Mirowski and others have suggested, these nascent “ cyborg ” sciences
were deeply connected to the emerging technology of electronic comput-
ing. 69 Not only did many of these new techniques require a signifi cant
amount of computing power in and of themselves but they relied on the
electronic computer as a central metaphor for understanding the nature
of the modern bureaucratic organization. 70 Many of the most visionary
proposals for the use of the electronic computer in management fre-
quently rode into the corporation on the back of this new breed of expert
consultants.

 Foremost among these new computer radicals was Herbert Simon,
who in 1949 helped found the Carnegie-Mellon University ’ s Graduate
School of Industrial Administration (and who in 1978 was awarded a
Nobel Prize for his work on the economics of rational decision making).
In his book The New Science of Management in 1960, Simon outlined
his version of a machine-aided system of organizational management.
An early pioneer in the fi eld of artifi cial intelligence, Simon had no
doubts about the ability of the electronic computer to transform organi-
zations; as a result of advances in decision-support software, Simon
argued, technologically sophisticated fi rms were “ acquiring the technical
capacity to replace humans with computers in a rapidly widening range
of ‘ thinking ’ and ‘ deciding ’ tasks. ” Within twenty-fi ve years, he pre-
dicted, fi rms will “ have the technical capability of substituting machines
for any and all human functions in organizations. ” Interestingly enough,
Simon did not believe that this radical new use of the computer would
lead to the creation of a computing elite but rather that improvements
in artifi cial intelligence would lead to the elimination of the computer
specialist altogether. 71

 The idea that “ thinking machines ” would soon replace expert com-
puter programmers was not widely shared outside the artifi cial intelli-
gence community, however. More common was the notion that the need
for such decision makers could be made redundant by the development
of an integrated management system that would feed information directly
to high-level executives, bypassing middle managers completely. John
Diebold described one version of such a system in an article in the
 Harvard Business Review in 1964. When Diebold had introduced the
concept of “ automation ” more than a decade earlier, he had confi ned
the use of automatic control systems to traditional manufacturing and
production processes. But his article proposed a “ bolder, more innova-
tive ” approach to automatic data processing (ADP) that blurred the

156 Chapter 6

boundaries between factory fl oor and offi ce space. Calling ADP the “ still-
sleeping giant ” of modern corporate management, Diebold described, in
vividly organic terms, a single information system that would “ feed ” an
entire business. This system would be “ the arteries through which will
fl ow the life stream of the business: market intelligence, control informa-
tion, strategy decisions, feedback for change. ” Gradually, the system
would grow to encompass and absorb the entire organization. And after
that, suggested Diebold, “ management would never be the same. ” 72

 The monolithic information system portrayed by Diebold became the
management enthusiasm of the 1960s, variously referred to in the litera-
ture as the “ total systems concept, ” “ management system, ” “ totally inte-
grated management information system, ” and most frequently, MIS. As
Thomas Haigh has convincingly demonstrated, during the decade of the
1960s “ a very broad defi nition of MIS spread rapidly and was endorsed
by industrial corporations, consultants, academic researchers, manage-
ment writers, and computer manufacturers. ” 73 Although important dif-
ferences existed between the specifi c versions of MIS presented by these
various champions, in general they shared several key characteristics: the
assumption that information was a critical corporate and managerial
asset; a general enthusiasm for the electronic computer and its ability to
centralize managerial information; and the clear implication that such
centralization would come at the expense of middle managers.

 A New Theocracy — or Industrial Carpetbaggers?

 Although the dream of the total management system never really came
to fruition, the shift of power from operational managers to computer
specialists did seem to occur in at least some organizations. In a follow-
up to “ Management in the 1980s ” in 1967 titled “ The Impact of
Information Technology on Organizational Control, ” Thomas Whisler
reiterated his view that information technology “ tends to shift and
scramble the power structure of organizations. . . . The decision to locate
computer responsibility in a specifi c part of an organization has strong
implications for the relative authority and control that segment will
subsequently achieve. ” It seemed unlikely, he argued, that anyone “ can
continue to hold title to the computer without assuming and using the
effective power it confers. ” He cited one insurance executive as saying
that “ there has actually been a lateral shift to the EDP manager of deci-
sion-making from other department managers whose departments have
been computerized. ” Whisler also quoted another manager at length who

The Cosa Nostra of the Data Processing Industry 157

was concerned about the relative decline of managerial competence in
relation to computer expertise: “ The supervisor . . . has been replaced as
the person with superior technical knowledge to whom the subordinates
can turn for help. This aspect of supervision has been transferred, at least
temporarily, to the EDP manager and programmers or systems designers
involved with the programming. . . . [U]nderneath, the forward planning
function of almost all department managers has transferred to the EDP
manager. ” 74

 Whisler was hardly alone in his assessment of the role of computing
personnel in organizational power shifts.

 In 1962 the Harvard Business Review warned against “ computer
people … attempting to assume the role of high priests to the [electronic
brain], ” who would “ ignore all the people with operating experience and
concern themselves with looking for a place to apply some new trick
technique. ” 75 A 1964 article in U.S. News and World Report asked if
the computer was “ running wild ” within the corporation, and quoted
one expert as saying that the “ computer craze ” would end as a “ night-
mare ” for executives. 76 In 1965, Robert McFarland warned of an “ elec-
tronic power grab ” in which computer specialists were “ stealing ”
decision-making authority from top executives: “ Control of data pro-
cessing activities can mean control of the fi rm — without the knowledge
of top management. ” 77 A textbook for managers from 1969 complained
that “ all too often management adopts an attitude of blind faith (or at
least hope) toward decisions of programmers. ” 78 In her book How
Computers Affect Management from 1971, Rosemary Stewart described
how computer specialists mobilized the mystery of their technology to
 “ impinge directly on a manager ’ s job and be a threat to his security or
status. ” 79 The adoption of computer technology threatened to bring
about a revolution in organizational structure that carried with it tangi-
ble implications for the authority of managers: “ What has not been
predicted, to any large degree, is the extent to which political power
would be obtained by this EDP group. Top management has helped . . . by
not doing their job and controlling computer systems. ” 80 The frequent
association of computer boys with external consultants only compounded
the resentment of regular employees.

 There is no doubt that by the end of the decade, traditional corporate
managers were extremely aware of the potential threat to their occupa-
tional territory posed by the rise of computer professionals. Thomas
Alexander, in his Fortune article in 1969, noted a growing cultural clash
between programmers and managers: “ Managers . . . are typically older

158 Chapter 6

and tend to regard computer people either as mere technicians or as
threats to their position and status — in either case they resist their pres-
ence in the halls of power. ” 81 In that same year, Michael Rose, in his
 Computers, Managers, and Society , suggested that local departmental
managers

 obviously tend to resist the change. For a start, it threatens to transform the
concern as they know and like it. . . . At the same time the local ’ s unfamiliarity
with and suspicion of theoretical notions leave him ill-equipped to appreciate
the rationale and benefi ts of computerization. It all sounds like dangerously
far-fetched nonsense divorced from the working world as he understands it.
He is hardly likely to hit it off with the computer experts who arrive to
procure the organizational transformation. Genuine skepticism of the relevance
of the machine, reinforced by emotional factors, will drive him towards
non-cooperation. 82

 It is not diffi cult to understand why many managers came to fear and
dislike computer programmers and other software specialists. In addition
to the usual suspicion with which established professionals generally
regarded unsolicited changes in the status quo, managers had particular
reasons to resent EDP departments. The unprecedented degree of auton-
omy that corporate executives granted to computer people seemed a
deliberate affront to the local authority of departmental managers. The
 “ inability or unwillingness of top management to clearly defi ne the objec-
tives of the computer department and how it will be utilized to the benefi t
of the rest of the organization ” lead many operational managers to
 “ expect the worst and, therefore, begin to react defensively to the possi-
bility of change ” 83 In the eyes of many nontechnical managers, the per-
sonnel most closely identifi ed with the digital computer “ have been the
most arrogant in their willful disregard of the nature of the manager ’ s
job. These technicians have clothed themselves in the garb of the arcane
wherever they could do so, thus alienating those whom they would
serve. ” 84

 The Revolt of the Managers

 In response to this perceived challenge to their authority, managers
developed a number of interrelated responses intended to restore them
to their proper role in the organizational hierarchy.

 The fi rst was to defi ne programming as an activity, and by defi nition
programmers as professionals, in such a way as to assign it and them a
subordinate role as mere technicians or service staff workers. As
the sociologists Haroun Jamous and Bernard Peloille argued in their

The Cosa Nostra of the Data Processing Industry 159

groundbreaking study of the organizational politics of professional
development, this technique of reducing the contributions of competing
groups to the merely technical is a time-honored strategy for defending
occupational and professional boundaries. 85 We have already seen some
of the ways in which the rhetoric of management literature reinforced
the notion that computer specialists were self-interested, narrow techni-
cians rather than future-minded, bottom-line-oriented good corporate
citizens. “ People close to the machine can also lose perspective, ” main-
tained one computer programming “ textbook ” for managers. “ Some of
the most enthusiastic have an unfortunate knack of behaving as if the
computer were a toy. The term ‘ addictive ’ comes to mind. ” 86 Managers
emphasized the youthfulness and inexperience of most programmers.
The results of early aptitude tests and personality profi les — those that
emphasized their “ dislike for people ” and “ preference for . . . risky activ-
ities ” — were widely cited as examples of the “ immaturity ” of the com-
puter professions. In fact, one of the earliest and most widely cited
psychological profi les of programmers suggested that there was a nega-
tive correlation between programming ability and interpersonal skills. 87

 The perception that computer programmers were particularly antiso-
cial, that they “ preferred to work with things rather than people, ” rein-
forced the notion that programming was an inherently solitary activity,
ill suited to traditional forms of corporate organization and management.
The same qualities that had previously been thought essential indicators
of programming ability, such as creativity and a mild degree of personal
eccentricity, now began to be perceived as being merely unprofessional.
As part of their rhetorical construction of the applications crisis as a
problem of programmer management, corporate managers accused pro-
grammers of lacking professional standards and loyalties: “ Too fre-
quently these people [programmers], while exhibiting excellent technical
skills, are non-professional in every other aspect of their work. ” 88

 Another common strategy for deprecating computer professionals was
to challenge their technical monopoly directly. If working with comput-
ers was in fact not all that diffi cult, then dedicated programming staffs
were superfl uous. One of the alleged advantages of the COBOL pro-
gramming language usually touted in the literature was its ability to be
read and understood — and perhaps even written — by informed manag-
ers. 89 The combination of new programming technology and stricter
administrative controls promised to eliminate management ’ s dangerous
dependency on individual programmers: “ The problems of fi nding
personnel at a reasonable price, and the problem of control, are both

160 Chapter 6

solved by good standards. If you have a set of well-defi ned standards
you do not need clever programmers, nor must you fi nd yourself depend-
ing on them. ” 90 At the very least, managers could learn enough about
computers to avoid being duped by the “ garb of the arcane ” in which
many programmers frequently clothed themselves. 91 At West Point,
cadets were taught enough about computers to prevent them from “ being
at the mercy of computers and computer specialists. . . . [W]e want them
to be confi dent that they can properly control and supervise these potent
new tools and evaluate the signifi cance of results produced by them. ” 92

 In much of the management literature of this period, computer special-
ists were cast as self-interested peddlers of whizbang technologies. “ In
all too many cases the data processing technician does not really under-
stand the problems of management and is merely looking for the applica-
tion of his specialty. ” 93 In the words of one Fortune 500 data processing
executive, “ They [EDP personnel] don ’ t exercise enough initiative in
identifying problems and designing solutions for them. . . . They are
impatient with my lack of knowledge of their tools, techniques, and
methodology — their mystique; and sometimes their impatience settles
into arrogance. . . . In sum, these technologists just don ’ t seem to under-
stand what I need to make decisions. ” 94 The book New Power for
Management emphasized the myopic perspective of programmers: “ For
instance, a technician ’ s dream may be a sophisticated computerized
accounting system; but in practice such a system may well make no major
contribution to profi t. ” 95 Others attributed to them even more
Machiavellian motives: “ More often than not the systems designer
approaches the user with a predisposition to utilize the latest equipment
or software technology — for his resume — rather than the real benefi t for
the user. ” 96

 Experienced managers stressed the critical differences between “ real-
world problems ” and “ EDP ’ s version of real-world problem. ” 97 The
assumptions about programmers embedded in many of these accounts —
 that they were narrowly technical, inexperienced, and “ poorly qualifi ed
to set the course of corporate computer effort ” — resonated with many
corporate managers. 98 The accounts provided a convenient explanation
for the burgeoning software crisis. Managers had in effect “ abdicated
their responsibility and let the ‘ computer boys ’ take over. ” 99 The fault
was not entirely the manager ’ s own, though. Calling electronic data
processing “ the biggest rip-off that has been perpetrated on business,
industry, and government over the past 20 years, ” one author suggested
that business executives have been actively prevented “ from really bearing

The Cosa Nostra of the Data Processing Industry 161

down on this situation by the self-proclaimed cloak of sophistication and
mystique which falsely claims immunity from normal management
methods. They are still being held at bay by the computer people ’ s major
weapon — the snow job. ” 100 Computer department staffs, although “ they
may be superbly equipped, technically speaking, to respond to manage-
ment ’ s expectations, ” are “ seldom strategically placed (or managerially
trained) — to fully assess the economics of operations or to judge opera-
tional feasibility. ” 101 Only the restorations of the proper balance between
computer personnel and managers could save the software projects from
a descent into “ unprogrammed and devastating chaos. ” 102

 The Road to Garmisch

 In the late 1960s, new perspectives on the problem of programmer man-
agement began to appear in the industry literature. “ There is a vast
amount of evidence to indicate that writing — a large part of program-
ming is writing after all, albeit in a special language for a very restricted
audience — can be planned, scheduled and controlled, nearly all of which
has been fl agrantly ignored by both programmers and their managers, ”
argued Robert Gordon in 1968 in a review of contemporary software
development practices. 103 Although it was admittedly true “ that pro-
gramming a computer is more an art than a science, that in some of its
aspects it is a creative process, ” this new perspective on software man-
agement suggested that “ as a matter of fact, a modicum of intelligent
effort can provide a very satisfactory degree of control. ” 104

 It was the NATO Conference on Software Engineering in 1968 that
irrevocably established software management as one of the central rhe-
torical cornerstones of all future debates about the nature and causes of
the software crisis. In the fall of that year, as mentioned earlier, a diverse
group of infl uential computer scientists, corporate managers, and mili-
tary offi cials gathered in Garmisch, Germany, to discuss their growing
concern that the production of software had become “ a scare item for
management . . . an unprofi table morass, costly and unending. ” The
solution to the budding software crisis, the conference organizers claimed,
was for computer programmers to embrace an industrialized software
engineering approach to development. By defi ning the software crisis in
terms of the discipline of software engineering, the NATO conference
set an agenda that infl uenced many of the technological, managerial, and
professional developments in commercial computing for the next several
decades.

 7

 In the development of professional standards, the computer fi eld must be unre-
lenting in advocating stringent requirements for professional status, whether
these include education, experience, examination, character tests, or what not.

 — Charles M. Sidlo, “ The Making of a Profession, ” 1961

 Too frequently these people [programmers], while exhibiting excellent technical
skills, are non-professional in every other aspect of their work.

 — Malcolm Gotterer, “ The Impact of Professionalization Efforts on the Computer
Manager, ” 1971

 The Certifi ed Public Programmer

 In 1962, the editors of the electronic data processing journal Datamation
proposed what they believed would be the solution to the “ many prob-
lems ” that were “ embarrassingly prominent ” in the nascent commercial
computing industry. The majority of these problems, they argued, were
caused by the lack of “ professional competency ” among programming
personnel. The recent explosive growth in commercial computing had
brought with it a “ mounting tide of inexperienced programmers, new-
born consultants, and the untutored outer circle of controllers and
accountants all assuming greater technical responsibility. ” Few of these
so-called computer experts were well qualifi ed or experienced, and the
result was the crisis of confi dence that was plaguing the industry. The
solution to this crisis, contended the Datamation editors, was the estab-
lishment of a new breed of technical professional: the certifi ed public
programmer. 1

 By defi ning clear standards of professional competency, an indus-
try-wide certifi cation program would serve several important purposes
for the programming profession. First, it would establish a shared
body of abstract occupational knowledge — a “ hard core of mutual

 The Professionalization of Programming

164 Chapter 7

understanding ” — common across the entire professional community.
Second, it would help elevate the public reputation of computer person-
nel from its current stature of “ cautious bewilderment and misinterpreta-
tion, ” to “ at least, confused respect. ” Finally, and perhaps most
signifi cantly, it would enable computer professionals to erect entry bar-
riers to their increasingly contested occupational territory: the fl ood of
amateur programmers — “ the industry ’ s widely publicized upcoming
incompetents ” as the Datamation editorial dismissively referred to
them — “ would fi nd their accession to fi nancial stardom impeded by the
need for specifi c qualifi cation such as the passing of a reasonable test of
competency. ” 2 In fact, in 1963 the DPMA ’ s executive director Calvin
Elliott named stamping out “ bogus ” data-processing schools as one of
his organization ’ s primary objectives. 3

 The Datamation call for the professionalization of programming coin-
cided neatly with the announcement by the National Machine Accountants
Association (NMAA) of its new CDP examination. The NMAA, which
would later that year rename itself the Data Processing Management
Association (DPMA), represented almost sixteen thousand data process-
ing workers in the United States and Canada. 4 The NMAA had been
working since 1960 to develop the CDP exam, which represented the
fi rst attempt by a professional association to establish rigorous standards
of professional accomplishment in the data processing fi eld. According
to the NMAA ’ s 1962 press release, the exam was intended to “ emphasize
a broad educational background as well as knowledge of the fi eld of data
processing, ” and represent “ a standard of knowledge for organizing,
analyzing and solving problems for which data processing equipment is
especially suitable. ” It was open to anyone, NMAA member or not, who
had completed a prescribed course of academic study, had at least three
years of direct work experience in punched card and/or computer instal-
lations, and had “ high character qualifi cations. ” The fi rst year that the
exam was offered, 1,048 applications took it — 687 successfully. 5

 Despite being widely criticized for being superfi cial and irrelevant to
real-world software development, the CDP clearly met a perceived need
within the computing community. In 1965, 6,951 individuals took the
CDP examination, and another 4,000 completed CDP refresher courses
conducted by local DPMA chapters. 6 A number of large employers,
including State Farm Insurance, the Prudential Insurance Company of
America, and the U.S. Army Corps of Engineers, extended offi cial rec-
ognition to the CDP program, and the city of Milwaukee used the CDP
as a means to assign pay grades to data processing personnel. 7 By the

The Professionalization of Programming 165

end of 1975, 31,351 candidates had taken the CDP and 15,115 had been
awarded the certifi cate. 8 Although it is diffi cult to fi nd accurate employ-
ment information for software workers in this period, estimates from the
Bureau of Labor indicate these 15,115 CDP recipients constituted
approximately 10 percent of the overall computing community.

 The CDP examinations represented just one step in the DPMA ’ s ambi-
tious “ Six Measures of Professionalism Program, ” which included not
only the development of standards of competence and codes of ethics
but also programs for public service, continuing education, and funda-
mental research. Of these six measures, only the CDP program achieved
even moderate industry acceptance. Nevertheless, simply by articulating
a clear professional agenda the DPMA claimed for itself a leadership role
in the computing community. Given the general lack of agreement about
what skills and educational background were appropriate for computing
personnel, the CDP program promised to guarantee at least a basic level
of competence. Employers viewed certifi cation as a tool for screening
potential employees, evaluating performance, and assuring uniform
product and quality. 9 Programmers saw it as an indication of profes-
sional status, a means of assuring job security and achieving promotions,
and an aid to fi nding and obtaining new positions. 10 The certifi cation of
practitioners was generally considered to be one of the characteristic
functions of any legitimate profession, and the professionalization of
programming was seen by many at this time as the solution to a growing
sense of crisis within the computing community. 11 The “ question of
professionalism, ” as it came to be known in the literature, would come
to form the basis for explicit discussions of the software crisis in the late
1960s.

 The growing discontent with a perceived lack of professionalism
among computing personnel was in part a legacy of the massive expan-
sion of the commercial computer industry over the course of the previous
decade. As the Datamation editorial suggests, one response to the per-
sonnel crisis of the 1950s had been an infl ux of new programmer trainees
and vocational school graduates into the software labor market. “ The
ranks of the computer world are being swelled by growing hordes of
programmers, systems analysts and related personnel, ” warned a report
in 1968 by the SIGCPR, and as a result “ educational, performance and
professional standards are virtually nonexistent. ” 12 And although com-
puter specialists in general were appreciative of the short-term benefi ts
of the ongoing personnel shortage in the computer industry — among
them, above-average salaries and plentiful opportunities for occupational

166 Chapter 7

mobility — many believed that a continued crisis threatened the long-term
stability and reputation of their industry and profession. “ There is a
tendency, ” observed a report by the SIGCPR, “ for programming to be
a ‘ dead-end ’ profession for many individuals, who, no matter how good
they are as programmers, will never make the transition into a supervi-
sory slot. And, in too many instances this is the only road to advance-
ment. ” 13 Many programmers worried about becoming obsolete and felt
pressure to constantly upgrade their technical skills. 14 Although starting
salaries were high and individual programmers were able to move with
relative ease horizontally throughout the industry, there were precious
few opportunities for vertical advancement. 15 Whereas technical special-
ists in traditional engineering disciplines were often able (and in fact
expected) to climb the corporate ladder into management positions, the
computer boys were usually denied this opportunity. 16

 Many of the job advertisements for programmers refl ected these con-
cerns about a lack of professional status and longevity. Employers prom-
ised new hires a potential career path that involved more than just mere
technical labor: “ Is your programming career in a closed loop? Create a
loop exit for yourself at [the Bendix Corporation]. ” 17 “ Working your
way toward obsolescence? At MITRE professional growth is limited only
by your ability. ” 18 “ At Xerox, we look at programmers . . . and see
managers. ” 19 But as contemporary studies of such “ dual ladder ” pro-
grams for technical workers in the computer fi elds revealed, program-
mers rarely had many opportunities for professional development. 20 It
was just not clear to many corporate employers how the skills — and
personality types — possessed by programmers would map onto the skills
required for management.

 Given their growing uncertainty about the future of their occupation,
it is not diffi cult to understand why programmers in the early 1960s were
so concerned with establishing themselves as recognized professionals.
Belonging to a profession provided an individual with a “ monopoly of
competence, ” or the control over a valuable skill that was readily trans-
ferable from organization to organization. 21 In more practical terms,
professionalism offered a means of excluding undesirables and competi-
tors from the labor market, thereby assuring at least basic standards of
quality and reliability as well providing a certain degree of protection
from the fl uctuations of the labor market. Programmers in particular saw
professionalism as means of distinguishing themselves from coders
or other “ mere technicians. ” Professionalism offered increased social

The Professionalization of Programming 167

 Figure 7.1
 Bendix Corporation advertisement, 1962.

168 Chapter 7

status, greater autonomy, improved opportunities for advancement, and
better pay. 22

 The professionalization efforts of programmers were generally encour-
aged by their corporate employers. An increasing number of corporate
managers were beginning to blame their growing dissatisfaction with the
rising costs of software development on the lack of professionalism on
the part of programmers. Professionalism, or at least a certain form of
corporate-friendly professionalism, was represented by managers as a
means of reducing corporate dependence on the whims of individual
programmers. 23 It was also thought that professionalism might solve a
number of other pressing management problems: it might motivate staff
members to improve their capabilities; it could bring about more com-
monality of approaches; it could be used for hiring, promotions, and
raises; and it could help solve the perennial question, Who is qualifi ed? 24
 “ The concept of professionalism, ” argued one personnel research journal
from the early 1970s, “ affords a business-like answer to the existing and
future computer skills market ” by making computer personnel respon-
sible for policing their own disciplinary identity. 25 Professionalism
appeared to provide a familiar solution to the increasingly complex
problems of managing the relationship between business and technologi-
cal expertise.

 In response to these various motivations to professionalize, program-
mers in the late 1950s and early 1960s worked to establish the institu-
tional structures traditionally associated with the professions. These
included the development of an academic infrastructure for supporting
theoretical computer science research; support for industry-based certi-
fi cation and licensing programs; the establishment of professional societ-
ies and journals; the introduction of performance standards; and
professional codes of ethics. Many of these institutional structures devel-
oped rapidly and were established on a provisional basis by the end of
the 1950s.

 But the existence of professional institutions did not necessarily trans-
late readily into widely recognized professional status. 26 The early adop-
tion of the structures of professionalism, however, obscured the deep
intellectual and ideological schisms that existed within the programming
community. Although many practitioners agreed on the need for a pro-
gramming profession, they disagreed sharply about what such a profes-
sion should look like. What was the purpose of the profession? Who
should be allowed to participate? Who would control entry into the
profession, and how? What body of abstract knowledge would be used

The Professionalization of Programming 169

to support its claims to legitimacy? By the beginning of the 1960s, clearly
discernible factions had emerged within the fl edgling programming pro-
fession. Science- and engineering-oriented programmers worked to
develop a theoretical basis for their discipline. They joined associations
like the ACM that published academic-style journals, imposed strict
educational requirements for membership, and resisted certifi cation and
licensing programs. Business data processing personnel, on the other
hand, pursued a more practice-centered professional agenda. If they
joined any professional associations at all, it was the DPMA. They read
journals like Datamation , which emphasized plain speech and practical
relevance over theoretical rigor. The tension that existed between these
two groups of aspiring professionals — the academic computer scientists
and the business data processors — greatly infl uenced the character and
fortunes of the various professional institutions that each faction sup-
ported. Academic computer scientists struggled to establish a legitimate
and autonomous intellectual discipline based on a sound body of theo-
retical research. Systems analysts and business programmers worked to
improve their standing within the organizational hierarchy by distancing
themselves from computer operators and other so-called technicians.
Neither group was entirely successful.

 This chapter will focus on the attempts of programmers to establish
the institutional structures associated with professionalism, including
professional societies, certifi cation programs, educational standards, and
codes of ethics. It argues that the professionalization of computer pro-
gramming represented a potential solution to the looming software
crisis that appealed to programmers and employers alike. But it also
suggests that the controversy that surrounded the various professional
institutions that were established in this period reveals the deep divisions
that existed within the programming community about the nature of
programming skill and the future of the programming professions. Many
of the themes developed in previous chapters — the development of new
programming technologies or more “ effi cient ” management methodolo-
gies — are closely tied to questions of professional status. If skilled pro-
grammers could be replaced by automated development tools, for
example, or by more “ scientifi c ” management methodologies, then
they could hardly have much claim to professional legitimacy. The ques-
tion of what programming was — as an intellectual and occupational
activity — and where it fi t into traditional social, academic and profes-
sional hierarchies, was actively negotiated during the decades of
the 1950s and 1960s. Programmers were well aware of their tenuous

170 Chapter 7

professional position, and they struggled to prove that they possessed a
unique set of skills and training that allowed them to lay claim to profes-
sional autonomy.

 The Association for Computing Machinery

 On January 10, 1947, at the Symposium on Large-Scale Digital
Calculating Machinery at the Harvard Computation Laboratory,
Professor Samuel Caldwell of MIT proposed to a crowd of more than
three hundred the formation of a new association of those interested in
computing machinery. His proposal obviously landed on fertile soil:
within six months a “ Notice on the Organization of an Eastern
Association for Computing Machinery ” was circulating within the com-
puting community, and in September the fi rst meeting of the Eastern
Association for Computing Machinery was held at Columbia University.
Seventy-eight individuals attended. Offi cers were elected, and the
Executive Council was appointed. A second meeting, held in December
at the Aberdeen Proving Grounds in Aberdeen, Maryland, attracted three
hundred participants. The next year the organization dropped the word
Eastern from its title, and was thereafter known simply as the Association
for Computing Machinery (ACM).

 During the 1950s the ACM grew steadily but not spectacularly. By
1951 there were 1,113 members, including 43 in other countries; in 1956
the total had risen to 2,305, and by 1959 it had reached 5,254. In the
1960s, the membership grew somewhat more slowly, and there were a
few periods during which the total number of members actually decreased.
Overall, though, the ACM continued to expand at a rate of about 16
percent annually. By the end of 1969 there were 22,761 regular members.
 Figure 7.2 shows the annual membership statistics for the years 1947
to 1972.

 From its inception, the ACM styled itself as an academically oriented
organization. Many of the original members either were or had been
associated with a major university computation project, and most were
university educated, including a number at the graduate level. The focus
of the organization ’ s early activities was a series of national conferences,
the fi rst of which was cosponsored by the Institute for Numerical Analysis
at the University of California at Los Angeles. These meetings repre-
sented an outgrowth of an earlier series of university-sponsored confer-
ences, and they retained an academic fl avor. Many were low-budget
affairs held at universities or research institutions, and they frequently

The Professionalization of Programming 171

made use of dormitory facilities. The papers presented were usually
technical, and the proceedings were published. The ACM conferences
never acquired the trade show atmosphere that characterized other
national meetings. The National Computer Conference, which became
almost entirely commercial, for instance, resembled a trade show much
more than an academic conference. In fact, deliberate efforts were made
to distance the ACM from the infl uence of the commercial vendors,
particularly IBM. For many years the ACM resisted publishing its own
journal, possibly because “ some early ACM leaders saw the society as a
declaration of independence from IBM, and, by extension, from all com-
mercial considerations like the sale of publications and the solicitation
of advertising. ” 27 Until 1953, when it began publishing the Journal of
the ACM , the ACM exclusively supported the National Research
Council ’ s highly technical journal Mathematical Tables and Other Aids
to Computation . Even then, the primary contents of the Journal of the
ACM were theoretical papers, and the emphasis was on the dissemina-
tion of “ information about computing machinery in the best scientifi c

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

24,000

27,000

30,000

33,000

1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971

T
o

ta
l M

em
b

er
s

 Figure 7.2
 ACM members, 1947 – 1971.

172 Chapter 7

tradition. ” 28 Articles were peer-reviewed, and every attempt was made
to maintain rigorous academic standards.

 Throughout the 1950s and 1960s the ACM continued to cultivate its
relationship with the academic community. In 1954 it accepted an invita-
tion to apply for membership in the American Association for the
Advancement of Science. Since 1958 the ACM has been represented in
the Mathematical Sciences Division of the National Academy of Sciences
National Research Council. In 1962 it affi liated with the Conference
Board of the Mathematical Sciences, which also consisted of the American
Mathematical Society, the Mathematical Association of America, the
Society for Industrial and Applied Mathematics, and the Institute of
Mathematical Statistics. In 1966 the ACM established the prestigious
Turing Award, the highest honor awarded in computer science. Almost
half of the institutional members of the ACM were educational organiza-
tions, and after 1962 a thriving student membership program was
developed. 29

 The close association that the ACM maintained with the academic
computer scientist proved a mixed blessing, however. Although the
ACM was able to maintain a relatively high profi le within scientifi c
and mathematical circles, it was often castigated by the business com-
munity. Many business programmers looked on the ACM as “ a sort
of holier than thou academic intellectual sort of enterprise — not
inclined to be messing around with the garbage that comptrollers worry
about, ” and the ACM leadership was characterized as “ a bunch of guys
with their heads in the clouds worrying about Tchebysheff polynomials
and things like that. ” 30 “ These four-year computer science wonders are
infi nitely better equipped to design a new compiler than they are to
manage a software development project. We don ’ t need new compilers.
We need on-time, on-budget, software development. ” 31 A Datamation
article from 1963 titled “ The Cost of Professionalism ” warned that the
members of the ACM had to “ decide whether it ’ s worth that much to
belong to an organization which many feel has been dominated by — and
catered pretty much to — Ph.D. mathematicians. . . . [T]he Association
tends to look down its nose at business data processing types while
claiming to represent the whole, wide wonderful world of computing. ” 32
A Diebold Group publication from 1966 characterized the ACM as a
group “ whose interests are primarily academic and which is helpful to
those with scholastic backgrounds, theoreticians of methodology, scien-
tifi c programmers and software people. ” Although the ACM president

The Professionalization of Programming 173

immediately denied this depiction, calling it “ too narrow, ” the popular
perception that the ACM catered solely to academics was diffi cult to
counter. 33

 The ACM leadership was not entirely unaware of or unsympathetic
to the needs of the business programmers. In his unsuccessful bid in 1959
for the ACM presidency, Paul Armer urged the ACM membership to
 “ THINK BIG, ” to “ visualize ACM as the professional society unifying
 all computer users. ” 34 That same year, Herbert Grosch, an outspoken
proponent of a strong, American Medical Association – style professional
society (and later ACM president), roundly criticized the ACM for its
academic parochialism: “ Information processing is as broad as our
culture and as deep as interplanetary space. To allow narrow interests,
pioneering though they might have been, to preempt the name, to rele-
gate ninety percent of the fi eld to ‘ an exercise left to the reader, ’ would
be disastrous to the underlying unity of the new information sciences. ” 35
Several attempts were made during the next decade to make the ACM
more relevant to the business community. In response to widespread
criticism of the theoretical orientation of the Journal of the ACM , a new
publication, Communications of the ACM , was introduced in 1958. The
main contents of Communications were short articles, mostly unrefereed,
on technical subjects such as applications, techniques, and standards. 36
In 1966 the Executive Council announced a $45,000 professional devel-
opment program aimed at business data processing personnel. The
program included short “ skill upgrade ” seminars offered at the national
computer conferences, a traveling course series, and self-study materi-
als. 37 There was even talk, in the mid-1960s, of a potential merger with
the DPMA. In 1969, ACM president Bernard Galler announced a move
toward “ less formality, less science, and less academia. ” 38

 Despite these short-lived efforts to reconcile with the business com-
munity, however, the conservative ACM leadership continued to pursue
a largely academic agenda. As early as 1959 it was suggested that the
ACM should impose stringent academic standards on its members, and
in 1965 a four-year degree became a prerequisite for receiving full mem-
bership. Frequent battles arose over repeated attempts to change the
name of the association to something more broadly relevant. In 1965 a
proposal to change it to the Association for Computing and Information
Science was rejected; a decade later the same issue was still being
debated. 39 When Louis Fein suggested in 1967 that the ACM faced
a “ crisis of identity, ” ACM president Anthony Oettinger insisted

174 Chapter 7

vehemently that the ACM had no such crisis. In doing so, he reaffi rmed
the association ’ s commitment to a theoretical approach to computing:
 “ Our science must, indeed, ‘ maintain as its sole abstract purpose of
advancing truth and knowledge. ’ ” 40

 This commitment to abstract science was further reinforced the fol-
lowing year when the ACM ’ s C 3 S announced its Curriculum ‘ 68 guide-
lines for university computer science programs. Curriculum ‘ 68 advocated
a rigorously theoretically approach to computer science that included
little of interest to business practitioners. 41 Even when the ACM did
recognize the growing importance of business data processing to the
future of its discipline, the emphasis was always placed on research and
education:

 All of us, I am sure, have read non-ACM articles on business data processing
and found them lacking. They suffer, I believe, from one basic fault: They fail
to report fundamental research in the data processing fi eld. The question of
 ‘ fundamentalness ’ is all-important. . . . In summary, this letter is intended to urge
new emphasis on FUNDAMENTALISM in business data processing. This objec-
tive seems not only feasible but essential to me. It provides not only a technique
for getting ACM into the business data processing business, but a technique (the
same one) for getting the fi eld of business data processing on a fi rm theoretical
footing. 42

 There is little question that throughout the 1960s, the ACM pursued
a professionalization strategy that was heavily dependent on the author-
ity and legitimacy of its academic accomplishments.

 It was not until the 1970s that the ACM began to seriously reconsider
its policy toward business-oriented practitioners. In 1974 the ACM
Executive Council commissioned a series of studies on business program-
ming as part of its long-range planning report. In doing so, the ACM
was responding both to long-standing criticism and a recent spate of
anti-ACM editorials that had appeared in the industry newsletter
 Computerworld . “ ACM had become not so much an industry profes-
sional group, ” declared one of these editorials, “ as it was a home for
members of educational institutions around the country to overwhelm
us with their erudition on topics of vaguely moderate interest. ” 43 The
author noted that while most business data processing installations had
standardized on the COBOL and FORTRAN programming languages,
the ACM still supported ALGOL. He quoted ACM president Anthony
Ralston to the effect that although only 25 percent of the ACM member-
ship were academics, ten out of twenty-fi ve council members were
academics. 44

The Professionalization of Programming 175

 The long-range report noted that of the 320,000 software personnel
then working in the United States, 85 percent dealt with business data
processing. It admitted that while the ACM had a reputation for profes-
sionalism, “ BDP [business data processing] people tend to be turned off
by ACM ’ s academically oriented leadership. . . . BDP professionals feel
that academics don ’ t understand what BDP needs, and they ’ re right. ” 45
It concluded that any new ACM members were likely to come from
business data processing, and recommended the development of a new
publication aimed at that audience. The report signaled to many in the
ACM that the organization needed to broaden its membership and
become more accommodating. The next few years witnessed a bitterly
contested presidential election (the cornerstone of which was a debate
over business data processing), yet another attempt to change the name
of the ACM to something more broadly relevant, and efforts to reconcile
with its business-oriented competitor, the DPMA.

 The Data Processing Management Association

 The DPMA originated in 1949 as the NMAA. The NMAA was founded
as an association of accountants and tabulating machine managers. It
held its fi rst convention in 1952, and grew rapidly over the next decade.
By 1957 it represented more than ten thousand data processing workers
in the United States and Canada, and by 1962 more than sixteen
thousand.

 In 1962 the NMAA changed its name to the DPMA. This was in part
an attempt to expand its membership beyond fi nance and accounting
professionals, and in part a refl ection of the changing status of its disci-
pline within the corporate hierarchy. As Thomas Haigh has suggested,
punch card divisions at many large corporations had, by the beginning
of the 1950s, acquired new status as the providers of strategic business
information and other forms of valuable corporate data. The replace-
ment of tabulating machine technology with electronic computers created
a new role for data processors within the corporation; in fact, it was as
part of a shift toward electronic data processing that most corporations
invested in their fi rst electronic computing equipment. From its incep-
tion, therefore, the DPMA represented the largest professional associa-
tion of computing personnel.

 The establishment of the CDP program later that year was part of a
larger strategy of professional development. It was announced in con-
junction with the DPMA ’ s “ Six Measures of Professionalism ” program,

176 Chapter 7

which included as the “ marks of professionalism ” self-education, stan-
dard measures of knowledge, continuing research, a code of ethics,
and mechanisms for self-policing and disciplining practitioners. 46 The
DPMA ’ s many national conferences, local chapter programs and semi-
nars, and DPMA publications and home-study courses were all directed
toward the self-education of individual members. The CDP program was
obviously its provision for establishing a means of “ measuring a minimum
level of knowledge in the fi eld. ” DPMA graduate research grants encour-
aged contributions to the “ knowledge of the fi eld. ” The DPMA code of
ethics was part of its original charter, and was the fi rst of such codes to
be established for the computer-related professions. Finally, although the
DPMA had no existing mechanisms for determining and punishing mis-
conduct, it promised that the association would take a leading role in
the development of an industry policing program. Although the DPMA ’ s
original focus was on data processing supervisors, more than those of
any other aspiring professional organization its programs were aimed at
the broad computing community. Programmers and systems analysts
were clearly part of its imagined community of practitioners.

 Unlike the ACM, the DPMA made every effort to reach a broad
spectrum of data processing personnel. Although originally open only to
data processing supervisors, by 1964 the national leadership was making
determined attempts to cultivate programmers within its membership. 47
The structure of the organization, which included strong regional chap-
ters, allowed for diversity, local control, and rapid expansion. Each
region had its own representative on the Executive Council who served
with several executive offi cers and implemented policy decisions from
the International Board of Directors. In addition, the DPMA ’ s offi cial
publication, the Data Management Journal , encouraged submissions on
a much wider range of subjects than did the ACM ’ s Journal or
 Communications . The DPMA also maintained a close association with
the editors of Datamation , another widely read industry journal that
focused on issues of timely concern and practical relevance.

 The DPMA ’ s inclusive approach to professional development brought
it into confl ict with competing societies, particularly the ACM. The dif-
ferences between the two organizations mirrored the larger tensions that
existed within the computing community: academic computer scientists
versus the business data processors; theory versus practice. I have already
shown how this tension affected the adoption of the DPMA ’ s CDP
program: the ACM ’ s obvious lack of support helped to undermine
the program ’ s legitimacy and prevented its widespread adoption. This

The Professionalization of Programming 177

opposition was based on both philosophical grounds — many in the ACM
believed that the CDP examinations were superfi cial and irrelevant —
and institutional ones, since control over an industry-wide certifi cation
program would have granted the DPMA considerable political author-
ity. 48 The two group also sparred over trivial issues, such as unauthorized
use of member-address databases. 49 Despite several halfhearted attempts
to explore an ACM/DPMA merger, or at least to establish an interasso-
ciation liaison, the two groups rarely communicated. 50 When AFIPS was
established in the early 1960s, the NMAA and other industry-oriented
groups were treated with dismissive contempt, and the DPMA resisted
AFIPS affi liation until the mid-1970s. At a meeting arranged by AFIPS
offi cials, for example, DPMA representatives were kept waiting, without
explanation or apology, for over an hour. 51

 In the year that it was introduced, the CDP examination attracted
1,048 applicants, 687 of whom passed successfully. The exam itself
included 150 multiple-choice questions on programming, numerical
analysis, Boolean algebra, applications, elementary cost accounting,
English, and basic mathematics (not including calculus). In response to
criticism from the many otherwise-qualifi ed programmers who did not
have formal mathematical training or college-level degrees, the educa-
tional requirements for the CDP were suspended until 1965. The other
prerequisites — three years ’ experience and “ high character qualifi ca-
tions ” — were so vague as to be almost meaningless, and appear to have
been only selectively enforced.

 By the end of 1965, almost seven thousand programmers and data
processing supervisors had taken the exam. Figure 7.3 shows for the
years between 1962 and 1973 the total number of candidates taking
the exam, the total number of candidates who passed the exam, and the
cumulative number of CDP holders.

 The data in fi gure 7.3 reveal the mixed fortunes and troubled history
of the CDP examination. The striking early success of the program,
which more than quintupled in size in its fi rst three years, suggests that
many data processing personnel saw certifi cation as an attractive profes-
sional strategy. This corresponds well with evidence from industry jour-
nals and other documentary sources. A survey of the candidates in 1963
reveals a remarkable range of background, experience, and education. 52
For the examination session in 1966, however, the education require-
ments outlined in the original program announcement from 1962 were
fi nally put in place. These requirements included specifi c courses in math,
English, managerial accounting, statistics, and data processing systems.

178 Chapter 7

Whereas participation in the exam in 1965 had jumped by more than
300 percent from the previous year (possibly in anticipation of the impo-
sition of these requirements), applications for the session in 1966 dropped
by almost 85 percent. Of the eighty-eight scheduled examination sites,
twelve were dropped for lack of attendance. A major controversy erupted
within the data processing community, particularly in DPMA-oriented
publications such as Datamation and Computerworld .

 Advocates of the academic requirements argued that such require-
ments not only elevated the status and legitimacy of the CDP but also
were standard for most other professions, including law, medicine, engi-
neering, and accounting. Opponents claimed that the specifi c course
requirements were ambiguous, meaningless, and irrelevant. The DPMA
Committee for Certifi cation, which administered the CDP program, was
fl ooded with letters from disgruntled applicants requesting special dis-
pensation. Each case had to be individually evaluated. 53 In 1966 only
1,005 candidates were approved to sit for the exam. In 1967, this
number dropped to 646. This posed not only fi nancial diffi culties for the
DPMA but presented a grave threat to the perceived legitimacy of the
entire CDP program as well. Faced with the imminent collapse of
their membership support, the DPMA admitted that “ the established

0

5,000

10,000

15,000

20,000

25,000

30,000

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

Candidates Pass Total CDP Holders

 Figure 7.3
 CDP recipients, 1961 – 1973.

The Professionalization of Programming 179

eligibility requirements had unintentionally excluded some of the
people for whom the CDP program was originally designed. ” 54 The
committee dropped the specifi c course requirements, providing a grand-
father clause for those with three years ’ experience prior to 1965, and
requiring others to have only two years of postsecondary education.
Applications for the exam session in 1968 jumped back to almost three
thousand.

 Over the next several years, the CDP program struggled to regain its
initial momentum. Annual enrollments dropped again briefl y in 1969,
then leveled off for the next several years at about twenty-seven hundred.
In an industry characterized by rapid expansion, this noticeable lack of
growth represented a clear failure of the CDP program. With each year
CDP holders came to represent a smaller and smaller percentage of the
programming community. In 1970 the program faced yet another crisis:
the announcement that a bachelor ’ s degree would be required of all CDP
candidates, beginning with the examination in 1972. Once again a fi re-
storm of debate broke out. The DPMA claimed that this new require-
ment merely refl ected the changing realities of the labor market: since a
college degree had already become a de facto requirement within the
industry, requiring anything less for the CDP would severely undermine
its legitimacy. The resulting controversy highlighted already-existing ten-
sions within the data processing community, and further divided the
already-fragmented DPMA Certifi cation Council (many of whose own
members could not satisfy the new degree requirement). Numerous
observers called for the DPMA to relinquish control of the CDP exami-
nation to an independent certifi cation authority. By the mid-1970s
it became increasingly clear that the CDP program faced imminent
dissolution.

 In an attempt to restore momentum to their fl agging certifi cation ini-
tiative, the DPMA joined forces with seven other computing societies —
 the ACM, the IEEE (Institute of Electrical and Electronics Engineers)
Computer Science Society, the Association for Computer Programmers
and Analysts, the Association for Education Data Systems, the Automation
One Association, the Canadian Information Processing Society, and the
Society of Certifi ed Data Processors (SCDP) — to form the Institute for
Certifi cation of Computer Professionals (ICCP). The DPMA had always
been extremely possessive of its certifi cation program, and its decision
to relinquish control to an independent foundation refl ects a growing
sense of desperation about the future of the CDP. 55 The ICCP was
charged with upgrading and expanding the CDP program, introducing

180 Chapter 7

new specialized examinations, and promoting professional development.
In 1973 the ICCP took over responsibility for the CDP examinations. It
also worked to develop a code of professional ethics to be adopted by
its member organizations.

 The ICCP failed to revive the CDP or institute a meaningful certifi ca-
tion program of its own. Because it represented such a wide variety of
constituents, the ICCP was hindered by the same internal divisions that
plagued the larger programming community. Rivalries among the con-
stituent member societies, many of whom were only superfi cially com-
mitted to the concept of certifi cation, doomed the organization to internal
confl ict and inactivity. 56 The failure of the various competing profes-
sional associations to cooperate crippled the ability of the ICCP to
develop meaningful certifi cation standards. No single program was able
to refl ect the diverse needs of the collective software community.
Furthermore, a series of highly critical assessments of the validity of the
CDP examinations weakened popular and industry support. 57 The ICCP
failed to present appealing alternative programs or examinations, and
the organization languished during the 1970s.

 In response to the inability of the professional associations to establish
rigorous certifi cation programs, the SCDP adopted an approach to pro-
fessional standards that circumvented the ICCP altogether: state licensing
of computer professionals. The SCDP was a grassroots organization of
CDP holders dedicated to improving the status and legitimacy of the
CDP program. Founded by the self-professed gadfl y Kenniston W. Lord,
the SCDP frequently challenged the wisdom and authority of associa-
tions such as the DPMA and the ICCP. For many years, Lord and his
fellow SCDP member Alan Taylor carried out a vituperative verbal
campaign against the DPMA (and later the ICCP) in the pages of the
weekly newspaper Computerworld . 58 Taylor, a popular columnist for
 Computerworld , accused the DPMA of running the CDP examinations
as a profi t-making enterprise rather than an independent professional
development program. 59 When the SCDP was denied formal representa-
tion in the ICCP in 1973, Lord proposed what was effectively a govern-
ment takeover of responsibility for programmer certifi cation. Unlike the
certifi cation programs voluntarily adopted by individuals and associa-
tions, however, government licensing would be mandatory. Since it is
illegal to practice a licensed profession without the prior approval of the
state, entry into that profession could be tightly controlled and moni-
tored. Licensing would provide both control and protection as well as a
certain degree of public recognition and legitimacy.

The Professionalization of Programming 181

 In 1974, the SCDP developed a model licensing bill and submitted it
to a number of state legislatures. According to its model legislation, no
person in a state that passes the SCDP bill could “ practice, continue to
practice, offer or attempt to practice data processing or any branch
thereof ” without either achieving a four-year degree in data processing
and gaining three years of related experience, or successfully completing
a certifi cation examination and fi ve years of experience. The bill also
provided a fi ve-year window in which those with twelve years of experi-
ence could be “ grandfathered ” into the profession. Practitioners were
granted a twenty-four-month grace period in which to acquire the neces-
sary qualifi cations. The legislation covered a wide variety of occupational
activities and titles, including any that made use of the terms “ data pro-
cessing, ” “ data processing professional, ” “ computer professional, ” or
any of their derivatives. The state was given the power to revoke the
certifi cation of any registrant who committed fraud, was proved guilty
of negligence, or who violated the professional code of ethics. 60

 The proposed SCDP legislation is notable as the only concerted
attempt in this period to encourage government involvement in the pro-
gramming labor market. In fact, the specter of externally imposed state
regulation had been raised as a primary justifi cation for establishing
certifi cation programs in the fi rst place: since self-regulation was consid-
ered to be one of the defi ning characteristics of a profession, surrendering
control over this function to the state was essentially an admission of
defeat. Observers warned that the lack of a solution from within the
science would result in a solution imposed from without: “ In several
fi elds, the lack of professional and industrial standards has prompted the
government to establish standards. ” 61 Ironically enough, even the defeat
of the SCDP legislation proved humiliating to some practitioners; the
state ’ s unwillingness to legislate data processing activities was perceived
as a slight to the entire industry ’ s importance and reputation. 62

 Although the model SCDP legislation was adopted by none of the
states to which it was submitted, the fact that it was proposed at all
reveals one of the primary shortcomings of voluntary certifi cation pro-
grams such as the CDP: the lack of effective methods of enforcement.
The inability, or unwillingness, of associations like the ACM and the
DPMA to self-regulate was widely criticized by industry observers.
Neither group had ever taken action against one of their members
accused of fraud or negligence, and both had reputations for being
unwilling to take strong positions on issues of public interest or safety.
Indeed, the DPMA was unable even to enforce the proper use of the CDP

182 Chapter 7

trademark. Individuals and organizations that abused the CDP designa-
tion, either by claiming to have received a CDP when in reality they had
not or instituting their own CDP programs, received only ineffective
warning letters. No legal action appears to have been taken. 63 According
to SCDP president Kenniston Lord, the inability of the profession to
regulate its own activities justifi ed drastic action in regard to state licens-
ing: “ One does not truly have a profession until one has the ability,
legally, to challenge a practitioner and when proven guilty, to see that
he is separated from the practice. . . . This is one problem that the SCDP
bill will solve. ” 64

 The lack of ability and willingness of the DPMA to equip its certifi ca-
tion program with teeth was not the only reason why the CDP failed to
achieve widespread industry acceptance, however. The program had
other shortcomings as well. From almost the beginning, the examinations
had been tainted by accusations of fraud and incompetent administra-
tion. In 1966 several individuals reported receiving offers from an exist-
ing CDP holder to take their examinations for them for a fee. 65 A copy
of the 1965 exam was stolen from a locked storage cabinet at California
State College, and its disappearance was covered up by the DPMA
Committee for Certifi cation. 66 Complaints about testing conditions and
locations were frequent and vociferous. For example, at one examination
site at the University of Minnesota, the noise caused by a nearby drama
club rehearsal of a sword fi ght scene “ was so severe as to shower the
room with particles of plaster. ” 67 Other examinees suggested that poorly
trained proctors (“ the little old lady who passed out the papers ”) were
not only unable to answer even basic questions about content and pro-
cedure but also in some cases switched rooms without notice, started
sessions early for personal convenience, and misplaced completed exami-
nation booklets. 68 Although such administrative snafus were hardly
unique to the CDP program, they undermined public confi dence in the
ability of the DPMA to adequately represent the profession.

 Another reason why the DPMA was unable to push through its certi-
fi cation initiative was a lack of support from other professional associa-
tions. An article in 1968 on certifi cation and accreditation in the
 Communications of the ACM failed to mention the CDP program. This
conspicuous neglect of the most successful certifi cation program then
available refl ects a growing tension between the two competing profes-
sional associations. The ACM recognized that a successful certifi cation
program required a strong controlling organization. The organization
that controlled certifi cation would effectively control the profession.

The Professionalization of Programming 183

Indeed, the proposal that launched the CDP program in 1959 suggested
that “ the fi rst association to undertake a Data Processor ’ s Certifi cate is
going to be the leading association in the data processing fi eld. ” 69
Opposed to the idea that this controlling organization could be anything
but the ACM, the Executive Council of the ACM worked to undermine
the efforts of the DPMA at every occasion. In 1966 the council consid-
ered a resolution, clearly aimed at the CDP, to “ warn employers against
relying on examinations designed for subprofessionals or professionals
as providing an index of professional competence. ” 70 An early draft of
this document referred specifi cally throughout to the “ DPMA certifi ca-
tion program. ” Although the fi nal published version referred only to
unspecifi c “ certifi cation programs, ” the target of its attacks was obvi-
ously the CDP. Later that year the Executive Council established a
Committee to Investigate the Implications of the CDP. The fi rst order of
business for the committee was the drafting of a strongly worded objec-
tion to the use of the word professional in association with the DPMA
exam, and the wording of subsequent exam and program literature
eliminated all references to such language: CDP therefore came to stand
for “ Certifi ed Data Processor, ” rather than “ Certifi ed Data Professional. ” 71
Even this modest acronym was offensive to some professional groups. A
member of a SHARE (an infl uential IBM users group) panel on certifi ca-
tion was “ disturbed to read [the] statement that many DPMA certifi cate
holders are beginning to use the initials ‘ CDP ’ in their titles. ” Such pre-
tentious behavior, he suggested, “ will quickly bring down upon DPMA
the wrath of other professions. It is probably illegal in some states. I fail
to see how it can conceivably benefi t the cause of professionalism which
DPMA and others of us are working toward. ” 72 Although the DPMA
insisted that “ many persons who use the CDP initials do so more to
publicize the certifi cation program ” than to promote their own personal
interests, pressure from competing associations forced it to abandon
many of its more ambitious claims for the CDP program. 73 A statement
in 1966 conceded that “ it would be presumptuous at this early stage in
the program to suggest that CDP represents the assurance of competence,
or that the Certifi cate should be considered as a requirement for employ-
ment or promotion in the fi eld. ” 74 It is no wonder that so many employ-
ers and practitioners lost confi dence in the ability of the DPMA to
successfully administer an industry-wide certifi cation program.

 An even more troublesome problem for the DPMA was resistance
from its primary constituency to its proposed educational requirements.
The original CDP announcement included a list of specifi c academic

184 Chapter 7

prerequisites, including college-level courses in math, English, manage-
rial accounting, statistics, and data processing systems as well as eight
out of seventeen possible electives. 75 Many of the practicing EDP special-
ists who formed the core of the DPMA membership saw such require-
ments as being irrelevant, unattainable, or both. When the educational
requirements were fi rst enforced in 1966, applications dropped by more
than 85 percent, never to recover.

 The problem was not only that the new educational requirements
were overly stringent for many aspiring EDP professionals; they were
also entirely too specifi c. What exactly counted as a math, English, or
managerial accounting course? Course titles and descriptions varied
greatly by institution. Each application had to be evaluated individually
to determine which courses legitimately counted toward the requirement.
The Committee for Certifi cation was immediately overwhelmed with
paperwork: complaints, transcripts, notes from faculty, requests for
exemptions, and so on. This was in addition to the massive efforts
required to assure that each candidate had the requisite three years ’ work
experience and high character qualifi cations. It is unclear exactly what
was meant by this requirement. It does appear that certain candidates
were eliminated on the basis of having misrepresented their qualifi ca-
tions, or having committed fraud or other crimes, but no written stan-
dards for the high character qualifi cation seem to have existed. The
situation quickly turned into an administrative nightmare for DPMA
offi cials. The specifi c course prerequisites were soon replaced with a
more straightforward, although no less controversial, two-year college
requirement. When this prerequisite was modifi ed to a four-year degree
in 1972, opposition became even more vociferous. The head of the West
Tennessee chapter of the DPMA wrote to complain that he, along with
about one-third of his chapter ’ s membership, had suddenly become
ineligible to receive the CDP. 76 A Computerworld survey in 1970 indi-
cated that many practitioners felt the new requirement “ unduly harsh ”
and “ ludicrous, ” believing that it would decimate the data processing
staffs of many smaller departments. 77 The always-outspoken Herbert
Grosch (himself a PhD astronomer and president of the ACM from 1976
to 1978) declared that “ this policy is very ill-advised. What the hell is
so hot about college — it turns out a bunch of knuckleheads — and a
knucklehead PhD is no better that a knucklehead CDP. ” 78

 Despite the strong negative reaction generated by these educational
requirements, the DPMA leadership continued to insist on their neces-
sity. Such requirements had always been considered an essential compo-

The Professionalization of Programming 185

nent of the DPMA ’ s professionalization program: only by defi ning a
 “ standard of knowledge for organizing, analyzing, and solving problems
for which data processing equipment is especially suitable ” could pro-
grammers ever hope to distinguish themselves from mere technicians or
other “ sub-professionals. ” 79 Like the academic computer scientists, busi-
ness programmers recognized the need for a foundational body of
abstract knowledge on which to construct their profession; they differed
only about what that relevant foundation of knowledge should include.
In insisting on strong educational standards, the DPMA was in complete
accord with the conventional wisdom of the contemporary profession-
alization literature. 80 And by the end of the 1960s, it was true that many
employers did prefer to hire college graduates — although not necessarily
computer science or data processing graduates — for entry-level program-
ming positions. 81 According to a study published in September 1968 by
the Offi ce of Education, U.S. Department of Health, Education, and
Welfare, 61 percent of the 353 business data processing managers sur-
veyed preferred that programmers have a college degree. Over 60 percent
indicated that educational background was a substantial factor in deter-
mining a programmer ’ s chances for promotion. 82 As a recession hit the
industry in the early part of the 1970s, this trend became even more
pronounced. 83 An aspiring EDP school graduate, even with a CDP cer-
tifi cate, had little chance of breaking into data processing without a
college degree. As one of these individuals lamented, “ They told me 80%
of all programmers don ’ t have a college degree. Now everywhere I go
I ’ m told they ’ re sorry but they only want college people. ” 84 Although the
DPMA ’ s decision to raise the educational requirements for the CDP was
highly controversial, it was also probably justifi ed.

 Ultimately, however, the DPMA never managed to convince employ-
ers and practitioners of the relevance of its educational standards, nor
for that matter its certifi cation exams. Neither group was convinced that
a CDP meant much in terms of future performance. The DPMA
Certifi cation Council was not even able to pass a resolution requiring its
own offi cials to possess the CDP. 85 In 1971, the Certifi cation Council
decided to drop the baccalaureate degree requirement. Although this
decision was a response to pressure from within the data processing
community, it was widely regarded as a sign of weakness rather than
judicious concession. 86 As the director of the computing center at Virginia
Tech wrote to the president of the local DPMA chapter, “ The removal
of the degree requirement has forced all of us to consider the attainment
of the CDP not as an extension of our normal academic and work

186 Chapter 7

experience, but, as a matter of fact, something quite inferior to either
one. ” 87 His letter provides a stinging but accurate indictment of the
failure of the CDP program to achieve widespread acceptance and
legitimacy:

 My experience indicates that people seek certifi cation from their professional
peer group for only two reasons. Either it is required by law or the individual
feels that the mark of acceptance stamped upon him by his peer group is suffi -
ciently important to be worthy of the extra effort to achieve that certifi cation.
Unfortunately, in the data processing profession, many, certainly most, of the
people we recognize as outstanding professional achievers and accomplishers, do
not hold the CDP. 88

 One of the major criticisms leveled against the CDP examination by
employers and data processing managers was that it tested “ familiarity ”
rather than competence. 89 It was not clear to what skills and abilities the
CDP was actually intended to certify: “ The present DPMA examination
measures breadth of data processing experience but does not measure
depth. . . . It certainly does not measure or qualify programming ability.
It makes no pretense of being any measure of management skills. ” 90 The
problem was a familiar one for the industry: although most employers
in this period believed that only “ competent ” programmers could develop
quality software, no one agreed on what knowledge and abilities consti-
tuted that “ competence. ” 91 As Fred Gruenberger suggested at a RAND
symposium in 1975 on certifi cation issues, “ I have the fear that someone
who has passed the certifying exams has either been certifi ed in the
wrong things (wrong to me, to be sure) or he has been tuned to pass the
diagnostics, and in either case I distrust the whole affair. ” 92 His attitude
refl ects the ambivalence that many observers in this period felt about
contemporary data processing training and educational practices. If data
processing was simply a “ miscellaneous collection of techniques applied
to business, technology and science, ” rather than a unique discipline
requiring special knowledge and experience, then no certifi cation exam
could possibly test for the broad range of skills associated with “ general
business knowledge. ” “ Given the choice between two people from the
same school, one of whom has the CDP, but the other appears brighter, ”
Gruenberger argued, “ I ’ ll take the brighter guy. ” 93

 Although the DPMA revised and updated its examinations annually,
and eventually introduced a Registered Business Programmers exam
intended specifi cally for programmers, it was never able to convince the
industry of the relevance of its certifi cation programs. One data process-
ing manager suggested that the CDP was at best “ a minor plus for the

The Professionalization of Programming 187

person who can measure up to other standards, ” but that it would never
be considered a “ real ” qualifi cation for employment. 94 Another warned
of a “ lack of confi dence ” in the validity of the CDP exam: “ I do not
expect to apply for a CDP or to use the possession of a CDP as a criterion
for employment. ” 95 Still another resented a perceived attempt on the part
of the DPMA to foster a “ closed shop ” mentality, promising to “ con-
tinue to regard the CDP holder with suspicion as to motive and qualifi ca-
tion, the level of suspicion being in inverse proportion to the date of the
certifi cate. ” 96 In the absence of a strong commitment to the CDP on the
part of employers, many programmers saw little benefi t in participating
in the program. Those who did were increasingly self-selected from the
lowest ranks of the labor pool — individuals for whom the CDP was a
perceived substitute for experience and education.

 Professional Societies or Technician Associations?

 In spring 1975, on the eve of the annual National Computer Conference,
a small group of the elite leaders of the computing community met in a
nondescript conference room at a Quality Inn in Anaheim, California,
to discuss the future of the computing profession. Similar meetings had
been convened every year for the previous two decades, always with the
intent to address the most pressing issues facing the computing commu-
nity. Although the specifi c composition of the group changed from year
to year, the attendees always represented the highest levels of leadership
in the discipline: award-winning computer scientists, successful business
entrepreneurs, association presidents, and prolifi c authors. The cumula-
tive list of participants reads like a who ’ s who of the computing industry:
Gene Amdahl, Paul Armer, Herbert Bright, Howard Bromberg, Richard
Canning, Herbert Grosch, Fred Gruenberger, Richard Hamming, J.C.R.
Licklider, Daniel McCracken, Anthony Oettinger, Seymour Papert, and
Joseph Weizenbaum, among many others. This particular meeting
included high-ranking representatives from all of the major professional
societies: the ACM, the DPMA, the IEEE Computer Society, and the
ICCP. These societies represented the largest and most infl uential con-
stituent members of the umbrella organization, AFIPS. On the agenda
was a discussion of the role of AFIPS in the professional development of
the discipline.

 AFIPS had been founded in 1961 as a society of societies. The immedi-
ate goal had been to provide a U.S. representative to the upcoming
International Federation of Information Processing (IFIP) conference.

188 Chapter 7

IFIP had been established several years earlier under the aegis of the
United Nations Educational, Scientifi c, and Cultural Organization
(UNESCO). Beginning in 1959, IFIP hosted an annual international
conference on computing. Each member nation was allowed to send
representatives from a single organization. Since the United States had
no single organization that spoke for its computing community, AFIPS
was created to represent three of the largest computer-related societies:
the ACM, the American Institute of Electrical Engineers (AIEE), and the
Institute of Radio Engineers (IRE). (The AIEE and the IRE later merged
into the IEEE.) It was hoped that AFIPS would eventually come to
serve as the single national voice for computer interests in the United
States. 97

 From the start, AFIPS proved a disappointment. AFIPS did represent
the United States at the annual IFIP meeting. It was given control over
the lucrative Joint Computer Conferences, but beyond that, it proved
incapable of serving as “ the voice of the computing profession in
America. ” 98 It was crippled by a weak charter and a lack of tangible
support from its founding societies. AFIPS was a society of societies, not
a society of members, and it was therefore dependent on and subservient
to the interests of its constituent societies, rather than to the larger com-
puting community. In addition, several obvious candidates for member-
ship, including the DPMA, had been conspicuously excluded from
participation, and the AFIPS voting structure made it obvious that addi-
tional members would be unwelcome. 99 Even more limiting was a clause
in the constitution, insisted on by the ACM as an essential precondition
for its support, prohibiting AFIPS from placing itself “ in direct competi-
tion with the activities of its member societies. ” 100 Although the constitu-
tion was revised in 1969 to provide for stronger leadership and a more
inclusive atmosphere, AFIPS continued to struggle for support and rec-
ognition. The DPMA did not join until 1974, for example, and even then
without much enthusiasm. The gathering in 1975 of the computing elite
at the Quality Inn in Anaheim represented one of the many attempts to
reinvigorate interest in this ailing association. In 1989, just two years
after celebrating its twenty-fi fth anniversary, AFIPS voted itself out of
existence. The loss of control over the lucrative National Computing
Conferences left it fi nancially unstable and without any clear means of
support. Few in the community mourned its passing.

 The transcripts of the meeting are revealing. The existence of a power-
ful professional association was obviously considered by the many infl u-
ential members of the computing community to be the cornerstone of a

The Professionalization of Programming 189

strong professional identity. And yet rivalries between the member soci-
eties, particularly the ACM and the DPMA, proved to be an endemic
and ultimately insoluble barrier to the establishment of this identity.
Participants in the various associations disagreed over membership quali-
fi cations, dues, voting privileges, and certifi cation and licensing propos-
als. More important, however, was the lack of widespread popular
support for these associations. One Datamation study indicated that less
than 40 percent of all programmers belonged to any professional associa-
tion, and “ probably less than 1% do anything in connection with an
association that requires an extra effort on the individual ’ s part. ” 101 And
even these low fi gures were probably infl ated: a Wall Street Journal
report from the same year revealed only that 13 percent of the data
processing personnel surveyed belonged to any professional society. 102
These numbers correspond well with the low level of interest in the CDP
certifi cation program. Although it is diffi cult to compile exact fi gures on
association membership, it is clear that at best only a small percentage
of the eligible population chose to participate in any professional
society.

 If strong professional associations were widely perceived to be an
important element of professional identity, why did groups like the
ACM, the DPMA, and AFIPS have such diffi culty attracting and keeping
members? AFIPS had some obvious structural problems that almost
assured its ineffectiveness. Individuals could not directly join AFIPS; it
was merely an umbrella organization for other associations, and pos-
sessed little real authority. But what about the ACM and the DPMA, the
two largest relevant member societies? Both of these groups were estab-
lished early, were relatively high profi le, and published their own widely
distributed journals. Both were frequently mentioned as candidates for
the position of the professional computing association. Yet neither was
able to consolidate its control over any signifi cant portion of the disci-
pline ’ s practitioners. The reasons behind their failure suggest the limita-
tions of professional associations as an institutional solution to the
software crisis.

 The persistent confl ict between the ACM and the DPMA revealed a
much larger tension that existed within the computing community. As
early as 1959, the outlines of a battle between academically oriented
computer scientists and business programmers had taken shape around
the issue of professionalism. 103 Although both groups agreed on the
desirability of establishing institutional and occupational boundaries
around the nascent computer-related professions, they disagreed sharply

190 Chapter 7

about what form these professional structures should take. Observers
noted a deepening “ programming schism ” developing within the indus-
try, a “ growing breach between the scientifi c and engineering computa-
tion boys who talk ALGOL and FORTRAN . . . and the business data
processing boys who talk English and write programs in COBOL. ” 104
Individuals who believed that the key to professional status was the
development of formal theories of computer science resisted subprofes-
sional certifi cation programs and tended to join the ACM; business data
processors who were skeptical of “ cute mathematical tricks, ” either sup-
ported the DPMA or ignored the professional societies altogether.

 It is obvious that the turf battles that raged between the ACM and
the DPMA during the 1950s and 1960s helped undermine popular
support for both organizations. In response to extensive Datamation
coverage of a RAND symposium in 1959 on “ the perennial professional
society question, ” one reader commented that he “ hadn ’ t laughed so
hard in a decade. Are these guys kidding? You won ’ t solve this problem
by self-interested conversation about it, nor is it solved by founding
another organization. ” 105 In a retrospective in 1985 on the troubled
history of AFIPS, Harry Tropp suggested that “ the question of turf seems
to have been there from the beginning. It shows up in the [1950s ’] Rand
Symposium. . . . There were the hardware and software types and then
there were the users. We had the east coast/west coast turf problems.
What I am hearing today is a whole new evolution of different turfs as
this information processing society explodes. ” 106 The fact that the DPMA
refused affi liation with AFIPS until the mid-1970s — largely because of
the perception that the latter organization was dominated by the ACM —
 was a major factor in its perpetual ineffectiveness and eventual dissolu-
tion (in 1987, just two years after it celebrated its twenty-fi fth anniversary).
Herbert Grosch in particular was dismayed by the pettiness of the ACM-
DPMA debates, which he believed detracted from the overall goal of
establishing a legitimate professional identity:

 I couldn ’ t care less who publishes some abstract scientifi c paper! What I want
to know is how do we pull together a hundred thousand warm bodies that are
working on the outskirts of the computer business, give them a high-priced
executive director, lots of advertising, a whole series of technical journals; in
other words, organize a real rip-snorting profession? Whenever somebody starts
worrying about which journal what paper should be published in, we get bogged
down in an academic cross-fi re we ’ ve been in for ten years. ” 107

 As damaging as these interassociation rivalries were to the infl uence
and reputation of the ACM and the DPMA, what really hurt them was

The Professionalization of Programming 191

the lack of support that they received from industry practitioners. Neither
organization was able to clearly establish its relevance to the needs of
either workers or their managers. “ Neither organization . . . has done
much for the industry or for society as a whole, ” argued one Datamation
editorial from 1965. “ We think the time is ripe to more clearly defi ne
larger, more important long-range goals which distinguish a professional
society from a technician ’ s association. ” 108 Employers looked to the
professional associations to provide a supply of reliable, capable pro-
grammers. As was apparent from the impassioned debates about the
structure and relevance of computer science curricula, however, it was
far from obvious to many managers that formal educational programs
contributed much to the production of professional programmers. The
ACM ’ s continued devotion to theoretical computer science made it seem
out of touch with the practical demands of business. The DPMA ’ s CDP
program, although it was much more oriented to business data process-
ing, failed to achieve widespread industry acceptance. As a result, it
also was not able to guarantee the kind of standardized labor force in
which corporations were interested. Employers saw little value in either
organization.

 The Limits of Professionalism

 In his monograph on Offi ce Automation in Social Perspective from 1968,
Oxford sociologist Hans Rhee observed that “ the computer elite are
beginning to erect collective defenses against the lay world. They are
beginning to develop a sense of professional identity and values. ” But the
process of establishing professional attitudes and controls, and a profes-
sional conscience and solidarity, Rhee suggested, had “ not yet advanced
very far. ” 109 He could just have easily been describing the computing
professions as they existed a decade earlier or a decade afterward. By
1968 computing had acquired many of the trappings of professionalism:
academic computer science departments, certifi cation programs, and pro-
fessional associations. And yet most computing practitioners were not
widely regarded as professionals, at least not in the eyes of the general
public. In 1967, for example, the U.S. Civil Service Commission declared
data processing personnel to be nonexempt employees, offi cially catego-
rizing programmers as technicians rather than professionals. Although
this decision did not affect the lives or practices of programmers, it repre-
sented a symbolic defeat for professional associations such as the ACM,
which lobbied hard to have it overturned. 110

192 Chapter 7

 The inability of programmers and other data processing personnel to
successfully professionalize raises a perplexing question for the historian:
Given the apparent interest in professionalization on the part of both
employers and practitioners, why were these efforts so ineffective? As
was described earlier, industrial employers in the 1960s complained not
so much about technical incompetence as a general lack of professional-
ism among programmers. “ It was his distressing lack of professional
attributes that most often undermines his work and destroys his man-
agement ’ s confi dence, ” declared Malcolm Gotterer. “ Too frequently
these people, while exhibiting excellent technical skills, are non-
professional in every other aspect of their work. ” 111 Increased profes-
sionalism would presumably address the most frequent complaints
leveled against data processing personnel: an overreliance on idiosyn-
cratic craft techniques; an arrogant disregard for proper lines of author-
ity; shoddy production quality; and a lack of commitment to the best
interests of the organization. On the surface, the professionalization of
programming appeared to be an ideal solution to many of the most del-
eterious symptoms of the burgeoning software crisis.

 There are a number of explanations for the failure of most profes-
sionalization programs. Internal rivalries within the computing commu-
nity undermined the effectiveness of groups such as the ACM and the
DPMA. No single organization could meet the needs of a diverse com-
munity of computer people that included everyone from PhD mathemati-
cians to high school dropout keypunch operators. As Louis Fein pointed
out in his discussion of the ACM ’ s crisis of identity, “ It is not clear . . . that
an organization can play simultaneously the role of a profession, of an
industry, and of a science. . . . I cannot see that ACM members, or IEEE
Computer Group members, or DPMA members, or Simulations Councils,
Inc. members, are members of a profession. They are practitioners or
scientists or engineers or programmers — members of a technical
society. ” 112 The attempts of the computer scientists to rationalize the
practice of programming and produce a body of generally applicable
programming theory set them at odds with vocational programmers. The
seemingly inconsistent and idiosyncratic practices of working program-
mers were used as foils for the elegant constructions of the academic
computer scientists. The attempts of the vocational programmers to
appeal to the language and ideals of science and engineering were ridi-
culed. When asked to explain the linguistic transition from coder to
programmer, the prominent computer scientist John Backus dismissed it
as purely rhetorical: “ It ’ s the same reason that janitors are now called

The Professionalization of Programming 193

 ‘ custodians. ’ ‘ Programmer ’ was considered a higher-class enterprise than
 ‘ coder, ’ and things have a tendency to move in that direction. ” 113 As the
programming community broke down into competing factions — such as
theoretical versus practical, certifi ed versus uncertifi ed, and the ACM
versus the DPMA — its members lost the leverage necessary to push
through any particular professionalization agenda.

 In addition to internal rivalries, the aspiring computing professions
also faced external opposition. For many corporate managers, profes-
sionalism was a potentially dangerous double-edged sword. On the one
hand, “ professionalism might motivate staff members to improve their
capabilities, it could bring about more commonality of approaches, it
could be used for hiring, promotions and raises, and it could help deter-
mine ‘ who is qualifi ed. ’ ” On the other hand, “ professionalism might
well increase staff mobility and hence turnover, and it probably would
lead to higher salaries for the ‘ professionals. ’ ” 114 Computer personnel
were seen as dangerously disruptive to the traditional corporate estab-
lishment. The last thing that traditional managers wanted was to provide
data processing personnel with additional occupational authority.
Professionalism was therefore encouraged only to the extent that it pro-
vided a standardized, tractable workforce; professionalization efforts
that encouraged elitism, protectionism, or anything that smacked of
unionism were seen as counterproductive.

 Perhaps the most important reason that programmers and other data
processing personnel failed to professionalize, however, was that the
professional institutions that were set up in the 1950s and 1960s failed
to convince employers of their relevance to the needs of business. A
 Computerworld survey in 1974 indicated that “ no technical society has
ever captured and held the attention of professionals in BDP. ” 115
Employers looked to professional institutions as a means of supplying
their demand for competent, trustworthy employees. As we have seen,
although computer science programs in the 1960s thrived in the universi-
ties, in the business world they were usually seen as overly theoretical
and irrelevant. Likewise, the DPMA ’ s CDP program failed to establish
itself as a reliable mechanism for predicting programmer performance
or ability. Neither the ACM nor the DPMA offered much to employers
in terms of improving the supply or quality of the programming
workforce.

 Given this lack of active support from employers, the professional
associations had little to offer most data processing practitioners. Neither
a computer science education nor professional certifi cation could ensure

194 Chapter 7

employment or advancement. In response to a Computerworld article in
1974 titled “ Why Business Users Are Turned Off by ACM, ” AFIPS
president George Glaser remarked that “ the general lack of success of
ACM in attracting business data processing professionals to its member-
ship has relatively little to do with the nature and extent of the services
it offers them. It is, rather, more attributable to a lack of interest on the
part of these ‘ professionals ’ in any professional society. ” 116 Glaser ’ s
comment can be read either as an indictment of the apathy of the average
computing practitioner or the policies of the ACM; either way, it suggests
the strained relationship that existed between the two communities.
Many working programmers saw little value in belonging to either the
ACM or the DPMA, and support for both organizations as well as pro-
fessional institutions in general languished during the late 1960s and
early 1970s.

 8

 We build software like the Wright brothers built airplanes: build the whole thing,
push it off a cliff, and start over again.

 — Ronald Graham, NATO Conference on Software Engineering 1

 Industrializing Software Development

 In the collective memory of the programming community, the years
between 1968 and 1972 mark a major turning point in the history of its
industry and profession. It is during this period that the rhetoric of the
crisis became fi rmly entrenched in the vernacular of commercial comput-
ing. Although there had been earlier concerns expressed about “ software
turmoil ” and the “ software gap, ” it was not until 1968 that the word
 “ crisis ” began to be applied to the challenges facing the software indus-
try. Within a few short years, the existence of a looming software crisis
had been widely and enthusiastically embraced within the popular and
industry literature. The discourse of crisis became one of the defi ning
features of the software industry; since the late 1960s, almost every new
computer-science curriculum proposal, programming technology, or
development methodology has positioned itself relative to this perception
of widespread crisis. Even those who deny the very existence of the crisis
are continually forced to engage with its pervasive discursive legacy. 2

 To a certain degree the emergence of the software crisis of the late
1960s represents the culmination of a long series of concerns about
software: the seemingly perpetual shortage of programming personnel;
the burgeoning complexity of both application and systems software; the
apparent failure of automatic programming technologies to make the
process of programming less mysterious or more cost-effective; the pro-
fessional and political tensions inherent in management information
systems and other organizationally disruptive technologies; and a growing

 Engineering a Solution

196 Chapter 8

sense at all levels of society that the changes associated with the computer
revolution were more fundamental and pervasive — and at times intru-
sive — than had previously been anticipated. 3

 What is novel and signifi cant about the software crisis discourse,
therefore, was not in its identifi cation of a series of problems but rather
in the nature of its proposed solutions. For most historians as well as
most contemporary observers, the software crisis of the late 1960s was
defi ned by the emergence of new software-engineering approaches to the
problems of software development.

 The phrase “ software engineering ” appears to have fi rst been used by
the hardware engineer J. Presper Eckert in an address to the Eastern Joint
Computer Conference in 1965 in reference to the growing confl ict between
computer programmers and their corporate employ ers. Computer pro-
gramming “ would only be manageable, ” he claimed, “ when we could
refer to it as ‘ software engineering. ’ ” 4 But it was the 1968 NATO
Conference on Software Engineering that marks the moment that software
engineering dramatically entered the public consciousness.

 In October 1968, a diverse group of academic computer scientists,
corporate managers, and military offi cials gathered in Garmisch,
Germany, for the fi rst-ever NATO Conference on Software Engineering.
The conference was intended to address what many industry observers
believed to be an impending crisis in software production. Large software
development projects had acquired a reputation for being behind sched-
ule, over budget, and bug ridden. The solution to the so-called software
crisis, suggested the conference organizers, was for software developers
to adopt a more methodical and industrial approach. The phrase “ soft-
ware engineering ” was “ deliberately chosen as being provocative, ” sug-
gested the conference organizers, “ in implying a need for software
manufacturing to be based on the types of theoretical foundations and
practical disciplines that are traditional in the established branches of
engineering. ” 5 In the interest of effi cient software manufacturing, the
black art of programming had to make way for the science of software
engineering.

 By defi ning the software crisis in terms of the discipline of software
engineering, the conference set an agenda that infl uenced many of the
technological, managerial, and professional developments in commercial
computing for the next several decades. The general consensus among
historians and practitioners alike is that the Garmisch meeting marked
a major cultural shift in the perception of programming. In the aftermath
of Garmisch, “ software writing started to make the transition from being

Engineering a Solution 197

a craft for a long-haired programming priesthood to becoming a real
engineering discipline. It was the transformation from an art to a
science. ” 6 The call to integrate “ good engineering principles ” into the
software development process has been the rallying cry of software
developers from the late 1960s to the present. 7

 The fundamental problem with software, according to the NATO
conference organizers, was not personnel or technology but rather tech-
nique. Software development was diffi cult because computer program-
mers had failed to follow an appropriate methodology. They persisted
in their craft-based mentality when what was demanded was clearly an
industrial system of manufacturing. “ We undoubtedly produce software
by backward techniques, argued M. Douglas McIlroy of Bell Telephone
Laboratories: “ We undoubtedly get the short end of the stick in confron-
tations with hardware people because they are the industrialists and we
are the crofters. ” 8 Like many of his fellow participants, McIlroy rejected
the notion that large software projects were inherently unmanageable.
The imposition of engineering management methods had enabled effi -
cient manufacturing in myriad other industries, and would not fail to do
the same for computer programming. Software engineering promised to
bring control and predictability to the traditionally undisciplined prac-
tices of software development.

 For a number of conference participants, the key word in the provoca-
tive NATO manifesto was “ discipline. ” For example, in his widely
quoted paper on “ mass-produced software components, ” McIlroy pro-
posed applying mass-production techniques to software. 9 His vision of
a software “ components factory ” invokes familiar images of industrial-
ization and proletariatization. According to his proposal, an elite corps
of “ software engineers ” would serve as the Frederick Taylors of the
software industry, carefully orchestrating every action of a highly
stratifi ed programmer labor force. And like the engineers in more tradi-
tional manufacturing organizations, these software engineers would
identify themselves more as corporate citizens than as independent
professionals. 10

 Not every proposed solution to the software crisis suggested at
Garmisch was as blatantly management oriented as McIlroy ’ s.
Nevertheless, the theme of transformation from a craft-based black art
of programming to the industrial discipline of software engineering dom-
inated many of the presentations and discussions. The focus on manage-
ment solutions refl ected — and reinforced — a larger groundswell of
popular opinion that extended far beyond the confi nes of the actual

198 Chapter 8

conference. The industry literature of the period is replete with examples
of this changing attitude toward software management. Even those
proposals that seemed to be most explicitly technical, such as those
advocating structured programming techniques or high-level language
developments, contained a strong managerial component. Most required
a rigid division of labor and the adoption of tight management controls
over worker autonomy. When a prominent adherent of object-oriented
programming techniques spoke of “ transforming programming from a
solitary cut-to-fi t craft, like the cottage industries of colonial America,
into an organizational enterprise like manufacturing is today, ” he
was referring not so much to the adoption of a specifi c technology
but rather to the imposition of established and traditional forms of
labor organization and workplace relationships. 11 The solutions to the
software crisis most frequently recommended by managers — among
them the elimination of rule-of-thumb methods (i.e., the black art
of programming), the scientifi c selection and training of program-
mers, the development of new forms of management, and the effi cient
division of labor — were not fundamentally different from the four prin-
ciples of scientifi c management espoused by Frederick Taylor in an
earlier era. 12

 Aristocracy, Democracy, and Systems Design

 In practice, software engineering was more an expression of ideals than
a well-defi ned agenda. At best it was a loose collection of techniques,
technologies, institutions, and practices. 13 As Stuart Shapiro has sug-
gested, the essence of the software-engineering movement was control:
control over complexity, control over budgets and scheduling, and,
perhaps most signifi cantly, control over a recalcitrant workforce. 14
Although a number of technological or procedural innovations were
developed to facilitate software engineering — structure programming
techniques, the ADA programming language, Computer-Aided Software
Engineering (CASE) environments — the focus of most software-engineer-
ing efforts were managerial. In this sense, software engineering represents
the culmination of the turn toward managerial solutions to the software
crisis that characterized the late 1960s.

 Unhappy with the ballooning costs of software development, threat-
ened by the growing power of the computer people, and frustrated by
the apparent inability of either academic computer science or the profes-

Engineering a Solution 199

sional societies to institute more formal methods for regulating the
industry, corporate managers attempted to construct development meth-
odologies that would eliminate the uncertainty and expense associated
with computerization projects.

 It would be impossible to describe all of the numerous approaches to
programmer management that were developed in this and subsequent
periods. The remainder of this chapter will focus on the defi ning char-
acteristics of a few of the most prominent development methodologies
that emerged in response to the declaration in 1968 of the software crisis:
the hierarchical system, or software factory; the superprogrammer, or
chief programmer team (CPT) approach; and the adaptive programmer
team (or “ egoless ” programming) model. The hierarchical systems
approach — originally developed for large, government-sponsored pro-
gramming projects at the SDC and the IBM Federal Systems Division —
 resembles the highly stratifi ed, top-down organizational structure familiar
to most conventional corporate employees. The CPT, although it was
also developed at the IBM Federal Systems Division, refl ects an entirely
different approach to programmer management oriented around the
leadership of a single managerially minded superprogrammer. The
adaptive team approach was popularized as egoless programming by
the iconoclastic Gerald Weinberg in his classic The Psychology of
Computer Programming from 1971. 15 Weinberg proposed an open,
 “ democratic ” style of management that emphasized teamwork and
rotating leadership.

 Although it is possible to arrange these approaches into a roughly
chronological order, it is not my intention to suggest that they represent
any simple evolution toward increasing managerial control or economic
effi ciency. Each of these management methodologies captures separate
but interrelated visions about how computer programming as an eco-
nomic activity, and computer programmers as aspiring professionals,
could best be integrated into the established social and technological
systems of the traditional corporation. Each of these approaches built
on, and responded to, the innovations and shortcomings of the others.
They also refl ected the backgrounds and aspirations of their advocates
and developers. By studying carefully the salient features of each of these
three methodologies, we will be better able to situate them in their par-
ticular social and historical context, and hence to understand more fully
their contribution to contemporary debates about the nature and causes
of the software crisis.

200 Chapter 8

 Armies of Programmers

 The fi rst concerted attempts to manage software development projects
using established management techniques occurred at the government-
and military-sponsored SAGE air-defense project. The SAGE project was
the heart of an ambitious early warning radar network intended to
provide an immediate and centralized response to sneak attacks from
enemy aircraft. The plan was to develop a series of computerized track-
ing and communications centers that would coordinate observation and
response data from a widely dispersed system of interconnected perime-
ter warning stations. First authorized by Congress in 1954, by 1961 the
SAGE system had cost more than $8 billion to develop and operate,
and required the services of over two hundred thousand employees. The
software that connected the specially designed, real-time SAGE comput-
ers was the largest programming development then under way. SDC, a
RAND Corporation spin-off company responsible for developing this
software, had to train and hire almost two thousand programmers. In
the space of a few short years the personnel management department at
SDC effectively doubled the number of trained programmers in the
United States.

 In order to effectively organize an unprecedented number of software
developers, SDC experimented with a number of different techniques for
managing the programming process. For the most part, however, SDC
relied on a hierarchical structure that located most programmers at the
lowest levels of a vast organizational pyramid built with layer on layer
of managers. 16 The top of this hierarchy was occupied by nontechnical
administrators. The middle layers were peopled by those EDP personnel
who had exhibited a desire or aptitude for management. In other words,
the managers in the SDC hierarchy were self-selected as being either
uninterested or uncommitted to a long-term programming career. The
management style in this hierarchical structure was generally autocratic.
Managers made all of the important decisions. They assigned tasks,
monitored the progress of subordinates, and determined when and what
corrective actions needed to be taken.

 This hierarchical approach to management was attractive to SDC
executives for a number of reasons. First of all, it was a familiar model
for government and military subcontractors. Second, it was often easier
to justify billing for a large number of mediocre low-wage employees
than a smaller number of excellent but expensive contractors. Finally,
and perhaps most important, the “ Mongolian horde ” approach to

Engineering a Solution 201

software development corresponded nicely with contemporary construc-
tions of the root causes of the burgeoning software turmoil. This was
also known as the “ Chinese Army ” approach, at least until the phrase
became unpopular in the early 1950s.

 Faced with a shortage of experienced programmers, SDC embarked
on an extensive programming of internal training and development.
Most of its trainees had little or no experience with computers; in fact,
many managers at SDC preferred it that way. Like many corporations
in the 1950s, SDC believed that “ it is much easier to teach our personnel
to program than it is to teach outside experienced programmers the
details of our business. ” 17 In any case, in the period between 1956 and
1961 the company trained seven thousand programmers and systems
analysts. At a time when all the computer manufacturers combined could
only provide twenty-fi ve hundred student weeks of instruction annually,
SDC devoted more than ten thousand student weeks to instructing its
own personnel how to program. 18

 The apparent success that SDC achieved in mass-producing program-
ming talent reinforced the notion that a hierarchical approach was the
suitable model for large-scale software development. If large quantities
of programmers could be produced on demand, then individual pro-
grammers were effectively anonymous and replaceable. A complex
system like SAGE could be broken down into simple, modular compo-
nents that could be easily understood by any programmer with the
appropriate training and experience. The principles behind the approach
were essentially those that had proven so successful in traditional manu-
facturing: replaceable parts, simple and repetitive tasks, and a strict
division of labor.

 The hierarchical model of software development was adopted by a
number of other major software manufacturers, particularly those
involved in similarly large military or government projects. It is not clear
how direct the connection was between SDC and these other manufac-
turers. SDC certainly had a role in training a large number of program-
mers and EDP managers. “ We trained the industry! ” boasted SDC
veterans: “ Whatever company I visit, I meet two or three SDC alumni. ” 19
The labor historian Philip Kraft attributes much of what he refers to as
the “ routinization ” of programming labor to the “ degrading ” infl uence
of military-industrial organizations such as SDC. He describes the SDC
so-called software factories as “ the fi rst systematic, large-scale effort on
the part of EDP users to transform the highly idiosyncratic, artisan-like
occupation ” of computer programming into “ one which more closely

202 Chapter 8

resembled conventional industrial work. ” 20 He argues that SDC played
a signifi cant role in diffusing and popularizing the hierarchical approach
to software engineering management.

 Whether the claim that SDC policies and SDC personnel played a
direct role in diffusing the hierarchical system of management through-
out the computer industry was valid, similar top-down methodologies
were widely adopted. In the IBM Federal Systems Division, a multilevel
organizational structure was used on all large government projects. IBM
manager Philip Metzger provided a detailed description of the Federal
Systems approach in his highly popular textbook Managing a Programming
Project , which went through three editions in the period between 1973
and 1996. 21 An article titled “ Issues in Programming Management ” that
appeared in 1974 in the respected industry newsletter EDP Analyzer
listed the hierarchical systems approach as one of the most commonly
implemented software management methodologies. 22 Joel Aron, another
IBM Federal Systems veteran, used the hierarchical model as the basis
for his series of books on the Program Development Process . 23 The
hierarchical approach to software development was attractive to manag-
ers because it corresponded nicely with the contemporary management
theories. In the fi rst half of the twentieth century, corporate management
became a professional activity dominated by specialists and experts.
These professional managers developed a shared culture and value system
reinforced by an increasingly formalized program of training and educa-
tion. They exerted a high degree of control over the work practices of
their subordinates, scientifi cally managing all aspects of the business and
manufacturing process. EDP managers assumed that the techniques and
structures that appeared to work so effi ciently in traditional industries
would translate naturally into the software development department. It
was only a matter of identifying and implementing the one best way to
develop software components.

 Embedded in the hierarchical model of management were a series of
assumptions about the essential character of programming as an occu-
pational activity. Implied in the suggestion that the structures and pro-
cedures of a traditional manufacturing organization could be seamlessly
mapped onto the EDP department was a belief that the skills and experi-
ence required to program a computer were, in effect, not all that different
from those required to assemble an automobile. Managers could defi ne,
in the minutest detail, the specifi cations that the programmers would
follow. In turn, the programmers need only be trained to perform a
limited and specialized function. Individual programmers were looked

Engineering a Solution 203

on as interchangeable units. 24 They lacked a distinct professional iden-
tity. The path to advancement in the hierarchical system (if indeed there
actually was one available to mere programmers) was through manage-
ment. Certifi cation programs were desirable in order to ensure a minimum
level of competence, but only as a means for assuring a standard degree
of performance and product. 25 Programmers were encouraged to be
professionals only to the extent that being a professional meant self-
discipline, a willingness to work long hours with no overtime pay, and
loyalty to the corporation and obedience to supervisors. 26

 The notion that programmers could be treated as unskilled clerical
workers was reinforced by a series of technical developments intended
to allow managers to mechanically translate high-level systems designs
into the low-level machine code required by a computer. For example,
one of the alleged advantages of the COBOL programming language
frequently touted in the literature was its ability to be read and
understood — and perhaps even written — by informed managers. 27 More
than a fashionable management technique, the hierarchical organiza-
tional model was a philosophy about what programming was and where
programmers stood in relation to other corporate professionals.
It embodied — in a complex of interrelated cultural, technical, and politi-
cal systems — a particular social construction of the nature and causes of
the software crisis.

 Despite the obvious appeal that the theory of hierarchical systems held
for conventional managers, it rarely worked as intended in actual prac-
tice. Although managers would have preferred to think of programming
as routine clerical work and programmers as interchangeable laborers,
experience suggested that in reality the situation was quite different.
I have already described how, in the late 1950s and early 1960s, pro-
gramming had acquired a reputation as being a uniquely creative activity
requiring “ real intellectual ability and above average personal character-
istics. ” 28 “ To ‘ teach ’ the equipment, as is amply evident from experience
to date, requires considerable skill, ingenuity, perseverance, organizing
ability, etc. The human element is crucial in programming. ” 29 The anec-
dotal evidence that suggested skilled programmers were essential ele-
ments of software development was supported by numerous empirical
studies produced by industrial psychologists and personnel experts.

 The realization that computer programming was a more intellectually
challenging activity than was originally anticipated threw a monkey
wrench into the elaborate hierarchical systems that managers had con-
structed. Whereas the software turmoil of the 1950s was attributed

204 Chapter 8

largely to numerical shortages of programmers, the “ programmer
quality ” problems of the 1960s demanded a subtly different construction
of the root causes of the software crisis. The problem could still be
defi ned as a management problem requiring a management-driven solu-
tion. What had changed was the prevailing conception of what program-
mers were and what they did. “ The massive attack on systems software
poses diffi cult management problems, ” concluded Gene Bylinsky in the
pages of Fortune magazine. “ On the one hand, a good programmer, like
a writer or composer, works best independently. But the pressure to turn
out operating systems and other programs within a limited time make it
necessary to deploy huge task forces whose coordination becomes a
monstrous task. ” Echoing conventional wisdom about the creative nature
of programming, Bylinsky maintained that the problem was “ further
complicated ” by the fact that there is no “ best way ” to write computer
programs. “ Programming has nowhere near the discipline of physics, for
example, so intuition plays a large part. Yet individual programmers
differ in their creative and intuitive abilities. ” 30

 Companies that implemented hierarchical systems methodologies also
discovered that programmers were not content with the professional
identity that these systems imposed on them. Programmers voted with
their feet by leaving for other fi rms, and salaries infl ated dramatically. 31
One large employer experienced a sustained turnover rate of 10 percent
 per month . 32 The problem, according to one SDC survey of termination
interviews, was that programmers working in hierarchical organizations
 “ did not foresee for themselves the opportunities they want for profes-
sional growth and development . . . or for promotion and advance-
ment. ” 33 The career aspirations of the programmers confl icted with the
occupational role they had been assigned by the managers. Many pre-
ferred to pursue professional advancement within programming, rather
than away from programming. In the hierarchical system, the higher that
individuals advanced, the more they worked as administrators rather
than technologists.

 Superprogrammer to the Rescue

 The IBM System/360 has been called “ the computer that IBM made, that
made IBM. ” 34 The System/360 systems solved a number of problems for
IBM and its customers. It fi lled in the gaps in the IBM line of product
offerings by providing an entire range of hardware- and software-
compatible computers ranging from the low-end model 360/20 (intended

Engineering a Solution 205

to compete directly with the Honeywell H-200) to the model 360/90
supercomputer, which compared favorably to the CDC-6600. By
making all of these machines software compatible (theoretically, at
least), IBM supplied an inexpensive upgrade path for its customers. The
client could purchase just the amount of computing power that they
needed, knowing that if their needs changed in the future they could
simply transfer their existing applications and data to the next level of
System/360 hardware. They could also make use of their existing periph-
erals, such as tape readers and printers, without requiring an expensive
upgrade.

 The System/360 was an enormously risky and expensive undertaking.
The Fortune journalist Tom Wise referred to it as “ IBM ’ s $5,000,000,000
Gamble. ” He quoted one senior IBM manager as calling it the “ we bet
the company ” project. 35 The riskiest and most expensive component of
System/360 development was the OS/360 operating system. As men-
tioned earlier, in the years between 1963 and 1966, over fi ve thousand
staff years of effort went into the design, construction, and documenta-
tion of OS/360. When OS/360 was fi nally delivered in 1967, nine months
late and riddled with errors, it had cost the IBM Corporation half a
billion dollars — four times the original budget, or “ the single largest
expenditure in company history. ” 36

 Although the System/360 project turned out to be a tremendous
success for IBM, sealing its position of leadership in the commercial
computer industry for the next several decades, the OS/360 project was
generally considered to be a fi nancial and technological disaster. The
costs of the OS/360 debacle were human as well as material; according
to Frederick Brooks, they were “ best reckoned in terms of the toll it took
on people: the managers who struggled to make and keep commitments
to top management and to customers, and the programmers who worked
long hours over a period of years, against obstacles of every sort, to
deliver working programs of unprecedented complexity. ” Many in both
groups left, victims of a variety of stresses ranging from technological to
physical. 37

 The highly publicized failure of the OS/360 project served as a dra-
matic illustration of the shortcomings of the hierarchical management
method. Techniques that had worked well on an application requiring
ten thousand lines of code failed miserably when applied to a million
lines of code project. Faced with serious schedule slippages, quality
problems, and unanticipated changes in scope, the OS/360 managers did
what traditional manufacturing managers were accustomed to doing:

206 Chapter 8

they added more resources. The only noticeable result was that the
project fell more and more behind schedule.

 The Mythical Man-Month was OS/360 project leader Frederick
Brooks ’ s postmortem analysis of the failures of traditional hierarchical
management. It is one of the most widely read and oft-quoted references
on the practice of software engineering. The mythical man-month in the
title refers to the commonly held notion that progress in software develop-
ment projects occurs as a function of time spent times the number of
workers allocated — the implication being that more workers equals faster
production. Brooks dismissed this assumption with the now-famous
Brooks ’ s law, one of the most memorable aphorisms in the lore of soft-
ware development: adding personnel to a late software project makes it
later . Or to use one of Brooks ’ s more earthy metaphors, “ the bearing of
a child takes nine months, no matter how many women are assigned. ” 38

 The highly quotable Brooks ’ s law was neither the only nor even the
most signifi cant of the insights provided in The Mythical Man-Month .
Brooks did more than criticize existing methodologies; he provided an
entirely new model for understanding software development manage-
ment. He was fi rmly convinced that there was a wide disparity in per-
formance among individual programmers. Brooks believed that small
teams of sharp programmers were substantially more productive than
much larger groups of merely mediocre performers. But he also recog-
nized that even the best small team could only accomplish so much in
any given period of time. The small team approach simply did not scale
well to larger projects. The problem of scalability was the heart of the
 “ cruel dilemma ” facing project managers: “ For effi ciency and conceptual
integrity, one prefers a few good minds doing design and construction.
Yet for large systems one wants a way to bring considerable manpower
to bear, so that the product can make a timely appearance. ” 39 And yet
the Mongolian horde model of throwing programming resources — so-
called man-months — at projects was also obviously insuffi cient. What
was needed was a way to apply the effi ciency and elegance of the small
team approach to the problems of large-project management.

 Brooks proposed the adoption of what he called the “ surgical team ”
model of software development. In doing so, he borrowed heavily from
the work of IBM manager and researcher Harlan Mills, who had earlier
developed the CPT concept. This notion was fi rst introduced as one of
two experimental superprogrammer projects by Aron in a paper given
at a second NATO Software Engineering conference held in Rome in
1969. The fi rst experiment involved a thirty-man-year project requiring

Engineering a Solution 207

fi fty thousand instructions. Mills attempted to complete the project
himself (using a prototype surgical team) in only six months. The project
eventually required about six man-years of effort to complete, and was
considered a moderate success. The second experiment mentioned by
Aron at the Rome conference turned out to be the famous New York
Times project, which established the reputation of the CPT approach
when it was publicized by F. Terry Baker in 1971. In both versions of
the CPT approach, a single, expert programmer was responsible for all
major design and implementation decisions involved with system devel-
opment. The chief programmer (or surgeon) defi ned the program speci-
fi cations, designed the program, coded it, tested it, and wrote the
documentation. The chief was assisted in their tasks by an operating
team of support staff. Their immediate assistant (or copilot) was only
slightly less expert than the chief programmer. The copilot was the chief
programmer ’ s mirror and alter ego, serving not only as an emergency
backup or stand-in but also as an adviser, discussant, and evaluator.
Although the assistant knew the program code intimately and may even
have written some of it, it was the chief programmer who was ultimately
responsible for it.

 Other members of the Brooks ’ s surgical team included an administra-
tor, who handled schedules, money, personnel issues, and hardware
resources; an editor, who provided the fi nishing touches to the chief
programmer ’ s documentation; two secretaries, who dealt with corre-
spondence and fi ling; a program clerk, who maintained all the technical
records for the project; a “ toolsmith, ” who built, constructed, and main-
tained the interactive tools used by the rest of the team for programming,
debugging, and testing; a tester, who served as the chief programmer ’ s
adversary and assistant, developed test plans to challenge the integrity
of the program design, and devised test data for day-to-day debugging;
and fi nally, the “ language lawyer, ” who delighted in the mastery of the
intricacies of a programming language. The language lawyer, unlike the
chief programmer, was not involved in big-picture issues or system
design; the lawyer ’ s responsibility was fi nding “ neat and effi cient
ways to use the language to do diffi cult, obscure, or tricky things. ”
Language lawyers were usually called in only for special, short-term
assignments. 40

 The advantage to the CPT approach, according to Mills and Brooks,
was that it dramatically simplifi ed communications between team
members. Whereas a large, hierarchical organization of X number of
employees could require as many as (X 2 – X)/2 independent paths of

208 Chapter 8

communication, in the CPT model all essential information passed
through the person of the chief programmer. All team members reported
to the chief directly and did not communicate with each other directly.

 By centralizing all decision making in the person of the chief program-
mer, this approach assured the maintenance of the program ’ s structural
integrity. Brooks compared the conceptual architecture of the typical
large software project to the haphazard design of many European cathe-
drals; the patchwork structure of these cathedrals revealed an unpleasant
lack of continuity, refl ecting the different styles and techniques of differ-
ent builders in different generations. Brooks preferred the architectural
unity of the cathedral at Reims, which derived “ as much from the integ-
rity of design as from any particular excellences. ” This integrity was
achieved only through the “ self-abnegation of eight generations of build-
ers, ” each of whom “ sacrifi ced some of his ideas so that the whole might
be of pure design. ” Using wonderfully evocative biblical language, Brooks
extolled the virtues of a unifi ed conceptual design: “ As the child delights
in his mud pie, so the adult enjoys building things, especially things of
his own design. I believe that this delight must be an image of God ’ s
delight in making things, a delight shown in the distinctiveness and
newness of each leaf and each snowfl ake. ” 41 Only the CPT approach
could guarantee such a degree of uncompromised architectural
integrity.

 The CPT approach differed from hierarchical systems methodologies
in a number of essential characteristics. Whereas the hierarchical model
allowed for (and in fact encouraged) the use of novice programmers, the
CPT was built entirely around skilled, experienced professionals. This
implied a radically different approach to professional development. Each
member of the team was encouraged to develop within their own par-
ticular disciplinary competency; that is, it wasn ’ t necessary to become a
surgeon to advance one ’ s career. For example, an aspiring language
lawyer could continue to focus on their technical specialty without
feeling pressure to transfer into management. The CPT approach embod-
ied the belief that computer programming was a legitimate, respectable
profession.

 The CPT also refl ected changing contemporary notions about the
nature of programming ability. The primary justifi cation for using small
teams of experienced programmers rather than large hordes of novices
was the belief that one good programmer was worth at least ten of
their average colleagues. In the person of the chief programmer, the
innate technical abilities of the superprogrammer were merged with the

Engineering a Solution 209

organizational authority of the traditional manager. The chief program-
mer was both a technical genius and expert administrator. Programming
aptitude could not be abstracted from its embodiment in particular indi-
viduals; skilled programmers were anything but replaceable components
of an automated software factory. In the elite surgical team model, the
contributions of talented professionals far outweighed those provided by
traditional management techniques or development methodologies.

 Besides endowing computer programmers with considerable institu-
tional power, The Mythical Man-Month reinforced the notion that pro-
gramming was an exceptional activity, unlike any other engineering or
manufacturing discipline. Brooks ’ s suggestion that programming was
akin to poetry strongly implied that programming was not an activity
that could be readily systematized. What Brooks proposed was the adop-
tion of useful tools and techniques, not some overarching methodology.
As he later declared in a famous article titled “ No Silver Bullet, ” although
the management of large programming projects could be improved incre-
mentally, there were no easy solutions to be derived from the lessons of
traditional manufacturing. 42

 Like the hierarchical systems model, the CPT was intimately linked
to specifi c techniques and technologies. Since all major decisions relating
to both design and implementation had to be made by a single super-
programmer, the CPT approach effectively demanded the adoption of
top-down development techniques. Top-down programming was one of
the foundational principles of the structured programming approach to
software engineering advocated by many academic computer scientists
in this period. The essence of top-down programming was the concept
of abstraction: by proceeding step by step from general design goals to
the specifi c implementation details, a systems architect could individually
manage the otherwise-unmanageable complexity of a large software
development project. The use of top-down programming techniques
enabled the authoritarian chief programmer to maintain the architectural
integrity that Brooks believed was so central to the design of useful and
beautiful software programs. The heyday of the structured programming
movement was coincident with the publication of The Mythical
Man-Month , and the attractiveness of the surgical team approach to
management was reinforced by, and helped to reinforce, the popularity
of structured programming as a development technology.

 In addition to borrowing heavily from the established techniques and
technologies of structured programming, the CPT model also helped to
defi ne technological innovations of its own. The development support

210 Chapter 8

library (DSL) was a system of documents and procedures that provided
for the “ isolation and delegation ” of secretarial, clerical, and machine
operations. 43 In earlier accounts the DSL is referred to as the program-
ming production library. Basically, the DSL was a set of technologies
(including coding sheets, project notebooks, and computer control cards)
that facilitated communications within the development team. It was
envisioned as a means of further centralizing control in the hands of the
chief programmer. “ The DSL permits a chief programmer to exercise a
wider span of control over the programming, resulting in fewer program-
mers doing the same job. This reduces communications requirements
and allows still more control in the programming. With structured
programming, this span of detailed control over code can be greatly
expanded beyond present practice; the DSL plays a crucial role in this
expansion. ” 44

 By providing a core set of public programs and documents that were
highly visible to all members of the surgical team, the DSL was supposed
to discourage the “ traditional ad hoc mystique ” associated with conven-
tional craft-oriented programming. 45 The chief programmer could read,
understand, and validate all of the work done by their subordinates. The
technology of the DSL was clearly intended to reinforce a conventional
management agenda: the transfer of control over the work practices of
programmers into the hands of the managerial superprogrammer. In
language remarkably reminiscent of the “ head versus hand ” dialectic
emphasized by Karl Marx and his disciples, one proponent of the CPT
approach described the DSL as having been “ designed to separate the
clerical and intellectual tasks of programming. ” 46

 Although the CPT received much attention in the industry literature,
it does not seem to have been widely or successfully implemented. 47 The
original concept had been popularized by Baker in a series of articles
documenting the successful implementation of the approach by Mills.
Mills had been the chief programmer in a team that developed a com-
puterized information bank application for the New York Times . He
claimed to accomplished in twenty-two months what a traditionally,
hierarchically managed group would have required at least several more
years of calendar time to develop. Baker ’ s favorable reports on the New
York Times project, which involved eighty-three thousand lines of code
and eleven man-years of effort, convinced many computer professionals
of the scalability of the CPT approach. The project was portrayed as
having high productivity and low error rates, although questions later

Engineering a Solution 211

arose about the accuracy of Baker ’ s assessment; Mills ’ s system eventually
proved unsatisfactory and was replaced with a less ambitious system. 48
For the time being, however, the New York Times system was considered
to be proof positive of the effi ciency of the CPT approach.

 Several objections to the CPT approach were raised in the contempo-
rary industry literature, though. The fi rst is that it was diffi cult to fi nd
individuals with enough talent and energy to fulfi ll all of the functions
required of the chief programmer. 49 The few who did exist were expen-
sive, and were not interested in working on small computers and mundane
applications. A second problem was a perceived overdependence on key
individuals implied in the CPT approach: “ What happens if [our super-
programmer] snaps up a more lucrative offer elsewhere? He ’ ll likely take
our back-up programmer with him, leaving us high-and-dry. ” 50 A number
of observers suggested that the surgical team model led to excessive
specialization. 51 The computer scientist C.A.R. Hoare derided the small-
team approach as a retreat “ to the age of the master craftsman — more
fashionably known as a chief programmer. ” 52 There were widespread
doubts about the ability of the small-team approach to scale up to the
needs of large development efforts.

 The most revealing criticisms of the CPT system, however, had to do
with the ways in which the presence of an elite administrator/program-
mer disrupted existing patterns of managerial authority: “ The CPT per-
petuates the prima donna image of the programmer. Instead of bringing
the programmer into the organization ’ s fold, it isolates and alienates him
by encouraging the programmer to strive for a superhero image. ” 53 The
CPT allowed for little participation by nontechnical administrators. A
textbook, Managing Software Development and Maintenance , from
1981 corrected this perceived overdependence on technical personnel by
proposing a revised chief programmer team (RCPT) in which “ the project
leader is viewed as a leader rather than a ‘ super-programmer. ” Whereas
the chief programmer was clearly a technical specialist, the project leader
was “ an expert conceptualizer, designer, and project manager ” — but not
necessarily a superprogrammer. Because the project leader possessed
both project management and technical skills, they were “ able to direct,
oversee, and review all technical functions. ” 54

 The RCPT approach was clearly intended to address a concern faced
by many traditionally trained department-level managers — namely, that
top executives had “ abdicated their responsibility and let the ‘ computer
boys ’ take over. ” 55 As was described in chapter 7, it was this fear of

212 Chapter 8

the loss of control over valuable occupational territory that most deter-
mined contemporary reactions to proposed managerial solutions to the
software crisis.

 Computer Programming as a Human Activity

 The hierarchical model unapologetically attempted to make program-
mers ’ work as routine and mechanical as possible; the CPT provided a
real creative outlet for a single superprogrammer only. For moderately
skilled programmers attempting to establish for themselves a legitimate
professional identity that would provide them with autonomy and status,
both models were equally uninviting. What was needed was an alterna-
tive organizational model that could simultaneously support two seem-
ingly contradictory agendas: increased managerial control over the
 “ irrational ” programming process, and ongoing support for the indepen-
dent professional authority of programmers.

 In 1969, the programmer and computing consultant Weinberg pub-
lished The Psychology of Computer Programming . The book claimed to
present the fi rst detailed empirical study of computer programming as a
complex human activity, and indeed, although Weinberg was neither a
psychologist nor an ethnographer, his observations appear to be remark-
ably accurate and insightful. At the very least his work was well received
by practitioners, whose personal experiences seem to have resonated
with the anecdotes provided by Weinberg. The Psychology of Computer
Programming has been widely cited as an accurate description of what
really went on in actual programming projects.

 Weinberg ’ s book did more than simply portray existing attitudes and
practices, though. It also proposed a new method for organizing and
managing teams of software developers. The problem with existing hier-
archical methods of software production, according to Weinberg, was
that they encouraged programmers to become “ detached ” from the
social environment — and overly possessive of their software. When pro-
grammers invest so much of themselves in their programs, Weinberg
suggested, they lose the ability to evaluate their creations objectively. The
immediate result was bad software — and ultimately a software crisis.
 “ Programmers, if left to their own devices, will ignore the most glaring
errors in their output — errors that anyone else can see in an instant. ”
The solution to the crisis provoked by “ property-oriented ” program-
ming, argued Weinberg, was the adoption of the “ egoless programming
team, ” in which every programmer is equal, and where all of the code

Engineering a Solution 213

is “ attached ” to the team rather than to the individual. 56 By opening up
the programming process to self-refl ection and criticism, the egoless
(or adaptive) programming model would increase effi ciency, eliminate
errors, and enhance communication — all without inhibiting the creative
abilities of programmers.

 Although egoless programming represented a relatively radical depar-
ture from traditional software development methodologies, it was predi-
cated on fairly conventional notions about the nature of programming
ability. For Weinberg, there was little doubt that the majority of people
in programming were detached personality types who preferred to be left
to themselves. This tendency toward detachment was reinforced “ both
by personal choice and because hiring policies for programmers are often
directed toward fi nding such people. ” 57 This detachment from people
often led programmers to become excessively attached to their products.
The “ abominable practice ” of attaching their names to their software
(as in Jules ’ Own Version of the International Algebraic Language, better
known as the JOVIAL programming language) offered evidence of the
programmer ’ s inability to disassociate themselves from their creations.
The JOVIAL programming language was created for the U.S. Air Force
in the late 1950s by the SDC. As it was to be a variant of the International
Algebraic Language (eventually renamed ALGOL), it was suggested that
it be called OVIAL (Our Own Version of the International Algebraic
Language), but since OVIAL apparently had “ a connotation relative to
the birth process that did not seem acceptable to some people, ” the name
was soon changed to JOVIAL. It was later decided that the J in JOVIAL
would stand for Jules Schwartz, one of the programmers involved in the
project. Hence, Jules ’ Own Version of the International Algebraic
Language. This proprietary sense of ownership on the part of the creator
was not necessarily an unusual or even undesirable tendency; after all,
artists “ owned ” paintings, authors “ owned books, ” and architects
 “ owned ” buildings. In many cases these attributions led to the admira-
tion and emulation of good workers by lesser ones. What was different
about computer programs, however, was that they were owned exclu-
sively by their creators. Good programs, unlike good literature, were
never read by anyone other than the author. Thus, according to Weinberg,
 “ the admiration of individual programmers cannot lead to an emulation
of their work, but only to an affectation of their mannerisms. ” 58 Junior
programmers were unable to benefi t from the wisdom and experience of
their superiors. The only thing available to emulate was their manner-
isms. The result was the perpetuation of bad work habits and personal

214 Chapter 8

eccentricities — “ the same phenomenon we see in ‘ art colonies, ’ where
everyone knows how to look like an artist, but few, if any, know how
to paint like one. ” 59

 Weinberg believed that the use of small, unstructured programming
teams and regular code reviews would alleviate the problem of program-
mer attachment. Each of the programmers in the group would be respon-
sible for reading and reviewing all of the application code. Errors that
were identifi ed during the process were simply “ facts to be exposed to
investigation ” with an eye toward future improvement, rather than per-
sonal attacks on an individual programmer. 60 By restructuring the social
environment of the workplace and thereby restructuring the value system
of the programmers, the ideal of egoless programming would be achieved.
The result would be an academic style, peer-review system that would
encourage high standards, open communication, and ongoing profes-
sional development. Junior programmers would be exposed to good
examples of programming practice, and more senior developers could
exchange subtle tricks and techniques. A piece of completed code would
not be considered the product of an individual team member but rather
of the team as a whole. The openness of this process would also encour-
age the development of proper documentation.

 There were a number of other salient features of the egoless (or adap-
tive) programming team that differed from conventional team-oriented
approaches. The most unusual and signifi cant was that all major design
and implementation decisions were to be determined by consensus
instead of decree. There were no assigned team leaders, at least not in
the conventional sense. Leadership shifted between team members based
on the needs of the moment and the strength of the individual team
members (hence the term adaptive). For example, if a particular phase
of the project involved a lot of debugging, one of the team members
especially skilled at debugging might assume the temporary role of team
leader during that period. Even then, all of the important decisions would
be made democratically. Work was assigned based on the strengths — and
preferences — of the individual team members.

 The democratic approach to software project management, in
Weinberg ’ s view, offered a number of advantages. It encouraged com-
munication and fl exibility. Schedule and design changes could be more
readily accommodated, and resources could be allocated effi ciently.
Second, the lack of a formal hierarchy made the adaptive team signifi -
cantly more robust than more structured alternatives. For instance, the
adaptive team could readily adjust to the addition or removal of members.

Engineering a Solution 215

The success of the project would no longer hinge on the presence of
any one particular individual. In an era in which the performance of
programmers was believed to vary dramatically from programmer to
programmer, and when turnover in the software industry averaged
upward of 25 percent annually, this was an appealing benefi t. Last but
not least, the social dynamics of the democratically managed adaptive
team appeared to correspond well with the actual experiences and expec-
tations of the average working programmer. 61 Weinberg provided a great
deal of anecdotal evidence suggesting that programmers worked best in
environments in which they participated in all aspects of project develop-
ment, from design to implementation to testing. By eliminating the things
that caused programmers to become dissatisfi ed, turnover could be
reduced signifi cantly. The adaptive team approach to programming,
argued Weinberg, was not only cost-effective and effi cient; it kept the
programmers happy. And of course, happy programmers were produc-
tive programmers.

 Like the CPT and the hierarchical system of management, egoless
programming constituted a solution to a specifi c conception of the bur-
geoning software crisis. The advocates of the adaptive team approach
shared with many of their contemporaries certain basic assumptions
about the nature of programming as a skill and activity: that program-
ming was an essentially creative undertaking; that individual program-
mers varied enormously in terms of style and productivity; and that
current programming practices resembled craft more than they did
science. They also believed that despite these exceptional characteristics,
software development was an activity that could, to a certain extent, be
managed and controlled. What was unusual about the adaptive team
solution was the degree to which it offered computer programmers a
legitimate career path and an attractive professional identity.

 In the hierarchical system of management, programmers were gener-
ally regarded as technicians rather than professionals. The few program-
mers who rose through the hierarchy did so by abandoning their technical
interests in favor of managerial careers. The CPT offered status and
authority only to a small corps of elite superprogrammers. All but the
most talented individuals served as much less privileged support person-
nel. As will be seen, many programmers were extremely concerned with
issues of professional development, both as they related to themselves as
individuals and to their larger disciplinary community. The journal arti-
cles, job advertisements, and letters to the editor from this period show
that many programmers were worried about becoming dead-ended in

216 Chapter 8

purely technical positions. Hierarchical organizations and CPTs did not
offer them an attractive model of professionalization.

 The adaptive team approach, in comparison, offered promising career
opportunities to a wide range of software workers. The goal of the adap-
tive team was to foster a family atmosphere in which every member ’ s
contributions were important. Team members were anything but inter-
changeable units. Programmers could cultivate their technical skills and
advance their careers without feeling pressure to transfer into administra-
tion. As one knowledgeable observer suggested, in the adaptive team
approach “ a good programmer does not get further and further away
from programmers, as occurs in a hierarchical structure when he moves
up the management ladder. Instead, he stays with programming and
gravitates toward what he does best. ” 62

 Judging from the response it received in the industry literature, The
Psychology of Computer Programming appealed to a broad popular
audience. 63 Weinberg ’ s anecdotes about the real-life work habits of pro-
grammers rang true to many practitioners. His descriptions of the mis-
chievous pranks that programmers played on their managers, for example,
or the social signifi cance of a strategically located Coca-Cola dispenser,
captured for many of his readers the essential character of the program-
ming profession. The book has remained in continuous publication since
1969, and was widely celebrated as one of the few classic texts in the
programming literature. 64 Weinberg presented a romantic portrait of
software development that emphasized the quiet professionalism of
skilled, dedicated programmer-craftspeople. Of the many models for
software engineering that were proposed in the late 1960s and early
1970s, the egoless programmer was by far the most attractive to the
average practitioner.

 Yet the popularity of egoless programming extended beyond the com-
munity of practitioners. Weinberg ’ s theories about the effi ciency of small
family work groups and bottom-up, consensus decision making reso-
nated with certain popular contemporary management theories. In 1971,
Antony Jay ’ s Corporation Man provided an ethological analysis of
 “ tribal behavior ” in modern corporations that reinforced Weinberg ’ s
conclusion that six- to ten-member teams were a “ natural ” organiza-
tional unit. 65 Douglas McGregor ’ s The Human Side of Enterprise dis-
criminated between the Theory X approach to management, which
assumed that because of their innate distaste for regimented labor, most
employees must be controlled and threatened before they would work
hard enough, and the Theory Y belief that the expenditure of physical

Engineering a Solution 217

and mental effort in work is as natural as play or rest, and that the
average person learns, under proper conditions, not only to accept but
to seek responsibility. 66 For the supporters of Theory Y management,
Weinberg ’ s adaptive team represented an exemplary model of the par-
ticipative problem-solving approach. 67

 The concept of egoless programming was rarely adopted in toto,
though. In later descriptions of the chief programming team, Baker and
Mills claimed that their system represented a form of egoless program-
ming, in the sense that the code produced by the chief programmer was
open for inspection by other members of the surgical team. By this point,
egoless programming was interpreted by many managers in terms very
favorable to management: it meant that programmers should not be
defensive about code reviews, task assignments, and other management-
imposed structures. The adaptive team terminology in this case seems to
have been adopted for public relations purposes only. The whole point
of the chief programming team was to consolidate all aspects of design
and implementation into the hands of a single superprogrammer. It
would have been impossible to maintain the level of architectural integ-
rity desired by Brooks if the chief programmer were not heavily invested
in their own individual conceptual structure.

 Indeed, by the mid-1970s the language of egoless programming
appears to have been almost entirely transformed and co-opted by con-
ventional managers. These managers picked up on the idea that requiring
programmers to develop open, nonpropriety code allowed for increased
administrative oversight. To them, egoless programming meant that “ all
programmers were to adhere to rules that would make their products
understandable to others and make the individual programmer replace-
able. ” 68 Weinberg ’ s original intention that egoless programming would
enable programmers to develop as autonomous professionals appears to
have gone entirely by the wayside. One management consultant reminded
his audience that managers should “ stress the non-punitive nature of the
new approaches. Egoless programming is designed to help the program-
mer, not point out his faults. ” 69 The not-so-subtle subtext of this reminder
is that by this period, egoless programming had acquired a reputation
for being worker-hostile management jargon.

 Although The Psychology of Computer Programming received a great
deal of popular attention for its descriptive verisimilitude, it was less
successful in its prescriptive capacity. Weinberg ’ s recommendations do
not appear to have been taken seriously by many academic or industry
leaders. It may be that his adaptive teams did not scale well to large

218 Chapter 8

development efforts, and were used in nothing but small local projects.
They may have proven ineffi cient or diffi cult to implement, although
there is evidence that the use of informal, unstructured programming
teams was standard practice in the industry. At least one author rejected
the adaptive team approach because it failed to provide adequate mecha-
nisms for formal managerial control. 70 It seems likely that this last objec-
tion was what ultimately proved fatal to Weinberg ’ s proposal. The
adaptive team approach reinforced the notion that programmers were
independent professionals. It shifted organizational control and author-
ity away from managers. It ceded valuable occupational territory to a
group whose institutional power base had not yet been fi rmly estab-
lished. Weinberg ’ s adaptive teams were unappealing to everyone but
programmers, and programmers did not have the leverage to push
through such an unpopular agenda.

 From Exhilaration to Disillusionment

 The 1968 NATO Conference on Software Engineering was, according
to contemporary accounts, an exhilarating experience for many partici-
pants. The public acknowledgment of a perceived software crisis was a
cathartic moment for the industry. As one prominent computer scientist
described it, “ The general admission of the software failure in this group
of responsible people is the most refreshing experience that I have had
in a number of years, because the admission of shortcomings is the
primary condition for improvement. ” 71 Despite the general recognition
of impending crisis, the spirit of the conference was “ positive, even lib-
eratory. ” 72 Attendees rallied behind the organizers ’ call for “ a switch
from home-made software to manufactured software, from tinkering to
engineering. ” 73 Software engineering emerged as the dominant rhetorical
paradigm for discussing the future of software development. By adopting
the “ types of theoretical foundations and practical disciplines that are
traditional in the established branches of engineering, ” computer pro-
gramming could be successfully transformed from a black art into an
industrial discipline. Software workers from a wide variety of disciplines
and backgrounds adopted the rhetoric of software engineering as a
shared discourse within which to discuss their mutual professional
aspirations.

 In order to capitalize on the enthusiasm generated in the wake of the
Garmisch meeting, the NATO Science Committee quickly organized a
second conference to be held the following year in Rome. The Rome

Engineering a Solution 219

conference in 1969 was intended to have an explicitly practical focus:
the goal was to develop specifi c techniques of software engineering. As
with the Garmisch meeting, a deliberate and successful attempt was
made to attract a wide range of participants. The resulting conference,
however, bore little resemblance to its predecessor. Whereas the Garmisch
participants had coalesced around a shared sense of urgency, the Rome
conference was characterized by confl ict. According to the same observer
who had referred glowingly to the Garmisch conference as a “ most
refreshing experience, ” the discussions at the Rome meeting were
 “ sterile, ” the various groups of attendees “ never clicked, ” and “ most
participants ” left feeling “ an enormous sense of disillusionment. ” 74 A
prolonged debate about the establishment of an international software
engineering institute proved so acrimonious and divisive that it was
omitted from the conference proceedings: “ All I remember is that it
ended up being a lot of time wasted, and no argument ever turned up
to make something happen — which is probably just as well. ” 75

 Why was the Rome conference considered to be such a disappoint-
ment relative to Garmisch? Many of the same participants had attended
both meetings; there had been no signifi cant changes in terms of demo-
graphic makeup or organizational structure. Neither were there any
major new issues or technologies introduced or discussed. Many of the
Rome presentations covered material that had previously been addressed,
albeit at a less detailed and technical level, at Garmisch. And yet while
the Garmisch conference is widely considered to have marked a pivotal
moment in the history of software development — “ a major cultural shift
in the perception of programming ” — the Rome one seems to have been
deliberately forgotten. 76

 One obvious difference between the two events is that the earlier
conference had encouraged participants to focus their attention on a
commonly perceived but vaguely defi ned emergency, while the latter
forced them to deal with specifi c controversial issues. Software engineer-
ing had emerged as a compelling solution to the software crisis in part
because it was fl exible enough to appeal to a wide variety of computing
practitioners. The ambiguity of concepts such as professionalism, engi-
neering discipline, and effi ciency allowed competing interests to partici-
pate in a shared discourse that nevertheless enabled them to pursue vastly
different personal and professional agendas. Industry managers adopted
a defi nition of professionalism that provided for educational and certifi -
cation standards, a tightly disciplined workforce, and increased corpo-
rate loyalty. Computer manufacturers looked to engineering discipline

220 Chapter 8

as a means of countering charges of incompetence and cost ineffi ciency.
Academic computer scientists preferred a highly formalized approach to
software engineering that was both intellectually respectable and theo-
retically rigorous. Working programmers tended to concentrate on the
more personal aspects of professional accomplishment, including auton-
omy, status, and career longevity. The software engineering model
seemed to offer something for everyone: standards, quality, academic
respectability, status, and autonomy. As Michael Mahoney has sug-
gested, software engineering “ was not coined to characterize an ongoing
activity but rather to express a desire for one. By 1967, when the com-
puter industry was less than twenty years old, people felt the need for
software engineering, even if they were not sure what it was. ” 77

 Yet the rhetorical fl exibility that had served the consensus-seeking
Garmisch participants proved unwieldy when it came to establishing
specifi c standards and practices. The Rome conference illuminated in
sharp relief the vast differences that existed between competing visions
for the software engineering discipline. Unlike the confl ict between
workers and managers described in the previous chapter, these divisions
were largely internal to the programming community. The primary split
was between academic computer scientists and commercial software
developers. The industry programmers resented being invited to Rome
 “ like a lot of monkeys to be looked at by theoreticians ” ; the theoreticians
complained of feeling isolated, of “ not being allowed to say anything. ” 78
As the editors of the conference proceedings have pointed out, the “ lack
of communication between different sections of the participants ” became
the “ dominant feature ” of the meeting. 79 “ The seriousness of this com-
munications gap, ” and the realization that it “ was but a refl ection of the
situation in the real world, ” caused the gap itself to become a major
topic of discussion. 80 It was to remain an issue of central concern to the
programming community for the next several decades.

 Indeed, in the years after 1968 the rhetoric of the software crisis
became even more heated. In 1987 the editors of Computerworld com-
plained that “ the average software project is often one year behind plan
and 100% over budget. ” 81 In 1989 the House Committee on Science,
Space, and Technology released a report highly critical of the “ shoot-
from-the-hip ” practices of the software industry. Among other things,
the report called for a professional certifi cation program for program-
mers. The thirty-three-page report, “ Bugs in the Program: Problems in
Federal Government Computer Software Development and Regulation, ”
was written by staff members James H. Paul and Gregory C. Simon of

Engineering a Solution 221

the Subcommittee on Investigations and Oversight of the House
Committee on Science, Space, and Technology. 82 Later that same year
the Pentagon launched a broad campaign to “ lick its software problems ”
that included funds for a Software Engineering Institute and the wide-
spread adoption of the ADA programming language. ADA was touted
by Department of Defense offi cials as “ a means of replacing the idiosyn-
cratic ‘ artistic ’ ethos that has long governed software writing with a more
effi cient, cost-effective engineering mind-set. ” 83 The list of critical reports,
denunciations of current practices, and proposed silver-bullet solutions
goes on and on. In his 1996 summary of the legacy the fi rst NATO
Conference, W. Wayt Gibbs suggested that “ a quarter of a century later
software engineering remains a term of aspiration, ” rather than a real
accomplishment: “ The vast majority of computer code is still hand-
crafted from raw programming languages by artisans using techniques
they neither measure nor are able to repeat consistently. ” 84

 9

 Perhaps you ’ ve noticed that it ’ s getting more and more diffi cult to locate and
then hire the best people. This isn ’ t an illusion; it ’ s real, it ’ s signifi cant, and it ’ s
only going to get worse. It is, in fact, the heart of the real software crisis: There
is more software to be developed than there are capable developers to do it.
Demand will continue to outstrip supply for the foreseeable future. Hence, more
and more software will be behind schedule, over budget, underpowered, and of
poor quality — and there ’ s nothing we can do about it.

 — Bruce Webster, “ The Real Software Crisis, ” 1988

 Software ’ s Chronic Crisis

 In the closing minutes of the twentieth century, computer programmers
around the world sat huddled around their computer screens, awaiting
with bated breath the fl ip of a single digital bit. At stake was continued
functioning of the millions of computerized systems that they and their
fellow programmers had developed over the course of the previous half-
century, many of them considered vitally important to the continued
functioning of crucial infrastructure, both military and civilian. At mid-
night on December 31, 1999, it was widely believed, at least some of
these systems would crash as a result of the inability of their internal
clocks to distinguish properly between the years 2000 and 1900. The
possible consequences of this seemingly trivial programming error
included banks failing, airplanes falling out of the sky, possibly even an
unintended nuclear war. 1 “ The Y2K problem is the electronic equivalent
of the El Ni ñ o, ” the United States Deputy Secretary of Defense John
Hamre had warned a year earlier: “ This is going to have implications in
the world . . . that we can ’ t even comprehend. ” 2 Over the course of the
months leading up to the year 2000, computer programmers in the
United States alone had invested more than $300 billion in last-minute
attempts to remediate the possible consequences of the so-called Y2K

 Conclusions: Visible Technicians

224 Chapter 9

Bug; even still, the fi nal minutes prior to midnight were tense with
uncertainty.

 Like most crises, the salience of the Y2K problem diminished almost
immediately upon its failure to materialize. To the average citizen, the
fuss that the computer people made about Y2K was just one of several
apocalyptic scenarios that swirled around the turn of the millennium, all
of which seem, in retrospect, self-evidently unfounded. It was diffi cult to
remember, even just a few years later, how much time, energy, and effort
were expended in addressing this latest iteration of the software crisis.
For experienced observers of the computer industry, however, the short-
comings of contemporary software development practices revealed by
Y2K were both very real and depressingly familiar. Once the proximate
technical cause of the problem had been clearly identifi ed (the short-
sighted decision, intentional or otherwise, to code calendar year data
with two digits instead of four; i.e., “ 72 ” rather than “ 1972 ”), the dis-
cussion quickly turned to the deeper, more endemic problems associated
with software development: haphazard techniques, a lack of profession-
alism, and insuffi cient managerial controls.

 In many respects, the Y2K problem was just another in long series of
software crises which, as we have seen, have plagued the computer
industry since its very inception. But Y2K in particular highlighted some
of the lesser-known facets of the seemingly perpetual software crisis, the
most interesting and surprising of which was the problem of software
maintenance.

 The problem of maintenance is a ubiquitous but neglected element of
the history of technology. All complex technological systems eventually
break down and require repair (some more than others); as David
Edgerton has suggested, maintenance is probably the central activity of
most technological societies. 3 But maintenance is also low-status, diffi -
cult, and risky. Engineers and inventors do not like, and generally do
not perform maintenance, and therefore historians of technology have
largely ignored it.

 The problem of maintenance is particularly challenging for both prac-
titioners and historians of computing. In theory, software should never
need maintenance because software does not break down or wear out,
at least in the conventional sense. Once a software-based system is
working, it will work forever (or at least until the underlying hardware
breaks down — but that is generally considered someone else ’ s problem).
Occasionally a stray cosmic ray might fl ip an unexpected bit in a soft-

Conclusions: Visible Technicians 225

ware system and cause an error, but generally speaking software can
never be broken.

 Except that software does break — all the time, at great expense and
inconvenience to its users. In fact, from the early 1960s on, software
maintenance has represented between 50% and 70% of all total expen-
ditures on software. 4 There is a strong argument to be made that the
software crisis of the late 1960s was essentially a maintenance problem:
what became increasingly expensive about software in this period was
not so much development as ongoing maintenance. 5 In any case, from
the 1960s to the present, it has continued to absorb between one half
and two thirds of all software-related resources. 6

 But if software is a technology that can never be broken, what does
it mean for software to stop working? The most obvious answer is that
software can contain errors in implementation. Maurice Wilkes, one of
the fi rst people to program a modern, stored-program computer, famously
recalled the moment in June 1949 when he suddenly realized that “ a
good part of the remainder of my life was going to be spent in fi nding
errors in my own programs. ” 7 Wilkes was describing the process of
debugging (the elimination of fl aws in the original design or implementa-
tion, rather than the repair of accumulated errors), but the larger impli-
cation for the computing community is obvious: the delivery of a working
application was only the beginning of the life-cycle of a software applica-
tion. A programmer could (and many did) spend the majority of their
career chasing down the bugs that gradually revealed themselves in the
operation of a complex software-based system. In this respect, runs the
well-worn joke, programming a computer is a little bit like having sex:
 “ One mistake and you have to support it for the rest of your life. ”

 But thinking about maintenance solely in terms of fi xing bugs is mis-
leading. Fixing such bugs in implementation accounts for only a minority
of software maintenance. One exhaustive study from the early 1980s
estimated such emergency fi xes occupied at most one fi fth of all software
maintenance workers. 8 Even when the ongoing process of debugging
software is excluded, maintenance still accounts for more than half of
the overall cost of software development.

 The majority of software maintenance involves what are euphemisti-
cally referred to in the literature as “ enhancements. ” These enhance-
ments sometimes involve strictly technical measures — such as implementing
performance optimizations — but more commonly are what Richard
Canning, one of the computer industry ’ s most infl uential industry

226 Chapter 9

analysts, described as “ responses to changes in the business environ-
ment. ” 9 This wonderfully fl exible phrase includes the introduction of
new functionality, as dictated by market, organizational, or legislative
develops and changes in the larger technological or organizational system
in which the software is inextricably bound. Software maintenance also
incorporates such apparently nontechnical tasks as “ understanding and
documenting existing systems; extending existing functions; adding new
functions; fi nding and correcting bugs; answering questions for users and
operations staff; training new systems staff; rewriting, restructuring,
converting, and purging software; managing the software of an opera-
tional system; and many other activities that go into running a successful
software system. ” 10 By the early 1980s, the industry and technical litera-
ture had settled on a shared taxonomy for talking about software main-
tenance: There was corrective maintenance (bug fi xes), perfective
maintenance (performance improvements), and adaptive maintenance
(adaptations to the larger environment). Adaptive maintenance so
dominated real-world maintenance that many observers pushed for an
entirely new nomenclature; software maintenance was a misnomer, they
argued: the process of adapting software to change would better be
described as “ software support, ” “ software evolution, ” or “ continuation
engineering. ” 11

 The concept of adaptive maintenance captures neatly what has been
referred to throughout this history as the “ heterogeneous ” nature of
software. Despite their seemingly intangible nature, software applica-
tions are always inextricably linked to a network of social and techno-
logical systems. This means that although the material costs associated
with building software are low (in comparison with traditional, physical
systems), the degree to which software is embedded in larger, heteroge-
neous systems makes starting from scratch almost impossible. Consider
Frederick Brooks ’ s widely cited claim that “ the programmer, like the
poet, works only slightly removed from pure-thought stuff. He builds
his castles in the air, from air, creating by exertion of the imagination. ” 12
To a certain degree, this is true — at least when the programmer is
working on constructing a new system. But when charged with maintain-
ing a “ legacy ” system, the programmer is working not with a blank slate
but a palimpsest. The ease with which computer code can be written,
modifi ed, and deleted belies the durability of the underlying artifact.
Because software is a tangible record, not only of the intentions of the
original designer but of the social, technological, and organization
context in which it was developed, it cannot be easily modifi ed. “ We

Conclusions: Visible Technicians 227

[programmers] never have a clean slate, ” argued Barjne Stroudstroup,
the creator of the widely used C++ programming language, “ Whatever
new we do must make it possible for people to make a transition from
old tools and ideas to new. ” 13 In this sense, software is less like a poem
and more like a contract, a constitution, or a covenant. Software is
history, organization, and social relationships made tangible.

 One of the remarkable implications of all of this surprising durability
of software is that the software industry, which many consider to be one
of the fastest-moving and most innovative industries in the world, is
perhaps the industry most constrained by its own history. As one observer
recently noted, today there are still more than 240 million lines of com-
puter code written in the programming language COBOL, which was
fi rst introduced in 1959 — and which was derided, even at its origins, as
being backward looking and technically inferior. And yet 90% of the
world ’ s fi nancial transactions are processed by applications written in
COBOL, as is 75% of all business data processing. Five out of eight large
corporations rely on COBOL code, many of them substantially. 70% of
Merrill Lynch applications are coded in COBOL. The total value of
active COBOL applications — many of them developed prior to the
1980s — is as high as $2 trillion. 14 All of this COBOL code needs to
actively maintained, modifi ed, and expanded. The vast majority of the
code that had to be remediated prior to Y2K was written in COBOL.

 That fact that so much of the $300 billion that was spent on Y2K
involved the maintenance of existing code highlighted both the continued
signifi cance of, and dissatisfaction with, the work of computer program-
mers. Like all forms of maintenance, software maintenance is diffi cult,
unpopular, and largely unrewarding. The maintenance requires pro-
grammers to work on live systems, where mistakes and failures have real
and immediate consequences. Because maintenance does not generally
involve design, it is considered boring and low-status. And because of
the unique nature of software — its intangibility — software systems are
often coded before they are completely specifi ed. Many programmers
fi nd it easier to “ just start coding ” than to develop design documents.
Most programs are poorly documented (if at all), and so most mainte-
nance works involves intensive on-the-job learning. If ever a type of
programming requires real skill, experience, and intelligence, it is soft-
ware maintenance.

 The trouble and expense associated with rewriting so much of the
software that had been developed over the past several decades also
raised uncomfortable questions about why the software had not been

228 Chapter 9

written properly in the fi rst place. For some observers, at least, the Y2K
fi asco was yet another indication that computer programmers were lazy
and unprofessional. In the wake of Y2K, renewed criticisms were raised
against the “ artistic ethos ” of many programmers, their continued neglect
of the rigorous practices of software engineering, and their general failure
to serve as solid corporate citizens. 15 Once again, programmers were
castigated as outsiders, as “ cowboys ” and “ hackers ” ; once again, a
looming shortage of “ good ” and “ experienced ” programmers was
predicted.

 By the turn of the twenty-fi rst century, of course, such indictments of
the computer specialists had become almost conventional. By this point
the rhetoric of crisis had become so commonplace in the computer indus-
try literature that for many young programmers the software crisis was
 “ less a turning point than a way of life. ” 16

 This comes back to some of the central questions of this book: How
can we explain the continued existence of a seemingly perpetual crisis in
what is generally considered to be one of the most successful and profi t-
able industries of all time? How can we understand the role of computer
specialists — in many respects the paradigmatic “ knowledge workers ” of
post-industrial society — within this troubled framework of crisis, con-
fl ict, and contested identity? If, as Shoshona Zuboff has suggested, com-
puter-based technologies are not simply neutral artifacts, but rather
 “ embody essential characteristics that are bound to alter the nature of
work within factories and offi ces, and among workers, professionals,
and managers, ” then what are the “ essential characteristics ” of software
and software development that shape our understanding of work, iden-
tity, and power in the information technology industry (and the many
industries that rely on information technology)? 17 How can we under-
stand the social and occupational history of the computer programmer
in terms of a larger debate about the role of information technology in
organizational transformation? How can we understand the social and
occupational history of the computer programmer in terms of a larger
debate about the role of information technology in organizational
transformation?

 Drawing Boundaries/Construction Disciplines

 In his study of boundary work in Victorian science, sociologist Thomas
Gieryn suggests that the process of disciplinary demarcation can be best
understood through the study of rhetorical practice. Gieryn used the term

Conclusions: Visible Technicians 229

boundary work to describe the ideological style used by nineteenth-
century scientists in their attempts to create a public image favorable to
science by contrasting it favorably to nonscientifi c intellectual or techni-
cal activities. Depending on what they thought would be most convincing
to the audience that they were addressing, these scientists would repre-
sent their activities alternatively as being empirical or theoretical, pure
or applied. In other word, scientists used rhetoric that was intrinsically
fl exible, that allowed them to use different, and sometimes even contra-
dictory, defi nitions of what science was in an attempt to justify their
claims to authority or resources.

 This process of boundary work serves a number of practical purposes
for practitioners: the expansion of intellectual authority and career
opportunities; the denial of resources to deviants and nonprofessionals;
and the protection of autonomy from external infl uences. Boundary
work, according to Gieryn, functions as a “ sociological parallel to the
familiar literary device of a ‘ foil. ’ Just as readers come to know Holmes
better through contrasts to his foil Watson, so does the public better
learn about science through contrasts to non-science. ” 18

 The concept of boundary work is an indispensable tool for the histo-
rian of computing. Computer science as an academic discipline and
computer programming as an occupation have struggled with various
degrees of success to establish institutional boundaries. Programmers
have struggled to distinguish themselves from mere technical craftspeo-
ple, on the one hand, and scientists and engineers, on the other. In doing
so, they alternatively refer to the practice of programming as either an
art or a science, depending on whom is being addressed and for what
purpose. In the language of sociology, the “ vocabularies ” of the literary
arts and scientifi c engineering are the “ cultural repertoires ” that pro-
grammers use in the construction of “ ideological self-descriptions. ” 19

 The process of doing boundary work allowed programmers to mobi-
lize the internal inconsistencies of their discipline as ideological resources
with which to distinguish themselves from both craftspeople and scien-
tists. When it helped them accomplish their particular individual or
professional agenda, they talked about programming in artistic or arti-
sanal terms; at other times they portrayed it as a scientifi c or engineering
discipline. Although not every member of the computing community
valued equally the craft tradition and artistic sensibilities of the “ black
art ” of programming, enough did to make personal expressions of cre-
ativity an important aspect of the programming tradition. This concern
for aesthetics functioned as a shared community value, unifying the

230 Chapter 9

otherwise-disparate traditions of vocational programming and academic
computer science. As the Soviet computer scientist Andrei Ershov sug-
gested in a 1972 address to the Joint Computer Conference of the ACM,
 “ an understanding, a feeling for the aesthetic of programming, is needed,
and not only as a driving force for the programmer: it is necessary for
those who manage programmers, and especially for those who educate
and train them. ” This artistic sensibility was not simply essential for
cultivating creativity, Ershov argued, but also allowed computer experts
to avoid being converted “ what is simply a highly paid subgroup of the
working class. ” “ If such a tendency is to be resisted, ” Ershov suggested,
 “ a programmer must fi nd some system of inner values in his specialty,
values which can help him both to assimilate industrial methods and,
when necessary, to transcend them. ” 20

 At other points, of course, programmers were perfectly willing to lay
claim to the epistemological status of a fundamental science. The point
is that art and science were both rhetorical resources to be used in pursuit
of professional development and institution-building strategies. Like
Gieryn ’ s Victorian scientists, programmers are able to endow their dis-
cipline with “ just those characteristics needed to achieve professional and
institutional goals, and to change those attributed characteristics as cir-
cumstances warrant. ” 21 Many of the apparent confl icts within program-
ming should be reevaluated within the context of discipline formation
and boundary work.

 Despite the many differences in professional goals and theoretical
orientation that existed between the vocational programmers and the
academic computer scientists, the strength of their shared aesthetic values
and craft traditions provided a basis for community solidarity. Even at
the height of the software crisis, the average computer scientist had more
in common with the vocational programmer than they did with the mili-
tary and industrial managers. The software engineering movement failed
to provide adequate incentives to either of these groups, and therefore
failed to capture the full support of the majority of members of the pro-
gramming community.

 The goal of boundary work is the establishment of professional iden-
tity, and the sociology of a profession ’ s literature provides another useful
resource for interpreting the history of programming. During the 1950s
and 1960s, many white-collar occupations attempted to professionalize,
and computer programmers were no exception. 22 They established
professional societies, codes of ethics, and certifi cation and curriculum
standards. 23 Belonging to a profession provided an individual with a

Conclusions: Visible Technicians 231

 “ monopoly of competence, ” the control over a valuable skill that was
readily transferable from organization to organization. 24 Professionalism
provided a means of excluding undesirables and competitors; it assured
basic standards of quality and reliability; it provided a certain degree of
protection from the fl uctuations of the labor market; and it was seen by
many workers as a means of advancement into the middle class. 25
Programmers in particular saw professionalism as a means of distin-
guishing themselves from “ coders ” or other “ mere technicians. ”
Corporate managers generally embraced the concept of professionalism.
It appeared to provide a familiar solution to the increasingly complex
problems of programmer management: “ The concept of professional-
ism, ” argued one personnel research journal from the early 1970s,
 “ affords a business-like answer to the existing and future computer skills
market. ” 26 The rhetoric of professionalism was ideologically neutral,
and appealed to a wide variety of individuals and interest groups.
Professionalization was one of several widely adopted strategies for
dealing with the software crisis.

 But did programmers ever truly professionalize? The historical evi-
dence is ambiguous. 27 On one hand, as the historian William Aspray has
suggested, it is remarkable how rapidly computing acquired the trap-
pings of a profession: research laboratories and institutes, professional
conferences, professional societies, and technical journals. 28 On the other
hand, as we have seen, the existence of professional institutions did not
necessarily translate readily into widely recognized professional status.
Indeed, one of the most traditional interpretations of computer program-
mer has been as a failed profession.

 The most prominent advocates of the “ failed profession ” interpreta-
tion are labor historians Philip Kraft and Joan Greenbaum. Building on
the work of Harry Braverman and David Noble, Kraft and Greenbaum
situate the history of programming in one of the grand conceptual struc-
tures of labor history: the ongoing struggle between labor and the forces
of capital. In Labor and Monopoly Capital: The Degradation of Work
in the Twentieth Century , Braverman argued that the basic social func-
tion of engineers and managers was to oversee the fragmentation, routi-
nization, and mechanization of labor. Cloaked in the language of progress
and effi ciency, the process of routinization was characterized primarily
as a means of disciplining and controlling a recalcitrant workforce. The
ultimate result was the deskilling and degradation of the worker. In his
1977 book Programmers and Managers: The Routinization of Computer
Programming in the United States , Kraft described a similar process at

232 Chapter 9

work in the computer industry. “ Programmers, systems analysts, and
other software workers are experiencing efforts to break down, simplify,
routinize, and standardize their own work so that it, too, can be done
by machines rather than people. ” The use of high-level programming
technologies and structured development methodologies represented
 “ elaborate efforts ” to “ develop ways of gradually eliminating program-
mers, or at least reduce their average skill levels, required training, [and]
experience. ” The once-proud computer programmer, he contended, has
been relegated largely to subsidiary and subordinate roles in the produc-
tion process. “ While a few of them sit at the side of managers, counseling
and providing expert ’ s advice, most simply carry out what someone else
has assigned them. ” 29

 Kraft suggested that managers have generally been successful in impos-
ing structures on programmers that have eliminated their creativity and
autonomy. His analysis was remarkably comprehensive, covering such
issues as training and education, structured programming techniques
(“ the software manager ’ s answer to the conveyor belt ”), the social orga-
nization of the workplace (aimed at reinforcing the fragmentation
between “ head ” planning and “ hand ” labor), and careers, pay, and
professionalism (encouraged by managers as a means of discouraging
unions). Greenbaum followed Kraft ’ s conclusions and methodology
closely in her book In the Name of Effi ciency: Management Theory and
Shopfl oor Practice in Data-Processing Work in 1979. More recently, she
has defended their application of the Braverman deskilling hypothesis:
 “ If we strip away the spin words used today like ‘ knowledge ’ worker,
 ‘ fl exible ’ work, and ‘ high tech ’ work, and if we insert the word ‘ informa-
tion system ’ for ‘ machinery, ’ we are still talking about management
attempts to control and coordinate labor processes. ” 30

 There is validity to both interpretations of the changing attitude of
managers toward programmers that occurred in the late 1960s. Certainly
there were numerous technical innovations in both hardware and soft-
ware that prompted managerial responses. It is true that many of the
larger software development projects in this period did run over budget
and fall behind schedule. The cost of software development relative to
hardware purchases did continue to climb, and the labor cost of pro-
gramming did become a serious burden to many manufacturers and
users. It is also true that some managers were interested, as Kraft and
Greenbaum maintain, in creating software factories where deskilled pro-
grammers cranked out mass-produced products that required little
thought or creativity. 31 The SDC referred to its in-house programming

Conclusions: Visible Technicians 233

methodology as the software factory. One guidebook from 1969 for
managers captured the essence of this adversarial approach to program-
mer management by describing the successful computer manager as the
 “ one whose grasp of the job is refl ected in simple work units that are in
the hand[s] of simple programmers; not one who, with control lost, is
held in contempt by clever programmers dangerously maintaining control
on his behalf. ” 32

 An uncritical reading of this and other similar management perspec-
tives on the process of software development, with their confi dent claims
about the value and effi cacy of various performance metrics, develop-
ment methodologies, and programming languages, might suggest that
Kraft and Greenbaum are correct in their assessments. In fact, many of
these methodologies do indeed represent “ elaborate efforts ” that “ are
being made to develop ways of gradually eliminating programmers, or
at least reduce their average skill levels, required training, experience,
and so on. ” 33 Their authors would be the fi rst to admit it. A more critical
reading of this literature, however, indicates that the claims of many
management theorists represent imagined ideals more than current
reality. Writing in 1971, the occupational sociologist Enid Mumford
actually lauded data processing as an “ area where the philosophy of
job reducers and job simplifi ers — the followers of Taylor — has not been
accepted. ” 34

 The fact that the software crisis has survived a half century of sup-
posed silver bullet solutions suggests that Kraft may have overlooked an
essential component of this history. What is missing from his analysis is
the perspective on the software labor process provided by the many
companies that recognized that computer programming was, at least to
a certain extent, a creative and intellectually demanding occupation, and
that in their management of software personnel stressed “ the importance
of a judicious balance between control and individual freedom. ” 35 Kraft
implied that most corporations adopted a hierarchical system of manage-
ment aimed at eliminating worker autonomy. He ignored the many
alternative methodologies that were proposed and adopted in this period.
Like his mentors Braverman and Noble, he overemphasized the willing-
ness and ability of the managerial “ class, ” which he treats as a mono-
lithic and homogeneous category, rather than as the diverse group
of individuals operating in different social, political, and technical envi-
ronments, to impose unilaterally their routinization agenda on the pro-
gramming labor force. Many programmers were skilled workers who
vigorously pursued their own professional advancement; it is clear that

234 Chapter 9

they were active participants in the struggle to develop the discipline of
software engineering. 36

 A more nuanced reading of the contemporary industry literature sug-
gests that the key to understanding the managerial response to the soft-
ware crisis has less to do with economic imperatives or dialectical
materialism than with what the sociologist Andrew Abbott has described
as the “ jurisdictional struggles ” that occur among groups of profession-
als struggling for control over a particular occupational territory. In The
Systems of Professions: An Essay on the Division of Expert Labor ,
Abbott provides an “ ecological ” model for understanding professional
change and development. His model can be summarized briefl y as
follows: 1) professions grow when occupational niches become available
to them, and they change when their particular territory becomes threat-
ened; 2) the critical events in professional development are struggles over
jurisdictions, and key environmental changes involve the creation or
abolition of jurisdictions; and 3) professional struggle occurs at three
levels: the workplace, culture and public opinion, and legal and admin-
istrative rules. These levels are loosely coupled. Most shifts in jurisdiction
start in the workplace, move to public opinion, and may end up in
the legal sphere. Hence, the most consequential struggles are over com-
petence and theory — the core jurisdiction. Increasing abstraction allows
for professional expansion, but overabstraction can dilute the core
jurisdiction. 37

 My argument is that just one of these jurisdictional struggles occurred
on commercial computing in the late 1960s. The continued persistence
of a software crisis mentality among industrial and government manag-
ers as well as the seemingly unrelenting quest of these managers to
develop a software development methodology that would fi nally elimi-
nate corporate dependence on the craft knowledge of individual pro-
grammers can best be understood in light of a struggle over workplace
authority that took shape in the early decades of computing. In the 1950s
and 1960s, the electronic digital computer was introduced into the well-
established technical and social systems of the modern business organiza-
tion. As this technology became an increasingly important tool for
corporate control and communication, existing networks of power and
authority were uncomfortably disrupted. The confl icting needs and
agendas of users, manufacturers, managers, and programmers all became
wrapped up in a highly public struggle for control over the occupational
territory opened up by the technology of computing.

Conclusions: Visible Technicians 235

 Visible Technicians

 Neither version of the professionalization narrative, whether they culmi-
nate in failure or success for programmers, are entirely satisfactory when
applied to computer programmers. Despite their best efforts to establish
the institutional structures of a profession, computer programmers were
never able to achieve widespread professional recognition. They were
unable, for example, to develop two of the most defi ning characteristics
of a profession: control over entry into the profession, and the adoption
of a shared body of abstract occupational knowledge — a “ hard core of
mutual understanding ” — common across the entire occupational com-
munity. They failed to suffi ciently convince employers of the value of
professionalism, and were divided among themselves over issues involv-
ing academic standards and certifi cation requirements. Complaints
about the lack of professional standards among computer programmers
continue to play a central role in discussions about the nature and causes
of the software crisis. Despite the widespread adoption of the rhetoric
of software engineering, most computer programmers are not engineers
and would not identify themselves as such. Although the question of
professionalism continues to be a live issue in the programming com-
munity, in general computer programmers are not considered to be
professionals. 38

 So if they are not professionals, managers, or clerical support staff,
what exactly are computer programmers? What does their unique history
tell us about larger patterns in work practices and the organization of
labor in the late twentieth century?

 Perhaps the most useful way to think about the computer programmer
is as a technician. As the organizational theorist Stephen Barley has
pointed out, technicians are a relatively recent addition to the pantheon
of occupations. 39 Although technicians do not fi t easily into the interpre-
tative framework of either labor history or the sociology of professions,
they represent the fastest-growing sector of the U.S. labor force. They
include such occupations as radiological technicians, science technicians,
engineering technicians, and medical technicians. Their work transgresses
traditional occupational boundaries; according to Barley, technicians
 “ often wear white collars, carry briefcases, and conduct sophisticated
scientifi c and mathematical analyses. Yet they use tools, work with their
hands, make objects, repair equipment, and, from time to time, get
dirty. ” 40 They are usually — albeit at times grudgingly — granted a great

236 Chapter 9

deal of autonomy by their employers. 41 Like computer programmers,
technicians occupy an ambiguous occupational space that is diffi cult to
categorize.

 Also like computer programmers, technicians serve as mediators
between the technological and social architectures of the organization.
Technicians are frequently responsible for building, repairing, and moni-
toring the complex systems that keep a company running. Because they
play a support role that is tangential to the core business of the organiza-
tion and generally possess skills radically different from those of their
colleagues, they are seen as foreigners to the work site. 42 Traditional
employees generally resent their dependence on technicians and consider
them insuffi ciently subservient. 43 . Like the computer boys of the late
1960s, technicians regularly wield power disproportionate to their offi -
cial position in the occupational hierarchy.

 There are a number of other similarities between Barley ’ s description
of technicians and the history of the computer programmer. Although
they are generally well educated and rely heavily on scientifi c or engineer-
ing training, technicians also value intuition and craft knowledge. They
tend to learn on the job, rather than from formal academic or vocational
training programs. They make extensive use of social networks and com-
munity-based systems of information exchange. Their expertise is typi-
cally local and idiosyncratic, and diffi cult to communicate or defi ne as a
set of abstract principles. 44

 It seems clear from these depictions that computer programmers can
be considered as a type of technician. In fact, this seems to be the most
useful way to make connections between software workers and other
forms of technical labor. It captures the tension inherent in the practices
of software development: the curious coexistence of high technology and
artisanal sensibilities; the inability of programmers to conform to con-
ventional professional, scientifi c, or engineering categories; the persistent
attempts by corporate managers to restructure software development
along the lines of traditional manufacturing; and the remarkable persis-
tence of the forty-year-old software crisis.

 Where Did All the Women Go?

 In 1969 the Data Processing Management Association presented Rear
Admiral Grace Hopper with its very fi rst “ man of the year ” award. That
a professional society in a technical fi eld would, in this period,
even consider awarding its very fi rst major award to a woman seems

Conclusions: Visible Technicians 237

astounding to modern sensibilities. In the decades since the “ ENIAC
girls ” became the world ’ s fi rst computer programmers, the computer
professions have become stereotypically masculine, and female enroll-
ments in computer science programs have been declining since the mid-
1980s. Participation rates for women in the computing fi elds are a
perennial problem for the industry, and this has been the subject of much
study and debate for the past several decades.

 It was not always thus. As we have seen, women played an early and
important role in the history of computing. Some of them became quite
infl uential: in addition to Grace Hopper, Betty Snyder Holberton, Jean
Sammet, and Beatrice Helen Worsley, among others, rose to positions
of considerable prominence in the early computing industry. 45 In fact, as
I have pointed out elsewhere, compared to most technical professions,
computer programming remained unusually open to females throughout
the 1950s and 1960s. However, during this same period the computer
programming community was also actively pursuing a strategy of profes-
sional development that would eventually make it one of the most ste-
reotypically male professions, inhospitable to most women. 46

 Contemporary estimates suggest that throughout the 1960s at least
thirty percent of working computer programmers were women. One
study puts the fi gure closer to fi fty percent. 47 When the fi rst offi cial gov-
ernment statistics were calculated in 1970, twenty-three percent of pro-
grammers were identifi ed as female — and this is during a period of
intense contraction in the programmer labor market. 48 The term “ pro-
gramming ” often encompassed a multitude of occupational categories,
including high-status jobs such as systems analyst and lead programmer
as well as low-status jobs like coder; women tended to (or were forced
to) congregate in the lower end of the occupational pool. Nevertheless,
there is ample evidence women were unusually welcome within the
computing professions well into the late 1960s.

 One explanation for the larger numbers of women in computing
in this period was the intense shortage of available labor. In an employ-
ment market desperate for even moderately skilled computer workers, it
would have been counterproductive to discriminate against women. The
reliance on aptitude testing and internal promotion during this period
meant that women were at least as likely to be selected as programmer
trainees as men. Many fi rms tested all of their employees for program-
ming aptitude, so even women working in such highly feminized
(and low-status) occupations as stenography had a chance to become
programmers.

238 Chapter 9

 Additionally, there is evidence that female programmers were not just
acceptabled but preferred. In a 1963 Datamation article lauding the
virtues of female computer programmers, for example, Valerie Rockmael
focused specifi cally on women ’ s stability, reliability, and relative docility:
 “ Women are less aggressive and more content in one position . . . Women
consider fringe benefi ts of more importance than their male peers and
are more prone to stay on the job if they are content, regardless of a lack
of advancement. They also maintain their original geographic roots and
are less willing to travel or change job locations, particularly if they are
married or engaged. ” 49 In an era in which turnover rates for program-
mers averaged twenty percent annually, this was a compelling argument
for employers.

 A 1968 article in Cosmopolitan magazine captured perfectly the
promise of opportunity available to women in the early decades of com-
puting. Entitled simply “ The Computer Girls, ” the article noted that
there were already more than 20,000 women working as computer pro-
grammers in the United States, and that there was an immediate demand
for 20,000 more. 50 The author quotes Grace Hopper herself as saying
that programming was “ just like planning a dinner ” : “ You have to
plan ahead and schedule everything so it ’ s ready when you need it.
Programming requires patience and the ability to handle detail. Women
are ‘ naturals ’ at computer programming. ” 51 The rapid expansion of the
computer industry meant that “ sex discrimination in hiring ” was unheard
of, the article ’ s author confi dently declared, and anyone with aptitude —
 male or female, college-educated or not — could succeed in the fi eld.
As one of the article ’ s sources described it, computing was one of
the few occupations in which a woman could be “ fully accepted as a
professional. ” 52

 The Cosmo article is full of seemingly silly details — such as a confes-
sion from Sally Brown, “ a redhead from South Bend, Indiana, ” that “ she
doesn ’ t mind working late ” because there is often “ a nice male program-
mer to take a girl home ” — but for the most part it accurately refl ects the
contemporary sense of the opportunities available to women in comput-
ing. After all, “ every company that makes or uses computers hires
women to program them, ” the article noted matter-of-factly, “ If a girl
is qualifi ed, she ’ s got the job. ” And, in true Cosmopolitan style, the
article concludes with a quiz; by answering a few simple questions, any
 Cosmo girl could see whether she too had what it took to be a profes-
sional computer programmer making “ $15,000 after fi ve years. ” 53 The
questions on the quiz were drawn directly from an aptitude test used by

Conclusions: Visible Technicians 239

the Honeywell Corporation, and so was more relevant to the real world
than the magazine ’ s usual fare.

 In many ways, however, the idealized gender-neutral profession
described in “ The Computer Girls ” was already becoming increasingly
divorced from reality. Over the course of the 1960s, developments in the
computing professions were creating new barriers to female participa-
tion. An activity originally intended to be performed by low-status,
clerical — and more often than not, female — computer programming was
gradually and deliberately transformed into a high-status, scientifi c, and
masculine discipline.

 Professionalization was crucial aspect of this masculinization process.
As Margaret Rossiter and others have suggested, professionalization
nearly always requires the exclusion of women. 54 Among other things,
it requires segmentation and stratifi cation. In order to elevate the overall
status of their discipline, aspiring professionals had to distance them-
selves from those aspects of their work that were seen as low-status
and routine, work that became increasingly feminized. In addition, the
imposition of formal educational requirements on the part of the profes-
sional societies, such as a college degree, made it diffi cult for women —
 particularly women who had taken time off to raise children — to enter
the profession. In 1965, for example, the Association for Computing
Machinery imposed a four-year degree requirement for membership that,
in an era when there were almost twice as many male as there were
female college undergraduates, excluded signifi cantly more women than
men. 55 A survey from the late 1970s showed that fewer than 10% of
ACM members were women. 56 Similarly, certifi cation programs or licens-
ing requirements erected barriers to entry that disproportionately affected
women. Finally, professionalism also suggests a certain degree of mana-
gerial authority and competence — skills and characteristics that were
often seen as being masculine rather than feminine. The CDP examina-
tions, for example, explicitly required candidates to have at least three
years of experience, and the majority of CDP holders worked in middle
management. 57 In his 1971 book The Psychology of Computer
Programming , Gerald Weinberg notes the commonly held belief that
female programmers were incapable of leading a group or supervising
their male colleagues. 58 The more programmers were seen as potential
managers (a new development that came with professionalization), the
more women were excluded.

 All of this suggests that as computer programmers constructed a
professional identity for themselves during the crucial decades of the

240 Chapter 9

1950s and 1960s, that they also constructed a gender identity. Masculinity
was just one of many resources that they drew on to distance their pro-
fession from its low-status origins in clerical data processing. The ques-
tion of “ who made for a good programmer ” increasingly involved in its
answer the qualifi er “ male. ” The stereotype of the antisocial program-
mer, wearing sandals and a beard, was not simply a product of the
pseudoscientifi c personality profi les used for recruitment in this period;
over time, it became a deliberate self-construction embraced by the com-
munity. Yesterday ’ s “ computer boys ” are today ’ s “ IT guys. ” The moniker
may have changed, but the gender (and status) connotations remain.

 To suggest that a discipline has been made masculine, however, is not
to claim that all of its practitioners are male but rather that the ideals
of the discipline are seen as masculine ideals. It is entirely possible, for
example, to talk about science being gendered male without arguing that
there are no female scientists. To the degree that women succeed in
masculinized disciplines, however, it is by suppressing their femininity:
to act female in such contexts is to act “ unprofessionally. ” 59 There is a
large literature on the ways in which women in such fi elds are forced to
accommodate themselves to the dominant gender dynamics of the disci-
pline. The masculinization of a profession erects barriers to female par-
ticipation, but it does not eliminate it altogether. 60

 From Crisis to Opportunity

 The continued existence of a four-decades-long crisis in one of the largest
and fastest-growing sectors of the U.S. economy suggests an interesting
dichotomy: on the one hand, software is the technological success story
of the past half century; on the other hand, its reputation and identity
continue to be marked by perceptions of crisis and failure. What can we
make of these strange contradictions and the remarkable persistence of
a crisis mentality? More important, how can understanding this duality
contribute to advancing the art and science of software development?

 There seem to be at least three crucial lessons to be learned from the
history of the software crisis:

 The fi rst is a simple and obvious observation: just as software is about
more than just computer code, the software crisis is about more than
just software. Software is what links the powerful technology of digital
computing to larger human actions, agendas, and interactions. As such,
it cannot be isolated from its social, economic, and political context. User
dissatisfaction with software often has less to do with technical failure

Conclusions: Visible Technicians 241

than it does with its failure to address the “ real ” problem (which was
probably not technical in nature), or the implications that software has
on larger patterns of work, power, and autonomy.

 The second lesson follows naturally from the fi rst: just as software
itself is a heterogeneous system and the software crisis is a refl ection of
that heterogeneity, so too must the solution to the software crisis be
heterogeneous. One of the appeals of software engineering as a solution
to the crisis is that engineers have long experience in developing such
complicated “ systems of systems. ” And yet even more established
branches of engineering struggle with the engineer ’ s temptation to reduce
everything to a technical problem. From the earliest days of electronic
computing, users have been dissatisfi ed with the tendency of program-
mers to oversimplify complex business problems. And although the
context of software development has changed over time, laments about
the inability of software designers to adequately comprehend and repre-
sent the needs of users have not. Computer programmers in particular
sat in the uncomfortable “ interface between the world of ill-stated prob-
lems and the computers. ” 61 Design in a heterogeneous environment is
diffi cult; design is as much a social and political process as it is technical;
cultivating skilled designers requires a comprehensive and balanced
approach to education, training, and career development. As Frederick
Brooks observed in his “ No Silver Bullet, ” “ The hardest single part of
building a software system is deciding precisely what to build. No other
part of the conceptual work is as diffi cult as establishing the detailed
technical requirements, including all the interfaces to people, to machines,
and to other software systems. No other part of the work so cripples the
resulting system if done wrong. No other part is more diffi cult to
rectify later. ” 62

 Finally, any proposed solution to the software crisis, whether it is
technical, managerial, professional, or otherwise, has implications for
individuals and organizations. The appeal of the software factory model
might appear obvious to corporate managers; for skilled computer pro-
fessionals, the idea of becoming a factory worker is understandably less
desirable. Whether or not such a model would even be feasible depends
a great deal on whether or not you believe software development as a
process can be decomposed neatly into individual tasks. The history of
software suggests that this is not at all an obvious or undisputed fact.

 From this perspective, even the most seemingly technical debates
cannot be isolated from this larger context of occupational identity
and organizational power. As early as 1962, in a RAND Corporation

242 Chapter 9

Symposium on Programming Languages, Jack Little lamented the ten-
dency of manufacturers to design languages “ for use by some sub-human
species in order to get around training and having good programmers. ” 63
When the Department of Defense proposed ADA as a solution to yet
another outbreak of the software crisis, it was trumpeted as a means of
 “ replacing the idiosyncratic ‘ artistic ’ ethos that has long governed soft-
ware writing with a more effi cient, cost-effective engineering mind-set. ” 64
As was mentioned earlier, object-oriented programming enthusiasts
advocate for “ a software industrial revolution based on reusable and
interchangeable parts that will alter the software universe as surely as
the industrial revolution changed manufacturing. ” 65 Once again, the
desirability of such a revolution, and its attendant implications for the
character and quality of programming labor, is not universally recog-
nized; witness the recent debate about outsourcing, which ties the history
of the software crisis into a much larger and longer-running one about
globalism, job protection, workers ’ rights, and national identity.

 All of this is not to deny the remarkable success of the software indus-
try or the accomplishments of aspiring software engineers. In fact, the
success of software — in the face of a seemingly perpetual and unchanging
rhetoric of crisis — is precisely what makes this history so interesting and
relevant to contemporary practitioners. This is perhaps one of the few
situations in which it actually is true that those who cannot learn from
history are doomed to repeat it.

 Historians of technology have long argued that all technologies are,
at least to a certain degree, socially constructed. This is simply to say
that the physical design of an artifact is inextricably infl uenced by its
larger environment. In the 1950s and 1960s, the electronic digital com-
puter was introduced into the well-established technical and social
systems of the modern business organization. Like all new technologies,
the computer took its shape from — and helped to shape — its social, cul-
tural, and technological context. As the computer became an increasingly
important part of the modern corporate organization, control over its
use and identity became increasingly contested. The confl icting needs and
agendas of users, manufacturers, managers, and programmers all became
wrapped up in a highly public struggle for control over the professional
territory opened up by the technology of computing. Thinking about
the software crisis — and the invention of the discipline of software engi-
neering — as a series of interconnected social and political negotiations,
rather than an isolated technical decision about the one best way
to develop software components, provides an essential link between

Conclusions: Visible Technicians 243

internal developments in information technology and their larger social
and historical context. It can help explain why, in an industry character-
ized by rapid change and innovation, the rhetoric of crisis has proven so
remarkably persistent.

 Despite the persistence of the software crisis mentality, programming
continues to survive as an essentially craft-based occupation in the
midst of a predominantly engineering-oriented corporate environment. 66
Although the rhetoric of software engineering has been generally adopted,
the substance of software engineering has not. Military and industrial
leaders continue to decry the lack of engineer standards in software
development. “ More and more software will be behind schedule, over
budget, under powered, and of poor quality — and there ’ s nothing we
can do about it, ” complained an article in Byte Magazine in 1996. A
1998 study by the House Committee on Software Development and
Regulation called software a shoot-from-the-hip industry, noting a “ dis-
tinct vacuum in the treatment of ethics in computer science. ” 67 Almost
thirty years after the fi rst NATO Conference on Software Engineering,
many programmers and project managers are still concluding that
 “ excellent developers, like excellent musicians and artists, are born, not
made. ” 68

 Chapter 1

 1. Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook
Handbook , 2008 – 09 edition; Aid to recovery: the economic impact of IT, soft-
ware, and the Microsoft ecosystem on the global economy . Springfi eld, MA:
Interactive Data Corporation, 2009.

 2. Stuart Shapiro and Steven Woolgar. “ Balancing acts: reconciling competing
visions of the way software technologists work, ” in Proceedings of the Eighth
IEEE International Workshop on Incorporating Computer Aided Software
Engineering (Los Alamitos, CA: IEEE Computer Society Press, 1997): 364 – 370;
Stephen Barley and Gideon Kunda, Gurus, Hired Guns, and Warm Bodies:
Itinerant Experts in a Knowlege Economy (Princeton, NJ: Princeton University
Press, 2004).

 3. Jackson Granholm, “ How to Hire a Programmer, ” Datamation 8, no. 8
(1962): 31 – 32; Sherry Turkle, The Second Self: Computers and the Human Spirit
(New York: Simon and Schuster, 1984); Ron Eglash, “ Race, Sex, and Nerds:
From Black Geeks to Asian American Hipsters, ” Social Text 2, no. 20 (2002):
49 – 64; Steve Lohr, Go To: The Story of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists, and Iconoclasts — The
Programmers Who Created the Software Revolution (New York: Basic Books,
2001).

 4. Deborah Lupton, “ The Embodied Computer User, ” Body and Society 1, no.
3 – 4 (1995): 97 – 112; Fergus Murray and David Knights, “ Inter-managerial
Competition and Capital Accumulation: IT Specialists, Accountants, and
Executive Control, ” Critical Perspectives on Accounting 1, no. 2 (June 1990):
167 – 189.

 5. Steve Silberman, “ The Geek Syndrome, ” Wired 9, no. 12 (2001): 175 – 183;
Majia Holmer Nadesan, Constructing Autism: Unravelling the “ Truth ” and
Understanding the Social (London: Routledge, 2005), 199.

 6. David Anderegg, Nerds: Who They Are and Why We Need More of Them
(New York: Jeremy P. Tarcher, 2007); Benjamin Nugent, American Nerd: The
Story of My People (New York: Scribner, 2008).

 Notes

246 Notes

 7. Joseph Weizenbaum, Computer Power and Human Reason: From Judgment
to Calculation (New York: Penguin, 1976); Steven Levy, Hackers: Heroes of the
Computer Revolution (Garden City, NY: Anchor Press, 1984); Katie Hafner,
 CYBERPUNK: Outlaws and Hackers on the Computer Frontier, Revised (New
York: Simon and Schuster, 1995).

 8. Philip Scranton, “ None-too-Porous Boundaries: Labor History and the
History of Technology, ” Technology and Culture 29, no. 744 – 778 (1988);
Stephen Barley, “ Technicians in the Workplace: Ethnographic Evidence for
Bringing Work into Organization Studies, ” Administrative Science Quarterly 41,
no. 3 (1996): 404 – 441; Nelly Oudshoorn and Trevor Pinch, eds., How Users
Matter: The Co-construction of Users and Technologies (Cambridge, MA: MIT
Press, 2003).

 9. Michael S. Mahoney, “ What Makes the History of Software Hard, ” IEEE
Annals of the History of Computing 30, no. 3 (2008): 8 – 18.

 10. Thomas Haigh, “ Software in the 1960s as Concept, Service, and Product. ”
 Annals of the History of Computing, IEEE 24, no. 1 (2002): 5 – 13.

 11. Andrew Friedman and Dominic Cornford, Computer Systems Development:
History, Organization, and Implementation (Chichester, UK: Wiley, 1989), 10.

 12. Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry (Cambridge, MA: MIT Press, 2003).

 13. John Tukey, “ The Teaching of Concrete Mathematics, ” American
Mathematical Monthly 65, no. 1 (1958): 1 – 9.

 14. Bernard Galler, “ Defi nition of Software, ” Communications of the ACM 5,
no. 1 (1961): 6.

 15. Richard Christian, “ The Computer and the Marketing Man, ” Journal of
Marketing 26, no. 3 (1962): 79 – 82; “ Hardware and Software, ” British Medical
Journal 1, no. 5449 (1965): 1509; Robert Hayes, Ralph H. Parker, and Gilbert
W. King. “ Automation and the Library of Congress: Three Views, ” Library
Quarterly 34, no. 3 (1964): 229 – 239; George Mitchell, “ Exogenous Forces in
the Development of Our Banking System, ” Law and Contemporary Problems
32, no. 1 (1967): 3 – 14.

 16. J. H. Spigelman, “ Implications of Recent Advances in Electronic Data
Processing, ” Financial Analysts Journal 20, no. 5 (1964): 137 – 143; Arthur
Nesse, “ A User Looks at Software, ” Datamation 14, no. 10 (1968): 48 – 51; Allen
Forte, “ Review: Conference on the Use of Computers in Humanistic Research, ”
 Computers and the Humanities 1, no. 3 (1967): 110 – 112; “ Abstracts of Papers
for the Fourteenth Annual Meeting of the Radiation Research Society, Coronado,
California February 13 – 16, 1966, ” Radiation Research 27, no. 3 (1966): 487 –
 554; Maurice Ronayne, “ ‘ Leads ’ to Pertinent ADP Literature for the Public
Administrator, ” Public Administration Review 24, no. 2 (1964): 119 – 125.

 17. John Law, “ Technology and Heterogeneous Engineering: The Case of the
Portuguese Expansion, ” in The Social Construction of Technical Systems: New
Directions in the Sociology and History of Technology , ed. Wiebe Bijker, Trevor
Pinch, and Thomas Hughes (Cambridge, MA: MIT Press, 1987), 111 – 134; John

Notes 247

Law, “ Notes on the Theory of Actor-Network: Ordering, Strategy, and
Heterogeneity, ” Systems Practice 5, no. 4 (1992): 379 – 393.

 18. Richard Canning, “ The Maintenance ‘ Iceberg, ’ ” EDP Analyzer 10, no. 10
(1972): 1 – 14.

 19. J. H. Spigelman, “ Implications of Recent Advances in Electronic Data
Processing: Part II, ” Financial Analysts Journal 20, no. 6 (1964): 87 – 93; Richard
Jones, “ Practical Control of Preparatory Programming Time for a Computer
Installation, ” NAA Bulletin 43, no. 8 (1962): 71; Ned Chapin, “ Teaching
Business Data Processing with the Aid of a Computer, ” Accounting Review 38,
no. 4 (1963): 835 – 839.

 20. Ralph Lewis, “ Never Overestimate the Power of a Computer, ” Harvard
Business Review 35, no. 5 (1957): 77 – 84.

 21. Lewis, “ Never Overestimate the Power of a Computer ” ; Felix Kaufman,
 “ EDP and the Disenchanted, ” California Management Review 1, no. 41 (1959):
67; Arnold Keller, “ Crisis in Machine Accounting, ” Management and Business
Automation 5, no. 6 (1961): 30 – 31; Frederick P. Brooks, The Mythical
Man-Month: Essays on Software Engineering (New York: Addison-Wesley,
1975).

 22. Friedman and Cornford, Computer Systems Development , 162.

 23. Donald Ervin Knuth, The Art of Computer programming. Addison-Wesley
Series in Computer Science and Information Processing (Reading, MA: Addison-
Wesley, 1968).

 24. Kaufman, “ EDP and the Disenchanted. ”

 25. Thomas Whisler, “ The Impact of Information Technology on Organizational
Control. ” In The Impact of Computers on Management , ed. Charles A. Myers,
16 – 48 (Cambridge, MA: MIT Press, 1967).

 26. John Golda, “ The Effects of Computer Technology on the Traditional Role
of Management ” (master ’ s thesis, Wharton School of Business, University of
Pennsylvania, 1965), 34.

 27. Kaufman, “ EDP and the Disenchanted. ”

 28. JoAnne Yates, Structuring the Information Age: Life Insurance and
Technology in the Twentieth Century (Baltimore: Johns Hopkins University
Press, 2005).

 29. Thierry Bardini, Bootstrapping: Douglas Englebart, Coevolution, and the
Origins of Personal Computing (Stanford, CA: Stanford University Press, 2000),
103.

 30. John Dwyer, “ Analysts Couched ” (letter to the editor), Datamation 16, no.
1 (1970): 47; Gene Altshuler, “ Programmers and Analysts ” (letter to the editor),
 Datamation 16, no. 1(1970): 47.

 31. Tukey, “ The Teaching of Concrete Mathematics. ”

 32. David Allan Grier, “ The ENIAC, the Verb to Program, and the Emergence
of Digital Computers, ” Annals of the History of Computing 18, no. 1 (1996):
53.

248 Notes

 33. H. S. Tropp, “ ACM ’ s 20th Anniversary: 30 August 1967, ” Annals of the
History of Computing 9, no. 3 (1988): 269.

 34. John Backus, quoted in J. Howlett and Gian-Carlo Rota, eds., A History of
Computing in the Twentieth Century: A Collection of Essays (New York:
Academic Press, 1980), 126.

 35. Thomas Haigh, “ Technology, Information and Power: Managerial
Technicians in Corporate America: 1917 – 2000 ” (PhD diss., University of
Pennsylvania, 2002).

 36. JoAnne Yates, Control through Communication: The Rise of System
in American Management (Baltimore: Johns Hopkins University Press,
1989).

 37. Arvid Jacobson, ed., Proceedings of the First Conference on Training
Personnel for the Computing Machine Field (Detroit: Wayne State University
Press, 1955).

 38. Robert Patrick, “ The Gap in Programming Support, ” Datamation 7, no. 5
(1961): 37.

 39. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 141.

 40. Hal Sackman, “ Conference on Personnel Research, ” Datamation 14, no. 7
(1968): 74 – 76, 81.

 41. Hal Sackman, W. J. Erickson, and E. E. Grant, “ Exploratory Experimental
Studies Comparing Online and Offl ine Programming Performance, ”
 Communications of the ACM 11, no. 1 (1968): 3 – 11.

 42. Dean Dauw, “ Vocational Interests of Highly Creative Computer Personnel, ”
 Personnel Journal 46, no. 10 (1967): 653 – 659.

 43. Stephen Barley and Julian Orr, eds., Between Craft and Science: Technical
Work in US Settings (Ithaca, NY: ILR Press, 1997).

 44. Richard Hamming, “ One Man ’ s View of Computer Science, ” in ACM
Turing Award Lectures: The First Twenty Years, 1966 – 1985 (Upper Saddle
River, NJ: Pearson Education, 1987), 207 – 218.

 45. Nathan Ensmenger, “ The ‘ Question of Professionalism ’ in the Computer
Fields, ” IEEE Annals of the History of Computing 4, no. 23 (2001): 56 – 73.

 46. Daniel McCracken, “ The Human Side of Computing, ” Datamation 7, no.
1 (1961): 9 – 11.

 47. Willis Ware, “ As I See It: A Guest Editorial, ” Datamation 11, no. 5 (1965):
27 – 28.

 48. E. Burton Swanson and Cynthia Mathis Beath, “ Departmentalization in
software development and maintenance. ” Communications of the ACM 33, no.
6 (1990): 658 – 667; Raymond Berger, “ Computer Personnel Selection and
Criteria Development, ” in Proceedings of the 2nd SIGCPR Conference on
Computer Personnel Research (New York: ACM Press, 1964), 65 – 77.

 49. McCracken, “ The Human Side of Computing, ” 9 – 10.

Notes 249

 50. Nathan Ensmenger, “ Letting the ‘ Computer Boys ’ Take Over: Technology
and the Politics of Organizational Transformation, ” International Review of
Social History 48, no. S11 (2003): 153 – 180.

 51. Harold Leavitt and Thomas Whisler, “ Management in the 1980 ’ s, ” Harvard
Management Review 36, no. 6 (1958): 41 – 48.

 52. Whisler, “ The Impact of Information Technology on Organizational
Control. ”

 53. Golda, “ The Effects of Computer Technology on the Traditional Role of
Management, ” 34.

 54. Rosemary Stewart, How Computers Affect Management (Cambridge, MA:
MIT Press, 1971), 196.

 55. Thomas Alexander, “ Computers Can ’ t Solve Everything, ” Fortune 80, no.
5 (1969): 169.

 56. McKinsey and Company, “ Unlocking the Computer ’ s Profi t Potential, ”
 Computers and Automation 16, no. 7 (1969): 33.

 57. Ibid., 33.

 58. Harry Larson, “ EDP: A 20 Year Ripoff! ” Infosystems (1974): 26.

 59. Ensmenger, “ Letting the ‘ Computer Boys ’ Take Over. ”

 60. Barry Boehm, “ Software and Its Impact: A Quantitative Assessment, ”
 Datamation 19, no. 5 (1973): 48 – 59; Michael Mahoney, “ Software: The Self-
Programming Machine, ” in From 0 to 1: An Authoritative History of Modern
Computing , ed. Atsushi Akera and Frederik Nebeker (New York: Oxford
University Press, 2002).

 61. Edsger Dijkstra, “ The Humble Programmer, ” Communications of the ACM
15, no. 10 (1972): 873.

 62. Martin Campbell-Kelly and William Aspray, Computer: A History of the
Information Machine (New York: Basic Books, 1996), 201.

 63. W. Saba, “ Letter to the Editor, ” IEEE Computer 29, no. 9 (1996): 10;
Edward Nash Yourdon, ed., Classics in Software Engineering (New York:
Yourdon Press, 1979); Herbert Freeman and Phillip Lewis, Software Engineering
(New York: Academic Press, 1980).

 64. Frank Wagner, “ Letter to the Editors, ” Communications of the ACM 33,
no. 6 (1990): 628 – 629.

 65. Ann Dooley, “ 100% over Budget, ” Computerworld 21, no. 7 (1987): 5.

 66. David Morrison, “ Software Crisis, ” Defense 21, no. 2 (1989): 72.

 67. John Shore, “ Why I Never Met a Programmer I Could Trust, ” Communications
of the ACM 31, no. 4 (1988): 372.

 Chapter 2

 1. I. Bernard Cohen, Howard Aiken: Portrait of a Computer Pioneer (Cambridge,
MA: MIT Press, 1999).

250 Notes

 2. Norbert Wiener, Cybernetics, or, Control and Communication in the Animal
and the Machine (Cambridge, MA: Technology Press, 1948).

 3. Edmund Callis Berkeley, Giant Brains; or, Machines That Think (New York:
Wiley, 1949).

 4. Steven P. Schnaars and Sergio Carvalho, “ Predicting the Market Evolution of
Computers: Was the Revolution Really Unforeseen, ” Technology in Society 26,
no. 1 (2004): 1 – 16.

 5. Roddy Osborn, “ GE and UNIVAC: Harnessing the High-Speed Computer, ”
 Harvard Business Review 32, no. 4 (1954): 99 – 107; M. L. Hurni, “ Some
Implications of the Use of Computers in Industry, ” Accounting Review , 29, no.
3 (1954): 447; John S. Coleman, “ Computers as Tools for Management, ”
 Management Science 2, no. 2 (1956): 107.

 6. “ Offi ce Robots, ” Fortune , 1952, 82 – 87, 112, 114, 116, 118.

 7. Kenneth Flamm, Creating the Computer: Government, Industry, and High
Technology (Washington, DC: Brookings Institution Press, 1988).

 8. James W. Cortada, “ Commercial Applications of the Digital Computer in
American Corporations, 1945 – 1995, ” IEEE Annals of the History of Computing
18, no. 2 (Summer 1996): 18 – 29.

 9. Bruce Gilchrist and Richard Weber, eds., The State of the Computer Industry
in the United States (New York: American Federation of Information Processing
Societies, 1972).

 10. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 141.

 11. See Raul Rojas and Ulf Hashagen, eds., The First Computers: History and
Architectures (Cambridge, MA: MIT Press, 2000).

 12. Adele Goldstine, A Report on the ENIAC (Electronic Numerical Integrator
and Computer) (technical report, Moore School of Electrical Engineering,
University of Pennsylvania, June 1, 1946).

 13. Richard F. Clippinger, A Logical Coding System Applied to the ENIAC
(Electronic Numerical Integrator and Computer) (technical report, Ballistic
Research Laboratories, Ordnance Department, Aberdeen Proving Ground,
1948).

 14. John von Neumann, First Draft of a Report on the EDVAC (Philadelphia:
Moore School of Electrical Engineering, University of Pennsylvania, June 30,
1945).

 15. B. Randell, “ The Origins of Computer Programming, ” IEEE Annals of the
History of Computing 16, no. 4 (1994): 6 – 14.

 16. W. Barkley Fritz, “ The Women of Eniac, ” IEEE Annals of the History of
Computing 18, no. 3 (1996): 13 – 23.

 17. David Allan Grier, “ The ENIAC, the Verb to Program, and the Emergence
of Digital Computers, ” IEEE Annals of the History of Computing 18, no. 1
(1996): 53.

 18. Ibid., 52.

Notes 251

 19. W. Barkley Fritz, “ The Women of Eniac, ” IEEE Annals of the History of
Computing 18, no. 3 (1996): 20.

 20. Henry S. Tropp, “ ACM ’ s 20th Anniversary: 30 August 1967, ” Annals of
the History of Computing 9, no. 3 (1988): 269.

 21. Margery W. Davies, Woman ’ s Place Is at the Typewriter: Offi ce Work and
Offi ce Workers, 1870 – 1930 (Philadelphia: Temple University Press, 1982);
Sharon Hartman Strom, Beyond the Typewriter: Gender, Class, and the Origins
of Modern American Offi ce Work, 1900 – 1930 (Urbana: University of Illinois
Press, 1992); Elyce J. Rotella, From Home to Offi ce: U.S. Women at Work,
1870 – 1930 . Volume No. 25 (Ann Arbor, MI: UMI Research Press, 1981).

 22. Thomas Haigh, “ The Chromium-Plated Tabulator: Institutionalizing an
Electronic Revolution, 1954 – 1958, ” IEEE Annals of the History of Computing
4, no. 23 (2001), 75 – 104.

 23. Remington Rand UNIVAC, Introduction to Programming: Programming
for the UNIVAC, Part 1 , (1949), Hagley Museum Archives, Accession 1825,
Box 372.

 24. B. Conway, J. Gibbons, and D. E. Watts, Business Experience with Electronic
Computers: A Synthesis of What Has Been Learned from Electronic Data
Processing Installations (New York: Price Waterhouse, 1959), 81.

 25. Ibid., 89 – 90.

 26. Ibid., 90.

 27. John Backus, “ Programming in America in the 1950s: Some Personal
Impressions, ” in A History of Computing in the Twentieth Century: A Collection
of Essays , ed. N. Metropolis, J. Howlett, and Gian-Carlo Rota (New York:
Academic Press,1980), 126.

 28. Conway, Gibbons, and Watts, Business Experience with Electronic
Computers .

 29. Willis Ware, “ As I See It: A Guest Editorial, ” Datamation 11, no. 5 (1965):
27 – 28.

 30. George Trimble and Elmer Kubie, “ Principles of Optimum Programming of
the IBM Type 650, ” IBM Applied Science Division Technical Newsletter 8
(1954), 5 – 16.

 31. J. N. Patterson Hume, “ Development of Systems Software for the Ferut
Computer at the University of Toronto, 1952 to 1955, ” IEEE Annals of the
History of Computing 16, no. 2 (1994): 13 – 19.

 32. Backus, “ Programming in the 1950s. ”

 33. Martin Campbell-Kelly, “ The Airy Tape: An Early Chapter in the History
of Debugging, ” IEEE Annals of the History of Computing 14, no. 4 (1992):
16 – 26.

 34. Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs
for an Electronic Digital Computer (Reading, MA: Addison-Wesley, 1951).

 35. Campbell-Kelly, “ The Airy Tape. ”

252 Notes

 36. Frederick P. Brooks, The Mythical Man-Month: Essays on Software
Engineering (New York: Addison-Wesley, 1975), 20.

 37. G. J. Meyers, Software Reliability: Principles and Practices (John Wiley and
Sons, 1976).

 38. Brooks, The Mythical Man-Month , 7.

 39. Ibid., 7.

 40. Bylinsky, “ Help Wanted: 50,000 Programmers, ” 141.

 41. John Backus, “ Programming in America in the 1950s: Some Personal
Impressions, ” In A History of Computing in the Twentieth Century: A Collection
of Essays , ed. N. Metropolis, J. Howlett, and Gian-Carlo Rota (New York:
Academic Press, 1980), 126.

 42. George F. Weinwurm, ed., On the Management of Computer Programmers
(London: Auerbach Publishers, 1970).

 43. P. Mody, “ Is Programming an Art? ” Software Engineering Notes 17, no. 4
(1992): 19 – 21; Maurice Black, “ The Art of Code ” (PhD diss., University of
Pennsylvania, 2002).

 44. Bylinsky, “ Help Wanted: 50,000 Programmers, ” 141.

 45. Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering
(New York: Addison-Wesley, 1975), 7.

 46. Brian Randall and J. N. Buxton, Software Engineering: Proceedings of the
NATO Conferences (New York: Petrocelli/Carter, 1976).

 Chapter 3

 1. Brendan Gill and Andy Logan, “ Talk of the Town, ” New Yorker 5 (January
1957): 18 – 19.

 2. IBM Corporation, “ Are You the Man to Command Electronic Giants? ” New
York Times , May 13, 1956, 157.

 3. Gill and Logan, “ Talk of the Town. ”

 4. Ibid.

 5. Mark I. Halpern, “ Memoirs (Part 1), ” IEEE Annals of the History of
Computing 13, no. 1 (1991): 101 – 111.

 6. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 445 – 556.

 7. Martin Campbell-Kelly and William Aspray, Computer: A History of the
Information Machine (New York: Basic Books, 1996).

 8. Bruce Webster, “ The Real Software Crisis, ” Byte Magazine 21, no. 1 (1996):
218.

 9. Bylinsky, “ Help Wanted: 50,000 Programmers ” ; Stanley Englebardt,
 “ Wanted: 500,000 Men to Feed Computers, ” Popular Science , January 1965,
106 – 109.

Notes 253

 10. Robert Patrick, “ The Gap in Programming Support, ” Datamation 7, no. 5
(1961): 37; Don Madden, “ The Population Problem: Inexperience Will
Dominate, ” Datamation 8, no. 1 (1962): 26.

 11. “ Software Gap: A Growing Crisis for Computers, ” Business Week ,
November 5, 1966, 127.

 12. Arvid Jacobson, ed., Proceedings of the First Conference on Training
Personnel for the Computing Machine Field (Detroit: Wayne State University
Press, 1955).

 13. Ibid.

 14. G. Truman Hunter, “ Manpower Requirements by Computer Manufacturers, ”
in Proceedings of the First Conference on Training Personnel for the Computing
Machine Field , ed. Arvid Jacobson (Detroit: Wayne State University Press, 1955),
16.

 15. Milton E. Mengel, “ Present and Projected Computer Manpower Needs in
Business and Industry, ” in Proceedings of the First Conference on Training
Personnel for the Computing Machine Field , ed. Arvid Jacobson (Detroit: Wayne
State University Press, 1955), 7.

 16. Charles R. Gregg, “ Personnel Requirements in Government Agencies in
Machine Computation, ” in Proceedings of the First Conference on Training
Personnel for the Computing Machine Field , ed. Arvid Jacobson (Detroit: Wayne
State University Press, 1955), 14.

 17. M. Paul Chinitz, “ Contributions of Industrial Training Courses in
Computers, ” in Proceedings of the First Conference on Training Personnel for
the Computing Machine Field , ed. Arvid Jacobson (Detroit: Wayne State
University Press, 1955).

 18. Mengel, “ Present and Projected Computer Manpower Needs in Business and
Industry, ” 8.

 19. Ibid., 8.

 20. Hunter, “ Manpower Requirements by Computer Manufacturers. ”

 21. Ibid., 14 – 18.

 22. Mengel, “ Present and Projected Computer Manpower Needs in Business and
Industry, ” 6.

 23. Ibid., 6.

 24. Campbell-Kelly and Aspray, Computer .

 25. Gregg, “ Personnel Requirements in Government Agencies in Machine
Computation. ”

 26. Richard Canning, “ The Persistent Personnel Problem, ” EDP Analyzer 5,
no. 5 (1967): 1 – 14.

 27. Herbert Benington, “ Production of Large Computer Programs ”
(reprint), IEEE Annals of the History of Computing 5, no. 4 (1983): 350 –
361.

254 Notes

 28. Martin Campbell-Kelly, “ Development and Structure of the International
Software Industry, 1950 – 1990, ” Business and Economic History 24, no. 2
(1995): 73 – 110.

 29. Claude Baum, The Systems Builders: The Story of SDC (Santa Monica, CA:
System Development Corporation, 1981).

 30. Ibid., 47.

 31. Thomas C. Rowan, “ The Recruiting and Training of Programmers, ”
 Datamation 4, no. 3 (1958): 16 – 18; Chinitz, “ Contributions of Industrial
Training Courses in Computers. ”

 32. Benington, “ Production of Large Computer Programs. ”

 33. Baum, The Systems Builders , 52.

 34. Thomas Hughes and Agatha Hughes, eds., Systems, Experts, and Computers:
The Systems Approach in Management and Engineering, World War II and After
(Cambridge, MA: MIT Press, 2000).

 35. Baum, The Systems Builders , 48.

 36. Rowan, “ The Recruiting and Training of Programmers. ”

 37. C. M. Sidlo, “ The Making of a Profession ” (letter to editor), Communications
of the ACM 4, no. 8 (1961): 366 – 367.

 38. L. L. Thurstone, Primary Mental Abilities (Chicago: University of Chicago
Press, 1938).

 39. Henry Eilbert, “ The Development of Personnel Management in the United
States, ” Business History Review 33 (1959): 345 – 364.

 40. Thomas C. Rowan, “ Psychological Tests and Selection of Computer
Programmers, ” Journal of the ACM 4, no. 3 (1957): 350.

 41. Ibid.

 42. Ibid.

 43. Walter L. McNamara and John L. Hughes, “ A Review of Research on the
Selection of Computer Programmers, ” Personnel Psychology 14, no. 1 (1961):
39 – 51.

 44. Charles Lawson, “ A Survey of Computer Facility Management, ” Datamation
8, no. 7 (1962): 29 – 32.

 45. Walter J. McNamara, “ The Selection of Computer Personnel: Past,
Present, Future, ” in SIGCPR ‘ 67: Proceedings of the Fifth SIGCPR
Conference on Computer Personnel Research (New York: ACM Press, 1967),
52 – 56.

 46. Allan Bloom, “ Advances in Use of Programmer Aptitude Tests, ” in Advances
in Computer Programming Management , ed. Thomas Rullo (London: Heyden,
1980).

 47. Gerald Weinberg, The Psychology of Computer Programming (New York:
Van Nostrand Rheinhold, 1971), 174.

 48. Ibid., 175.

Notes 255

 49. William Paschell, Automation and Employment Opportunities for Offi ce
Workers: A Report on the Effect of Electronic Computers on Employment of
Clerical Workers (Washington, DC: Bureau of Labor Statistics, 1958).

 50. Joseph O ’ Shields, “ Selection of EDP Personnel, ” Personnel Journal 44, no.
9 (1965): 472.

 51. Jack Wolfe, “ Perspectives on Testing for Programming Aptitude , ” in
 Proceedings of 1971 ACM Annual Conference (New York: ACM Press, 1971),
268 – 277.

 52. Raymond M. Berger and Robert C. Wilson, “ Correlates of Programmer
Profi ciency, ” in SIGCPR ‘ 66: Proceedings of the Fourth SIGCPR Conference on
Computer Personnel Research (New York: ACM Press, 1966), 83 – 95.

 53. McNamara and Hughes, “ A Review of Research on the Selection of
Computer Programmers. ”

 54. Richard Brandon, “ The Problem in Perspective, ” in Proceedings of the 1968
23rd ACM National Conference (New York: ACM Press, 1968), 332 – 334.

 55. Hal Sackman, “ Conference on Personnel Research, ” Datamation 14, no. 7
(1968): 76.

 56. Robert A. Dickmann and J. Lockwood, 1966 Survey of Test Use in Computer
Personnel Selection. Technical Report (Computer Personnel Research Group,
Johns Hopkins University Applied Physics Lab, 1966).

 57. Robert N. Reinstedt et al., Computer Personnel Research Group Programmer
Performance Prediction Study. Technical Report. (Santa Monica, CA: RAND
Corporation, 1964).

 58. Report, “ The Computer Personnel Research Group, ” Datamation 9, no. 1
(1963): 130; Markku Tukiainen and Eero M ö nkk ö nen, “ Programming Aptitude
Testing as a Prediction of Learning to Program, ” in Proceedings of the 14th
Annual Workshop of the Psychology of Programming Interest Group, eds. Jasna
Kuljis and Lynne Baldwin and Rosa Scoble (Berlin: Springer, 2002), 130; Garland
Y. DeNelsky and Michael G. McKee, “ Prediction of Computer Programmer
Training and Job Performance Using the AAPB Test, ” Personnel Psychology 27,
no. 1 (1974): 130.

 59. Ascher Opler, “ Testing Programming Aptitude, ” Datamation 9, no. 10
(1963): 28 – 31.

 60. George P. Hollenbeck and Walter J. McNamara, “ Cucpat and Programming
Aptitude, ” Personnel Psychology 18, no. 1 (1965): 101 – 106.

 61. Bloom, “ Advances in Use of Programmer Aptitude Tests. ”

 62. “ Programmer Aptitude and Competence Test Systems (PACTS), ” in
 Proceedings of the Ninth Annual SIGCPR (New York: ACM Press, 1971),
3 – 25.

 63. Berger and Wilson, “ Correlates of Programmer Profi ciency. ”

 64. O ’ Shields, “ Selection of EDP Personnel. ”

 65. Terrence Polin, Robert Morse, and John Zenger, “ Selecting Programmers
from In-Plant Employees, ” Personnel Journal 41, no. 8 (1962): 398 – 400.

256 Notes

 66. Enid Mumford and Thomas Ward, Computers: Planning for People (London:
B. T. Batsford, 1968).

 67. Report, “ The Computer Personnel Research Group. ”

 68. Dallis Perry and William Cannon, “ Vocational Interests of Computer
Programmers, ” Journal of Applied Psychology 51, no. 1 (1967): 28 – 34.

 69. Ibid.

 70. Ibid., 30.

 71. Ibid.

 72. Dallis Perry and William Cannon, “ Vocational Interests of Female Computer
Programmers, ” Journal of Applied Psychology 52, no. 1 (1968): 31.

 73. Brandon, “ The Problem in Perspective. ”

 74. Theodore Willoughby, “ Are Programmers Paranoid? ” in Proceedings of
the Tenth Annual Conference on SIGCPR (New York: ACM Press, 1972),
47 – 54.

 75. Weinberg, The Psychology of Computer Programming .

 76. Reinstedt et al., Computer Personnel Research Group Programmer
Performance Prediction Study .

 77. David Mayer and Ashford Stainaker, “ Selection and Evaluation of Computer
Personnel: The Research History of SIG/CPR, ” in Proceedings of the 1968 23rd
ACM National Conference (New York: ACM Press, 1968), 657 – 670.

 78. Patrick, “ The Gap in Programming Support. ”

 79. “ Careers in Computers ” (ad), Datamation 8, no. 1 (1962): 21.

 80. G. W. Brown, cited in Martin Greenberger, Management and the Computer
of the Future (Cambridge, MA: MIT Press, 1962), 278.

 81. “ Software Gap: A Growing Crisis for Computers, ” Business Week ,
November 5, 1966, 127.

 82. “ Not Quite All about MIS ” (editorial), Datamation 13, no. 5 (1967): 21.

 83. Edward Markham, “ EDP Schools: An Inside View, ” Datamation 14, no. 4
(1968): 22 – 27.

 84. Richard Tanaka, “ Fee or Free Software, ” Datamation 13, no. 10 (1967):
205 – 206.

 85. Bylinsky, “ Help Wanted: 50,000 Programmers, ” 141.

 86. Canning, “ The Persistent Personnel Problem. ”

 87. Tanaka, “ Fee or Free Software, ” 205 – 206.

 88. Canning, “ The Persistent Personnel Problem ” ; John Johnsrud, “ Computer
Makers Set Up Own ‘ Universities, ’ ” New York Times (September 24, 1961):
F1.

 89. James Saxon, “ Programming Training: A Workable Approach, ” Datamation
9, no. 12 (1963): 48.

 90. Canning, “ The Persistent Personnel Problem, ” 9.

Notes 257

 91. Gary Popkin, “ The Junior College as a Source of Programming Personnel, ”
in Proceedings of the Ninth Annual SIGCPR Conference (New York: ACM
Press, 1971), 130.

 92. Richard Canning, “ Managing Staff Retention and Turnover, ” EDP Analyzer
15, no. 8 (1977): 1 – 13.

 93. John Fike, “ Vultures Indeed, ” Datamation 13, no. 5 (1967): 12.

 94. Robert M. Knoebel, “ The Federal Government ’ s Role in the Education of
Data Processing Personnel, ” in SIGCPR ‘ 67: Proceedings of the Fifth SIGCPR
Conference on Computer Personnel Research (New York: ACM Press, 1967),
77 – 84.

 95. Theodore Willoughby, “ Staffi ng the MIS Function, ” ACM Computing
Surveys 4, no. 4 (1972): 253.

 96. Robert N. Reinstedt, “ 1966 Survey of Test Use in Computer Personnel
Selection, ” in Proceedings of the 4th Annual Computer Personnel Research
Conference (New York: ACM Press, 1966), 1 – 8.

 97. Canning, “ The Persistent Personnel Problem ” ; Willoughby, “ Staffi ng the
MIS Function. ”

 98. McNamara, “ The Selection of Computer Personnel. ”

 99. Malcolm Gotterer and Ashford W. Stalnaker, “ Predicting Programmer
Performance among Non-Preselected Trainee Groups, ” in SIGCPR ‘ 64:
Proceedings of the Second SIGCPR Conference on Computer Personnel Research
(New York: ACM Press, 1964), 29 – 37.

 100. Jean P. Gilbert and David B. Mayer, “ Experiences in Self-selection of
Disadvantaged People into a Computer Operator Training Program, ” in SIGCPR
 ‘ 69: Proceedings of the Seventh Annual Conference on SIGCPR (New York:
ACM Press, 1969), 79 – 90.

 101. George Heller, “ Organizing a Local Program in Computing Education, ”
 Datamation 9, no. 1 (1963): 57 – 61.

 102. “ First Programmer Class at Sing-Sing Graduates, ” Datamation 14, no. 6
(1968): 97 – 98.

 103. Lois Mandel, “ The Computer Girls, ” Cosmopolitan , 1967, 52 – 56.

 104. Sackman, “ Conference on Personnel Research. ”

 105. Peggy Randall, “ Need for Warm Bodies, ” Datamation 9, no. 10 (1963):
14.

 106. John Callahan, “ Letter to the Editor, ” Datamation 7, no. 3 (1961): 7.

 107. Edward Markham, “ Selecting a Private EDP School, ” Datamation 14,
no. 5 (1968): 33 – 40.

 108. Ibid.

 109. Markham, “ EDP Schools: An Inside View. ”

 110. Markham, “ Selecting a Private EDP School. ”

 111. “ Roseman Takes Firm Position against Private EDP Schools, ”
 Communications of the ACM 11, no. 3 (April 1968): 206 – 207.

258 Notes

 112. “ Report from the ACM Ad-hoc Committee on Private EDP Schools, ”
(January 20, 1970), CBI 88, “ Data Processing Management Association records, ”
Box 21, Folder 38, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 113. Hans A. Rhee, Offi ce Automation in Social Perspective: The Progress and
Social Implications of Electronic Data Processing (Oxford: Basil Blackwell,
1968).

 114. Paschell, Automation and Employment Opportunities for Offi ce Workers ;
Weinberg, The Psychology of Computer Programming .

 115. Daniel Nelson, “ A Newly Appreciated Art: The Development of Personnel
Work at Leeds & Northrup, 1915 – 1923, ” Business History Review 94, no. 4
(1970), 520 – 535.

 116. Daniel J. Kevles, “ Testing the Army ’ s Intelligence: Psychologists and the
Military in World War I, ” Journal of American History 55, no. 3 (1968): 565 –
 581; Donald S. Napoli, “ The Mobilization of American Psychologists, 1938 –
 1941, ” Military Affairs 42, no. 1 (1978): 32 – 36.

 117. Theodore Willoughby, “ Psychometric Characteristics of the CDP
Examination, ” in Proceedings of the Thirteenth Annual SIGCPR Conference
(New York: ACM Press, 1975), 152 – 160.

 Chapter 4

 1. Daniel McCracken, “ The Software Turmoil: Nine Predictions for ‘ 62, ”
 Datamation 8, no. 1 (1962): 21 – 22; Robert Patrick, “ The Gap in Programming
Support, ” Datamation 7, no. 5 (1961): 37.

 2. RAND Symposium, “ On Programming Languages, Part II, ” Datamation 8,
no. 11 (1962): 85.

 3. Martin Campbell-Kelly and William Aspray, Computer: A History of the
Information Machine (New York: Basic Books, 1996), 182.

 4. H. S Tropp, “ ACM ’ s 20th Anniversary: 30 August 1967, ” Annals of the
History of Computing 9, no. 3 (1988): 269.

 5. Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs
for an Electronic Digital Computer (Reading, MA: Addison-Wesley, 1951).

 6. Richard Wexelblat, ed., History of Programming Languages (New York:
Academic Press, 1981), 10.

 7. Frederick P. Brooks, “ No Silver Bullet: Essence and Accidents of Software
Engineering, ” IEEE Computer 20, no. 4 (1987), 10 – 19.

 8. Remington Rand Univac. An Introduction to Programming the UNIVAC
1103A and 1105 Computing Systems (1958) Hagley Museum Archives, Accession
1825, Box 368.

 9. John Backus, cited in Wexelblat, History of Programming Languages , 82.

 10. RAND Symposium, “ On Programming Languages, Part II, ” 25 – 26.

Notes 259

 11. “ Editor ’ s Readout: A Long View of a Myopic Problem, ” Datamation 8,
no. 5 (1962): 21 – 22.

 12. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 141.

 13. See, for example, John Kasson, Civilizing the Machine: Technology
and Republican Values in America, 1776 – 1900 (Harmondsworth, UK:
Penguin, 1976); Ruth Milkman, Gender at Work: The Dynamics of Job
Segregation by Sex during World War II. History E-Book Project (Urbana:
University of Illinois Press, 1987); Alice Kessler-Harris, Out to Work: A History
of Wage-Earning Women in the United States (New York: Oxford University
Press, 1982); and indeed, most of the rest of the history of labor and
technology.

 14. Valerie Rockmael, “ The Woman Programmer, ” Datamation 9, no. 1 (1963):
41.

 15. Preliminary Report: Specifi cations for the IBM Mathematical Formula
Translating System. New York: Programming Research Group, Applied Science
Division, IBM Corporation, November 10, 1954.

 16. John Backus, “ Programming in America in the 1950s: Some Personal
Impressions, ” in A History of Computing in the Twentieth Century: A Collection
of Essays, ed. Nicholas Metropolis, Jack Howlett, and Gian-Carlo Rota, 125 –
 135. (New York: Academic Press, 1980).

 17. Jean Sammet, Programming Languages: History and Fundamentals
(Englewood Cliffs, NJ: Prentice-Hall, 1969), 148.

 18. Wexelblat, History of Programming Languages , 28.

 19. Sammet, Programming Languages , 144.

 20. Herbert Grosch, “ Magic Languages, ” Datamation 9, no. 2 (1963), 27.

 21. Grace Mitchell, The FORTRAN Automatic Coding System for the IBM 704
EDPM: Programmer ’ s Primer (IBM Corporation, 1956), cited in Sammet,
 Programming Languages , 150.

 22. Grace Mitchell, The 704 FORTRAN II Automatic Coding System (Yorktown
Heights, NY: IBM Research Center, 1959), 50.

 23. “ Automatic Programming: Properties and Performance of FORTRAN
Systems I and II, ” in Proceedings of Symposium on the Mechanization of the
Thought Processes (Middlesex, UK: National Physical Laboratory Press,
1958).

 24. H. Oswald, “ The Various FORTRANS, ” Datamation 10, no. 8 (1964):
25 – 29; “ Survey of Programming Languages and Processors, ” Communications
of the ACM 6, no. 3 (1965): 93 – 99.

 25. USA Standard FORTRAN, United States of America Standards Institute,
USAS X3.9 – 1966, New York, March 1966.

 26. John Backus et al., “ The FORTRAN Automatic Coding Language, ” in
 Proceedings of the West Joint Computer Conference (New York: ACM Press,
1957), 188 – 198.

260 Notes

 27. Sammet, Programming Languages , 149.

 28. Daniel McCracken, “ Is There FORTRAN In Your Future? ” Datamation 19,
no. 5 (1973): 236 – 237.

 29. I. Edward Block, “ Report on Meeting Held at University of Pennsylvania
Computing Center ” (1959).

 30. Charles Phillips, Report from the Committee on Data Systems Languages
(presentation to the Association for Computing Machinery, Boston, September
1, 1959), cited in Wexelblat, History of Programming Languages , 200.

 31. Charles Phillips, Minutes, Meeting of the Executive Committee of the
Conference on Data Systems Languages (1959), cited in Wexelblat, History of
Programming Languages , 202.

 32. Wexelblat, History of Programming Languages , 204.

 33. Jean Sammet, “ Brief Summary of the Early History of COBOL. ” Annals of
the History of Computing 7, no. 4 (1985): 288 – 203.

 34. Jean Sammet, cited in Wexelblat, History of Programming Languages ,
219.

 35. Jean Sammet, cited in ibid., 234.

 36. Wexelblat, History of Programming Languages , 231.

 37. Minutes of Meeting of the Intermediate-Range Task Force of the Committee
for Data Systems Languages (CODASYL) Dayton, Ohio. October 8 – 9,
1959. Reprinted in Annals of the History of Computing 7, no. 4 (1985):
329 – 341.

 38. Robert Bemer, Computers and Crisis: How Computers Are Shaping Our
Future (New York: ACM Press, 1971).

 39. Campbell-Kelly and Aspray, Computer: A History of the Information
Machine , 192.

 40. Stanley Naftaly, “ How to Pick a Programming Language, ” in Data
Processing, Practically Speaking , ed. Stanley Naftaly and Fred Gruenberger (Los
Angeles: Data Processing Digest, 1967): 79 – 90; “ What ’ s Happening with
COBOL? ” Business Automation 14, no. 4 (1966), 42 – 43.

 41. Allan Tucker, Programming Languages (Reading, MA: Addison-Wesley,
1977).

 42. Ben Shneiderman, “ The Relationship between COBOL and Computer
Science, ” Annals of the History of Computing 7, no. 4 (1985): 350.

 43. Ibid., 351.

 44. John Golda, “ The Effects of Computer Technology on the Traditional Role
of Management ” (master ’ s thesis, Wharton School of Business, University of
Pennsylvania, 1965), 34, 85; Robert Gordon, “ Personnel Selection, ” in Data
Processing, Practically Speaking (1967), 34, 85.

 45. Alan Perlis, cited in Wexelblat, History of Programming Languages , 60.

 46. Alan Perlis, cited in ibid., 82.

Notes 261

 47. “ Angels, Pins, and Language Standards, ” Datamation 9, no. 4 (1963):
23 – 25.

 48. Jack Little, cited in RAND Symposium, “ On Programming Languages, Part
II, ” 29 – 30.

 49. Bernard Galler, cited in ibid., 27.

 50. Fred Gruenberger, cited in ibid., 28.

 51. Jean E. Sammet, “ Programming Languages History, ” Annals of the History
of Computing 13, no. 1 (1991): 49.

 52. Herbert Grosch, “ Software in Sickness and Health, ” Datamation 7, no. 7
(1961): 32 – 33.

 53. Ibid., 33.

 54. Brooks, “ No Silver Bullet, ” 10.

 55. Brad Cox, “ There Is a Silver Bullet, ” Byte Magazine 15, no. 10 (1990):
209.

 56. David Morrison, “ Software Crisis, ” Defense 21, no. 2 (1989): 72.

 57. The thirty-three-page report, titled “ Bugs in the Program: Problems in
Federal Government Computer Software Development and Regulation, ” was
written by two staff members, James H. Paul and Gregory C. Simon, of the
Subcommittee on Investigations and Oversight of the House Committee on
Science, Space, and Technology. The content of the report was covered in the
 Washington Post (October 17, 1989), D1, and Science (November 10, 1989),
753, among many other publications. For example, see Gary Chapman, “ Bugs
in the Program, ” Communications of the ACM 33, no. 3 (1989): 251 – 252.

 58. Ibid., 72.

 59. John Backus, “ Programming in America in the 1950s: Some Personal
Impressions, ” in A History of Computing in the Twentieth Century: A Collection
of Essays , ed. N. Metropolis, J. Howlett, and Gian-Carlo Rota (New York:
Academic Press, 1980), 127.

 60. Willis Ware, “ As I See It: A Guest Editorial, ” Datamation 11, no. 5 (1965):
27.

 61. Edsger Dijkstra, “ Go to Statement Considered Harmful, ” Communications
of the ACM 11, no. 3 (1968): 147 – 148.

 Chapter 5

 1. Edsger W. Dijkstra, “ Communication with an Automatic Computer ” (PhD
diss., University of Amsterdam, 1959).

 2. Edsger Dijkstra, “ The Humble Programmer, ” Communications of the ACM
15, no. 10 (1972): 859 – 866.

 3. Edsger Dijkstra, “ Programming as a Discipline of Mathematical Nature, ”
 American Mathematical Monthly 81, no. 6 (1974): 608 – 612.

 4. Dijkstra, “ The Humble Programmer. ”

262 Notes

 5. Michael Mahoney, “ In Our Own Image: Creating the Computer, ” in The
Changing Image of the Sciences , ed. Ida Stamhuis, Teun Koetsier, and Kees de
Pater (Dordrecht: Kluwer Academic Publishers, 2002), 9 – 27.

 6. Geoffrey Bowker, “ How to Be Universal: Some Cybernetic Strategies, 1943 –
 1970, ” Social Studies of Science 23, no. 1 (1993): 107 – 127.

 7. RAND Symposium, “ Is It Overhaul or Trade-in Time: Part I, ” Datamation
5, no. 4 (1959), 24 – 33.

 8. Ibid.

 9. Harold Wilensky, “ The Professionalization of Everyone? ” American Journal
of Sociology 70, no. 2 (1964): 137 – 158.

 10. Malcolm Gotterer, “ The Impact of Professionalization Efforts on the
Computer Manager, ” in Proceedings of 1971 ACM Annual Conference (New
York: ACM Press, 1971), 371 – 372.

 11. C. M. Sidlo, “ The Making of a Profession ” (letter to editor), Communications
of the ACM 4, no. 8 (1961): 367.

 12. Hal Sackman, “ Conference on Personnel Research, ” Datamation 14, no. 7
(1968): 74 – 76, 81.

 13. Susan B. Carter et al., Historical Statistics of the United States Millennial
Edition Online (New York: Cambridge University Press, 2006).

 14. Jack W. Carlson, “ On Determining C. S. Education Programs, ”
 Communications of the ACM 9, no. 3 (1966): 135.

 15. Ibid.

 16. Anthony Oettinger, “ President ’ s Letter to the ACM Membership, ”
 Communications of the ACM 9, no. 12 (1966): 838 – 839.

 17. Robert Rosin, “ Relative to the President ’ s December Remarks, ”
 Communications of the ACM 10, no. 6 (1967): 342.

 18. Anthony Oettinger, “ The Hardware-Software Complexity, ” Communications
of the ACM 10, no. 10 (1967): 604.

 19. Herbert A. Simon, The Sciences of the Artifi cial , vol. 1968 (Cambridge, MA:
MIT Press, 1969).

 20. George E. Forsythe, “ What to Do Till the Computer Scientist Comes, ”
 American Mathematical Monthly 75, no. 5 (1968): 454 – 462.

 21. William Aspray, “ Was Early Entry a Competitive Advantage? US Universities
That Entered Computing in the 1940s, ” IEEE Annals of the History of Computing
22, no. 3 (2000): 65.

 22. Andrew Abbott, The Systems of Professions: An Essay on the Division of
Expert Labor (Chicago: University of Chicago Press, 1988).

 23. Louis Fein, “ The Role of the University in Computers, Data Processing,
and Related Fields, ” Communications of the ACM 2, no. 10 (1959):
7 – 14.

 24. Ibid.

Notes 263

 25. Quentin Correll, “ Letters to the Editor, ” Communications of the ACM 1,
no. 7 (1958): 2; Peter Naur, “ The Science of Datalogy (Letter to Editor), ”
 Communications of the ACM 9, no. 7 (1966): 485; P. A. Zaphyr, “ The Science
of Hypology ” (letter to editor), Communications of the ACM 2, no. 1 (1959):
4; Editors of DATA-LINK, “ What ’ s in a Name? (Letter to Editor), ”
 Communications of the ACM 1, no. 4 (1958): 6.

 26. Correll, “ Letters to the Editor. ”

 27. Gopal Gupta, “ Computer Science Curriculum Developments in the 1960s, ”
 IEEE Annals of the History of Computing 29, no. 2 (2007): 40 – 54.

 28. David Allan Grier, When Computers Were Human (Princeton, NJ: Princeton
University Press, 2005), viii, 411.

 29. Aspray, “ Was Early Entry a Competitive Advantage? ” 66, 68.

 30. I. Bernard Cohen, Gregory W. Welch, and Robert V. D. Campbell, Makin ’
Numbers: Howard Aiken and the Computer (Cambridge, MA: MIT Press,
1999).

 31. Ibid., 186.

 32. Aspray, “ Was Early Entry a Competitive Advantage? ” 52, 55.

 33. Larry Owens, “ Where Are We Going Phil Morse? Changing Agendas and
the Rhetoric of Obviousness in the Transformation of Computing at MIT,
1939 – 1957, ” IEEE Annals of the History of Computing 18, no. 4 (1996):
34 – 41.

 34. Aspray, “ Was Early Entry a Competitive Advantage? ” 49.

 35. Ibid.

 36. Ibid., 76.

 37. Atsushi Akera, “ Calculating a Natural World: Scientists, Engineers, and
Computers in the United States, 1937 – 1968 ” (PhD diss., University of
Pennsylvania, 1998).

 38. Peter Galison, “ Computer Simulations in the Trading Zone, ” in The Disunity
of Science , ed. Peter Galison and David Stump (Stanford, CA: Stanford University
Press, 1996), 118 – 157.

 39. Dijkstra, “ The Humble Programmer, ” 860.

 40. Charles Yood, “ Attack of the Giant Brains, ” Research Penn State Online
24, no. 3 (September 2003), available at http://www.rps.psu.edu/0309/brains.
html.

 41. David Parnas, “ On the Preliminary Report of C3S ” (letter to editor),
 Communications of the ACM 9, no. 4 (1966): 242 – 243.

 42. John Backus et al., “ The FORTRAN Automatic Coding System, ” in
 Proceedings of the West Joint Computer Conference (New York: ACM Press,
1957), 188 – 198.

 43. Brent Jesiek, “ The Sociotechnical Boundaries of Hardware and Software: A
Humpty-Dumpty History, ” Bulletin of Science, Technology, and Society 26, no.
6 (2006): 497 – 509.

264 Notes

 44. Anthony Oettinger, “ President ’ s Reply to Louis Fein, ” Communications of
the ACM 10, no. 1 (1967): 1, 61.

 45. William F. Atchison and John W. Hamblen, “ Status of Computer Sciences
Curricula in Colleges and Universities, ” Communications of the ACM 7, no. 4
(1964): 225 – 227.

 46. Frank Harary, cited in Gerald M. Weinberg, An Introduction to General
Systems Thinking (New York: Wiley, 1975).

 47. Peter Wegner, “ Undergraduate Programs in Computer Science, ” in SIGCPR
 ‘ 66: Proceedings of the Fourth SIGCPR Conference on Computer Personnel
Research (New York: ACM Press, 1966), 121 – 129.

 48. Ibid.

 49. Herbert A. Simon, Allen Newell, and Alan Perlis, “ Computer Science ” (letter
to editor), Science 157, no. 3795 (1967): 1373 – 1374; Simon, The Sciences of
the Artifi cial .

 50. In fact, although this quote is widely repeated and attributed to Edsger
Dijkstra, it does not appear in any of his published writings. For one of many
references, see Nick Parlante, “ What Is Computer Science? ” SIGCSE Bulletin
37, no. 2 (2005), 24.

 51. Louis Fein, “ Computer-Related Sciences (Synnoetics) at a University in
1975, ” Datamation 7, no. 9 (1961): 34 – 41.

 52. Fein, “ The Role of the University in Computers, Data Processing, and
Related Fields. ”

 53. ACM Curriculum Committee, “ An Undergraduate Program in Computer
Science: Preliminary Recommendations, ” Communications of the ACM 8, no. 9
(1965): 543 – 552.

 54. “ Will You Vote for an Association Name Change to ACIS? ” (editorial),
 Communications of the ACM 8, no. 7 (1965): 424 – 426.

 55. Michael Mahoney, “ Computer Science: The Search for a Mathematical
Theory, ” in Science in the Twentieth Century , ed. John Krige and Dominique
Pestre (Amsterdam: Harwood Academic Publishers, 1997), 617 – 634.

 56. Walter J. McNamara and John L. Hughes, “ A Review of Research on the
Selection of Computer Programmers, ” Personnel Psychology 14, no. 1 (1961):
41 – 42.

 57. Christopher Shaw, “ Programming Schisms, ” Datamation 8, no. 9 (1962):
32.

 58. Atchison and Hamblen, “ Status of Computer Sciences Curricula in Colleges
and Universities. ”

 59. Michael Mahoney, “ Software as Science – Science as Software, ” in Mapping
the History of Computing: Software Issues , ed. Ulf Hashagen, Reinhard Keil-
Slawik, and Arthur Norberg (Berlin: Springer-Verlag, 2002), 25 – 48.

 60. ACM Curriculum Committee, “ An Undergraduate Program in Computer
Science. ”

Notes 265

 61. Claude Shannon and Warren Weaver, A Mathematical Theory of
Communication (Urbana: University of Illinois Press, 1949).

 62. Lily Kay, “ Who Wrote the Book of Life? Information and the Transformation
of Molecular Biology, ” Science in Context 8 (1995): 609 – 634; Ronald Kline,
 “ Cybernetics, Management Science, and Technology Policy: The Emergence of
 ‘ Information Technology ’ as a Keyword, 1948 – 1985, ” Technology and Culture
47, no. 3 (2006): 513 – 535.

 63. Karl Steinbuch, INFORMATIK: Automatische Informationsverarbeitung
(Berlin: SEG-Nachrichten, 1957).

 64. Thomas S. Kuhn, The Structure of Scientifi c Revolutions (Chicago: University
of Chicago Press, 1962), 138.

 65. Donald Ervin Knuth, The Art of Computer programming, Volume 1:
Fundamental Algorithms (Reading, MA: Addison-Wesley, 1968).

 66. Paul Ceruzzi, “ Electronics Technology and Computer Science, 1940 – 1975:
A Coevolution, ” IEEE Annals of the History of Computing 10, no. 4 (1989):
257 – 275.

 67. Peter Wegner, “ Three Computer Cultures: Computer Technology, Computer
Mathematics, and Computer Science, ” Advances in Computers 10 (1970):
7 – 78.

 68. Gupta, “ Computer Science Curriculum Developments in the 1960s. ”

 69. David Hemmendinger, “ The ACM and IEEE-CS Guidelines for Undergraduate
CS Education, ” Communications of the ACM 50, no. 5 (2007), 49.

 70. Richard H. Austing, Bruce H. Barnes, and Gerald L. Engel, “ A Survey of
the Literature in Computer Science Education since Curriculum ‘ 68, ”
 Communications of the ACM 20, no. 1 (1977): 13 – 21.

 71. RAND Symposium (1969), “ RAND Symposia on Computing Transcripts, ”
Charles Babbage Institute Archives, CBI 78, Box 3, Folder 4.

 72. Sackman, “ Conference on Personnel Research, ” 76.

 73. Richard Hamming, “ One Man ’ s View of Computer Science, ” Journal of the
ACM 16, no. 1 (1969), 3 – 12.

 74. J. A. McMurrer and J. R. Parish, “ The People Problem, ” Datamation 16,
no. 7 (1970): 57.

 75. Abraham Kandel, “ Computer Science: A Vicious Circle, ” Communications
of the ACM 15, no. 6 (1972): 470 – 471.

 76. Robert Forest, “ EDP People: Review and Preview, ” Datamation 18, no. 6
(1972): 68.

 77. Fred Gruenberger, “ Problems and Priorities, ” Datamation 18, no. 3 (1972):
49.

 78. Mahoney, “ Computer Science. ”

 79. Daniel McCracken, “ The Human Side of Computing, ” Datamation 7, no.
1 (1961): 9 – 11.

266 Notes

 Chapter 6

 1. “ The Thinking Machine, ” Time magazine, January 23, 1950, 54 – 60.

 2. J. Lear, “ Can a Mechanical Brain Replace You? ” Colliers , no. 131 (1953),
58 – 63.

 3. “ Offi ce Robots, ” Fortune 45 (January 1952), 82 – 87, 112, 114, 116, 118.

 4. Cheryl Knott Malone, “ Imagining Information Retrieval in the Library: Desk
Set in Historical Context, ” IEEE Annals of the History of Computing 24, no. 3
(2002): 14 – 22.

 5. Ibid.

 6. Ibid.

 7. Thorstein Veblen, The Theory of the Leisure Class (New York: McMillan,
1899).

 8. Thomas Haigh, “ The Chromium-Plated Tabulator: Institutionalizing an
Electronic Revolution, 1954 – 1958, ” IEEE Annals of the History of Computing
4, no. 23 (2001), 75 – 104.

 9. James W. Cortada, Information Technology as Business History: Issues in
the History and Management of Computers (Westport, CT: Greenwood Press,
1996).

 10. Kenneth Flamm, Creating the Computer: Government, Industry, and High
Technology (Washington, DC: Brookings Institution Press, 1988).

 11. Thomas Alexander, “ Computers Can ’ t Solve Everything, ” Fortune 80, no.
5 (1969), 126 – 129, 168, 171.

 12. Gordon Moore, “ Cramming More Components onto Integrated Circuits, ”
 Electronics 38, no. 8 (1965), 114 – 117.

 13. McKinsey and Company, “ Unlocking the Computer ’ s Profi t Potential, ”
 Computers and Automation 16, no. 7 (1969): 24 – 33.

 14. Alexander, “ Computers Can ’ t Solve Everything. ”

 15. John Dearden, “ How to Organize Information Systems, ” Harvard Business
Review 43, no. 2 (1965): 65 – 73; John Dearden, “ Myth of Real-Time Management
Information, ” Harvard Business Review 44, no. 3 (1966): 123 – 132; John
Dearden, “ MIS is a Mirage, ” Harvard Business Review 50, no. I1 (1972):
90 – 99.

 16. John Diebold, “ Bad Decisions on Computer Use, ” Harvard Business Review
47, no. 1 (1969): 14 – 21.

 17. David Hertz, New Power for Management (New York: McGraw-Hill,
1969).

 18. Arnold Ditri and Donald Woods, The End of the Beginning – The Fizzle of
the “ Computer Revolution ” (Touche Ross and Company, 1959).

 19. McKinsey and Company, “ Unlocking the Computer ’ s Profi t Potential. ”

 20. Editorial, “ Trouble . . . I Say Trouble, Trouble in DP City, ” Datamation 14,
no. 7 (1968): 21.

Notes 267

 21. William R. King and David I. Cleland, “ The Design of Management
Information Systems: An Information Analysis Approach, ” Management
Science 22, no. 3 (1975): 286 – 297; E. Vanlommel and Bert De Brabander,
 “ The Organization of Electronic Data Processing (EDP) Activities and Computer
Use, ” Journal of Business 48, no. 3 (1975): 391 – 410; Bert De Brabander and
Anders Edstrom, “ Successful Information System Development Projects, ”
 Management Science 24, no. 2 (1977): 191 – 199; Michael J. Ginzberg, “ Key
Recurrent Issues in the MIS Implementation Process, ” MIS Quarterly 5, no. 2
(1981): 47 – 59.

 22. Robert Patrick, “ The Gap in Programming Support, ” Datamation 7, no. 5
(1961): 37; Daniel McCracken, “ The Software Turmoil: Nine Predictions for
 ‘ 62, ” Datamation 8, no. 1 (1962): 21 – 22.

 23. Brian Randall and John Buxton, Software Engineering: Proceedings of the
NATO Conferences (New York: Petrocelli/Carter, 1976).

 24. Thomas Haigh, “ Software in the 1960s as Concept, Service, and Product, ”
 IEEE Annals of the History of Computing 24, no. 1 (2002): 5 – 13.

 25. Richard Christian, “ The Computer and the Marketing Man, ” Journal of
Marketing 26, no. 3 (1962): 79 – 82; Robert Hayes, Ralph H. Parker, and Gilbert
W. King, “ Automation and the Library of Congress: Three Views, ” Library
Quarterly 34, no. 3 (1964): 229 – 239; J. H. Spigelman, “ Implications of Recent
Advances in Electronic Data Processing, ” Financial Analysts Journa l 20, no. 5
(1964): 137 – 143; Maurice Ronayne, “ ‘ Leads ’ to Pertinent ADP Literature for
the Public Administrator, ” Public Administration Review 24, no. 2 (1964):
119 – 125; “ Hardware And Software, ” British Medical Journal 1, no. 5449
(1965): 1509; “ Abstracts of Papers for the Fourteenth Annual Meeting of the
Radiation Research Society, Coronado, California February 13 – 16, 1966, ”
 Radiation Research 27, no. 3 (1966): 487 – 554; Allen Forte, “ Review: Conference
on the Use of Computers in Humanistic Research, ” Computers and the
Humanities 1, no. 3 (1967): 110 – 112.

 26. JoAnne Yates, “ Application Software for Insurance in the 1960s and Early
1970s, ” Business And Economic History 24 (1) (1995): 123 – 134.

 27. McKinsey and Company, “ Unlocking the Computer ’ s Profi t Potential, ”
33.

 28. John Golda, “ The Effects of Computer Technology on the Traditional Role
of Management ” (master ’ s thesis, Wharton School of Business, University of
Pennsylvania, 1965), 34.

 29. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 141.

 30. Charles Keelan, “ Controlling Computer Programming, ” Journal of
Systems Management 20, no. 1 (1969): 30 – 33; Hertz, New Power for
Management ; Richard Canning, “ Managing the Programming Effort, ”
EDP Analyzer 6, no. 6 (1968): 1 – 15; Charles Lecht, The Management
of Computer Programming Projects (New York: American Management
Association, 1967).

268 Notes

 31. Malcolm Gotterer, “ The Impact of Professionalization Efforts on the
Computer Manager, ” in Proceedings of 1971 ACM Annual Conference (New
York: ACM Press, 1971), 368.

 32. Dallis Perry and William Cannon, “ Vocational Interests of Computer
Programmers, ” Journal of Applied Psychology 51, no. 1 (1967): 28 – 34.

 33. W. R. Walker, “ MIS Mysticism ” (letter to editor), Business Automation 16,
no. 7 (1969): 8.

 34. Herbert Grosch, “ Programmers: The Industry ’ s Cosa Nostra, ” Datamation
12, no. 10 (1966): 202.

 35. Richard Canning, “ The Persistent Personnel Problem, ” EDP Analyzer 5, no.
5 (1967): 1 – 14.

 36. Ibid.

 37. Roger Guarino, “ Managing Data Processing Professionals, ” Personnel
Journal 48, no. 12 (1969): 972 – 975; P. Bradford and L. R. Cottrell, “ Factors
Infl uencing Business Data Processors Turnover: A Comparative Case History, ”
in Proceedings of the 1977 Annual Conference (New York: ACM Press, 1977),
202 – 205.

 38. H. V. Reid, “ Problems in Managing the Data Processing Department, ”
 Journal of Systems Management 21, no. 5 (1970): 8 – 11; Richard Canning,
 “ Managing Staff Retention and Turnover, ” EDP Analyzer 15, no. 8 (1977):
1 – 13.

 39. Editorial, “ EDP ’ s Wailing Wall, ” Datamation 13, no. 7 (1967): 21.

 40. Guarino, “ Managing Data Processing Professionals. ”

 41. John Fike, “ Vultures Indeed, ” Datamation 13, no. 5 (1967): 12.

 42. Deutsch and Shea, Inc., “ A Profi le of the Programmer, ” Communications
of the ACM 6, no. 10 (1963): 592 – 594, 647.

 43. Avner Porat and James Vaughan, “ Computer Personnel: The New
Theocracy — or Industrial Carpetbaggers, ” Personnel Journal 48, no. 6 (1968):
540 – 543.

 44. Hertz, New Power for Management , 169.

 45. McKinsey and Company, “ Unlocking the Computer ’ s Profi t Potential, ”
33.

 46. Jerry L. Ogdin, “ The Mongolian Hordes versus Superprogrammer, ”
 Infosystems 19, no. 12 (1973): 20.

 47. Editorial, “ The Facts of Life, ” Datamation 14, no. 3 (1968): 21.

 48. Hal Sackman, W. J. Erickson, and E. E. Grant, “ Exploratory Experimental
Studies Comparing Online and Offl ine Programming Performance, ”
 Communications of the ACM 11, no. 1 (1968): 3 – 11.

 49. Edwin E. David, cited in Randall and Buxton, Software Engineering , 33.

 50. Robert Gordon, “ Personnel Selection, ” in Data Processing, Practically
Speaking, ed. Stanley Naftaly and Fred Gruenberger (Los Angeles: Data Processing
Digest, 1967), 88.

Notes 269

 51. Joseph O ’ Shields, “ Selection of EDP Personnel, ” Personnel Journal 44,
no. 9 (1965): 472.

 52. Perry and Cannon, “ Vocational Interests of Computer Programmers. ”

 53. Richard Brandon, “ The Problem in Perspective, ” in Proceedings of the 1968
23rd ACM National Conference (New York: ACM Press, 1968), 332 – 334.

 54. “ Offi ce Robots, ” Fortune 45, January 1952, 114.

 55. See, for example, Gerald Weinberger, The Psychology of Computer
Programming (New York: Von Nostrand Rheinhold, 1971).

 56. Bylinsky, “ Help Wanted: 50,000 Programmers, ” 141.

 57. Lecht, The Management of Computer Programming Projects , 9.

 58. Robert Gordon, “ Review of Charles Lecht, The Management of Computer
Programmers , ” Datamation 14, no. 4 (1968): 200.

 59. John Backus, “ Programming in America in the 1950s: Some Personal
Impressions, ” in A History of Computing in the Twentieth Century: A Collection
of Essays , ed. Nicholas Metropolis, Jack Howlett, and Gian-Carlo Rota (New
York: Academic Press, 1980), 125 – 135.

 60. Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering
(New York: Addison-Wesley, 1975), 7.

 61. Donald Ervin Knuth, The Art of Computer Programming. Addison-Wesley
Series in Computer Science and Information Processing (Reading, MA: Addison-
Wesley, 1968); Donald Knuth, Literate Programming (Stanford, CA: Center for
the Study of Language/Information, 1992).

 62. P. Mody, “ Is Programming an Art? ” Software Engineering Notes 17, no. 4
(1992): 19 – 21; Steve Lohr, Go to: The Story of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists, and Iconoclasts — The Programmers
Who Created the Software Revolution (New York: Basic Books, 2001).

 63. Carl Reynolds, cited in Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ”
 Fortune 75, no. 3 (1967), 142.

 64. Daniel McCracken, “ The Human Side of Computing, ” Datamation 7, no.
1 (1961): 9 – 11; Enid Mumford and Thomas Ward, Computers: Planning for
People (London: B. T. Batsford, 1968); Gene Altshuler, “ Programmers and
Analysts ” (letter to the editor), Datamation 16, no. 1(1970): 47; Raymond
Berger, “ Computer personnel selection and criteria development, ” in Proceedings
of the 2nd SIGCPR Conference on Computer Personnel Research (New York:
ACM Press, 1964), 65 – 77.

 65. B. Conway, J. Gibbons, and D. E. Watts, Business Experience with Electronic
Computers: A Synthesis of What Has Been Learned from Electronic Data
Processing Installations (New York: Price Waterhouse, 1959), 81 – 83.

 66. Felix Kaufman, “ EDP and the Disenchanted, ” California Management
Review 1, no. 4 (1959): 67.

 67. Harold Leavitt and Thomas Whisler, “ Management in the 1980s, ” Harvard
Management Review 36, no. 6 (1958): 41 – 48.

270 Notes

 68. Ibid., 44.

 69. Philip Mirowski, Machine Dreams: Economics Becomes a Cyborg Science
(Cambridge: Cambridge University Press, 2002).

 70. Herbert Alexander Simon, Administrative Behavior: A Study of Decision-
Making Processes in Administrative Organization (New York: Macmillan,
1947).

 71. Herbert Alexander Simon, The New Science of Management Decision (New
York: Harper, 1960), 22.

 72. John Diebold, “ ADP: The Still-Sleeping Giant, ” Harvard Business Review
42, no. 5 (1964): 64.

 73. Thomas Haigh, “ Inventing Information Systems: The Systems Men and the
Computer, 1950 – 1968, ” Business History Review 75, no. 1 (2001): 18.

 74. Thomas Whisler, “ The Impact of Information Technology on Organizational
Control, ” in The Impact of Computers on Management , ed. Charles A. Myers
(Cambridge, MA: MIT Press, 1967), 48, 44.

 75. L. R. Fiock, “ Seven Deadly Dangers of EDP, ” Harvard Business Review 40,
no. 3 (1962), 90.

 76. “ Is the Computer Running Wild? ” U.S. News and World Report , February
1964.

 77. Robert McFarland, “ Electronic Power Grab, ” Business Automation 12, no.2
(February 1965), 30 – 39.

 78. Michael Barnett, Computer Programming in English (New York: Harcourt,
Brace and World, 1969), 3.

 79. Rosemary Stewart, How Computers Affect Management (Cambridge, MA:
MIT Press, 1971), 196.

 80. Golda, “ The Effects of Computer Technology on the Traditional Role of
Management, ” 34.

 81. Alexander, “ Computers Can ’ t Solve Everything, ” 169.

 82. Michael Rose, Computers, Managers, and Society (Harmondsworth, UK:
Penguin, 1969), 207.

 83. Porat and Vaughan, “ Computer Personnel, ” 542.

 84. Editorial, “ The Thoughtless Information Technologist, ” Datamation 12, no.
8 (1966): 21.

 85. Haroun Jamous and Bernard Peliolle, “ Changes in the French University
Hospital System, ” in Professions and Professionalisation , ed. J. A. Jackson
(Cambridge: Cambridge University Press, 1970), 111 – 152.

 86. Barnett, Computer Programming in English , 5.

 87. Perry and Cannon, “ Vocational Interests of Computer Programmers. ”

 88. Gotterer, “ The Impact of Professionalization Efforts on the Computer
Manager, ” 368.

 89. Gordon, “ Personnel Selection, ” 85.

Notes 271

 90. Brian Rothery, Installing and Managing a Computer (London: Business
Books, 1968), 83.

 91. Editorial, “ The Thoughtless Information Technologist, ” 21 – 22.

 92. Ibid.

 93. Walker, “ MIS Mysticism, ” 8.

 94. Editorial, “ The Thoughtless Information Technologist, ” 21 – 22.

 95. Hertz, New Power for Management , 169.

 96. H. L. Morgan and J. V. Soden, “ Understanding MIS Failures, ” Database 5,
no. 2 (1973), 159.

 97. Harry Larson, “ EDP: A 20 Year Ripoff! ” Infosystems (1974), 28.

 98. Editorial, “ Trouble . . . I Say Trouble, Trouble in DP City. ”

 99. Golda, “ The Effects of Computer Technology on the Traditional Role of
Management, ” 34.

 100. Larson, “ EDP: A 20 Year Ripoff! ” 26.

 101. Hertz, New Power for Management , 169.

 102. Robert Boguslaw and Warren Pelton, “ Steps: A Management Game for
Programming Supervisors, ” Datamation 5, no. 6 (1959): 13 – 16.

 103. Gordon, “ Personnel Selection, ” 200.

 104. Keelan, “ Controlling Computer Programming, ” 30.

 Chapter 7

 1. Editorial, “ Editor ’ s Readout: The Certifi ed Public Programmer, ” Datamation
8, no. 3 (1962): 23 – 24.

 2. Ibid.

 3. Calvin Elliott, “ DPMA: Its Function and Future, ” Datamation 9, no. 6
(1963): 35 – 36.

 4. Ibid.

 5. Report, “ Certifi cate in Data Processing, ” Datamation 9, no. 8 (1963):
59.

 6. Jerome Geckle, “ Letter to the Editor, ” Datamation 11, no. 9 (1965):
12 – 13.

 7. John A. Guerrieri, “ Certifi cation: Evolution, Not Revolution, ” Datamation
14, no. 11 (1973): 101; “ DPMA Certifi cate Panel, ” (1964), CBI 46, “ John K.
Swearingen Papers, 1936 – 1993, ” Box 1, Folder 17, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 8. Richard Canning, “ Professionalism: Coming or Not? ” EDP Analyzer 14, no.
3 (1976): 1 – 12.

 9. Richard Canning, “ The Question of Professionalism, ” EDP Analyzer 6, no.
12 (1968): 1 – 13.

272 Notes

 10. Richard Canning, “ The DPMA Certifi cate in Data Processing, ” EDP
Analyzer 3, no. 7 (1965): 1 – 12.

 11. Charles M. Sidlo, “ The Making of a Profession ” (letter to editor),
 Communications of the ACM 4, no. 8 (1961): 366.

 12. Hal Sackman, “ Conference on Personnel Research, ” Datamation 14, no. 7
(1968): 74 – 76, 81.

 13. Report, “ Certifi cate in Data Processing, ” 38.

 14. Editorial, “ Learning a Trade, ” Datamation 12, no. 10 (1966): 21.

 15. James Jenks, “ Starting Salaries of Engineers Are Deceptively High, ”
 Datamation 13, no. 1 (1967): 13.

 16. Louis Kaufman and Richard Smith, “ Let ’ s Get Computer Personnel on the
Management Team, ” Training and Development Journal 20, no. 11 (1966):
25 – 29.

 17. Bendix Computer Division, “ Is Your Programming Career in a Closed
Loop? ” Datamation 8, no. 9 (1962): 86.

 18. Mitre Corporation, “ Are You Working Your Way toward Obsolescence? ”
 Datamation 12, no. 6 (1966): 99.

 19. Xerox Corporation, “ At Xerox, We Look at Programmers . . . and See
Managers ” (ad), Datamation 14, no. 4 (1968).

 20. Richard Canning, “ Issues in Programming Management, ” EDP Analyzer
12, no. 4 (1974): 1 – 14.

 21. Magali Sarfatti Larson, The Rise of Professionalism: A Sociological Analysis
(Berkeley: University of California Press, 1977).

 22. Harold Wilensky, “ The Professionalization of Everyone? ” American Journal
of Sociology 70, no. 2 (1964): 137 – 158.

 23. David Ross, “ Certifi cation and Accreditation, ” Datamation 14, no. 9 (1968):
183 – 184.

 24. Canning, “ Professionalism: Coming or Not? ” 2.

 25. Editorial, “ Professionalism Termed Key to Computer Personnel Situation, ”
 Personnel Journal 51, no. 2 (1971): 156 – 157.

 26. George Palmer, “ Programming, The Profession That Isn ’ t, ” Datamation 21,
no. 4 (1975): 23 – 24.

 27. Eric Weiss, “ Publications in Computing: An Informal Review, ”
 Communications of the ACM 15, no. 7 (1972): 492 – 497.

 28. Saul Gass, “ ACM Class Structure ” (letter to editor), Communications of the
ACM 2, no. 5 (1959): 4.

 29. “ The Certifi cate and Undergraduate Program, ” (1959), CBI 88, “ Data
Processing Management Association records, ” Box 22, Folder 1, Archives of the
Charles Babbage Institute, University of Minnesota, Minneapolis.

 30. “ RAND Symposium, 1959 ” (1959).

Notes 273

 31. George DiNardo, “ Software Management and the Impact of Improved
Programming Technology, ” in Proceedings of 1975 ACM Annual Conference
Software Management and the Impact of Improved Programming Technology
(New York: ACM Press, 1975), 288 – 289.

 32. Editorial, “ The Cost of Professionalism, ” Datamation 9, no. 10 (1963):
23.

 33. Anthony Oettinger, “ On ACM ’ s Responsibility ” (president ’ s letter to ACM
membership 1966), Communications of the ACM 9, no. 8 (1966): 545 – 546.

 34. Emphasis added. Paul Armer, “ Thinking Big ” (letter to editor),
 Communications of the ACM 2, no. 1 (1959).

 35. Herbert Grosch, “ Plus and Minus, ” Datamation 5, no. 6 (1959): 51.

 36. Robert Payne, “ Reaction to Publication Proposal ” (letter to editor),
 Communications of the ACM 8, no. 1 (1965): 71.

 37. Anthony Oettinger, “ ACM Sponsors Professional Development Program ”
(president ’ s letter to ACM membership), Communications of the ACM 9, no.
10 (1966): 712 – 713.

 38. Bernard Galler, “ The Journal ” (president ’ s letter to ACM membership),
 Communications of the ACM 12, no. 2 (1969): 65 – 66.

 39. “ Will You Vote for an Association Name Change to ACIS? ” Communications
of the ACM 8, no. 7 (1965): 424 – 426; Daniel McCracken, “ Vote on ACM Name
Change, ” (1978), CBI 43, “ Daniel D. McCracken Papers, 1958 – 1983, ” Box 3,
Folder 10, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 40. Anthony Oettinger, “ President ’ s Reply to Louis Fein, ” Communications of
the ACM 10, no. 1 (1967): 1, 61.

 41. Raymond Wishner, “ Comment on Curriculum 68, ” Communications of the
ACM 11, no. 10 (1968): 658; Report, “ Curriculum 68, ” Datamation 14, no. 5
(1968): 114 – 116; Richard Hamming, “ One Man ’ s View of Computer Science, ”
 Journal of the ACM 16, no. 1 (1969), 3 – 12.

 42. John Postley, “ Letter to Editor, ” Communications of the ACM 3, no. 1
(1960): A6.

 43. “ Why Are Business Users Turned Off by ACM? ” (1974), CBI 23, “ George
Glaser Papers, 1960 – 1989, ” Box 1, Folder 3, Archives of the Charles Babbage
Institute, University of Minnesota, Minneapolis.

 44. Ibid.

 45. Ibid.

 46. “ Six Measures of Professionalism, ” (1962), CBI 88, “ Data Processing
Management Association records, ” Box 21, Folder 40, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 47. “ Local Chapter CDP Publicity, ” (1964), CBI 46, “ John K. Swearingen
Papers, 1936 – 1993, ” Box 1, Folder 17, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

274 Notes

 48. “ Letter Re: Four Year Degree Requirement, ” (1970), CBI 116, “ Institute for
Certifi cation of Computer Professionals Records, 1960 – 1993, ” Box 1, Folder
27, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis; R. Higgins, “ Letter to the DPMA ” (1973) CBI 46, “ John K.
Swearingen Papers, 1936 – 1993, ” Box 1, Folder 17, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 49. J. D. Madden, “ Letter to Calvin Elliot, ” (June 27, 1967), CBI 88, “ Data
Processing Management Association records, ” Box 22, Folder 1, Archives of the
Charles Babbage Institute, University of Minnesota, Minneapolis.

 50. “ Notes on ACM/DPMA merger ” (1964), CBI 88, “ Data Processing
Management Association records, ” Box 22, Folder 2, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis; “ Correspondence re:
ACM/DPMA liason, ” (1966), CBI 88, “ Data Processing Management Association
records, ” Box 22, Folder 1, Archives of the Charles Babbage Institute, University
of Minnesota, Minneapolis; “ Discussion of DPMA/ACM Merger, ” (1970), CBI
88, “ Data Processing Management Association records, ” Box 22, Folder 3,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 51. “ RAND Symposium, 1975: Problems of the AFIPS Societies Revisited, ”
(1975), CBI 78, “ RAND Symposia on Computing Transcripts, ” Box 3, Folder
7, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 52. “ CDP Advisory Council, Minutes of the Third Annual Meeting, Jan. 17 – 18,
1964, ” (1964), CBI 88, “ Data Processing Management Association records, ”
Box 22, Folder 3, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 53. “ DPMA Certifi cation Council minutes, 23rd meeting, April 1-4, 1970, ”
(1970) CBI 116, “ Institute for Certifi cation of Computer Professionals Records,
1960 – 1993, ” Box 1, Folder 26, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 54. “ DPMA Revises CDP Test Requirements, ” Data Management (1967):
34 – 35.

 55. Higgins, “ Letter to the DPMA. ”

 56. Paul Armer, “ Editor ’ s Readout: Suspense Won ’ t Kill Us, ” Datamation 19,
no. 6 (1973): 53.

 57. Robert Reinstedt and Raymond Berger, “ Certifi cation: A Suggested Approach
to Acceptance, ” Datamation 19, no. 11 (1973): 97 – 100.

 58. Alan Taylor, “ DPMA Should be Saved Now, If At All Possible, ”
 Computerworld (1971), found in CBI 116, “ Institute for Certifi cation of
Computer Professionals Records, 1960 – 1993, ” Box 1, Folder 30, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis; Alan
Taylor; “ Taylor Replies, ” Computerworld (1971), CBI 116, “ Institute for
Certifi cation of Computer Professionals Records, 1960 – 1993, ” Box 1, Folder
30, Archives of the Charles Babbage Institute, University of Minnesota,

Notes 275

Minneapolis; William Claghorn, “ Rough draft of a reply to Alan Taylor, ”
(1971), CBI 88, “ Data Processing Management Association records, ” Box 18,
Folder 47, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis; “ Letter to the editors of Computerworld , ” (1971, unpublished),
CBI 88, “ Data Processing Management Association records, ” Box 18, Folder 47,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 59. Alan Taylor. “ Members Look More Like Markets From Park Ridge. ”
 Computerworld (April 14, 1971). CBI 116, “ Institute for Certifi cation of
Computer Professionals Records, 1960 – 1993, ” Box 1, Folder 30, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 60. “ SCDP Draft Legislation, ” (1974), CBI 116, “ Institute for Certifi cation of
Computer Professionals Records, 1960 – 1993, ” Box 11, Folder 42, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 61. Ross, “ Certifi cation and Accreditation ” ; T.D.C. Kuch, “ Unions or Licensing?
or Both? or Neither? ” Infosystems 20, no. 1 (1973): 42 – 43.

 62. “ SCDP Draft Legislation, ” CBI 116, Box 11, Folder 42.

 63. D.J. MacPherson, “ Letter to R. C. Elliot re: unauthorized use of CDP ini-
tials, ” (October 26, 1970), CBI 88, “ Data Processing Management Association
records, ” Box 18, Folder 22, Archives of the Charles Babbage Institute, University
of Minnesota, Minneapolis.

 64. Kenniston W. Lord, cited in Canning, “ Professionalism: Coming or Not? ”

 65. “ DPMA Board of Directors, 9th Meeting, March 11 – 12, 1966, ” (1966),
CBI 88, “ Data Processing Management Association records, ” Box 22, Folder 7,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 66. “ DPMA Board of Directors, 12th Meeting, 1967 Las Vegas, ” (1967), CBI
88, “ Data Processing Management Association records, ” Box 22, Folder 8,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 67. Ibid.

 68. Malcolm Smith, “ Complaint about Boston exam, ” (1969), CBI 116,
 “ Institute for Certifi cation of Computer Professionals Records, 1960 – 1993, ”
Box 1, Folder 19, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 69. “ The Certifi cate and Undergraduate Program, ” (1959); “ The Certifi cate and
Undergraduate Program, ” (1959), CBI 46, “ John K. Swearingen Papers, 1936 –
 1993, ” Box 1, Folder 13, Archives of the Charles Babbage Institute, University
of Minnesota, Minneapolis.

 70. “ Notes on ACM/DPMA merger, ” CBI 88, Box 22, Folder 2.

 71. “ DPMA Board of Directors, 10th Meeting, 1966 ” (minutes), (June 19 – 20,
1966), CBI 88, “ Data Processing Management Association records, ” Box 2,
Folder 8, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

276 Notes

 72. “ Letter from Jack Yarbrough to John Swearingen, ” (1964), CBI 46, “ John
K. Swearingen Papers, 1936 – 1993, ” Box 1, Folder 17, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 73. “ Response to Business Automation article on CDP, ” (1964), CBI 46, “ John
K. Swearingen Papers, 1936 – 1993, ” Box 1, Folder 16, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 74. “ Notes on ACM/DPMA merger, ” CBI 88, Box 22, Folder 2.

 75. Report, “ Certifi cate in Data Processing, ” 59.

 76. R. C. Heterick, “ Letter to Ben Payne, ” (September 17, 1971), CBI 88, “ Data
Processing Management Association records, ” Box 18, Folder 22, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 77. “ Computerworld Survey, ” (1970), CBI 88, “ Data Processing Management
Association records, ” Box 18, Folder 22, Archives of the Charles Babbage
Institute, University of Minnesota, Minneapolis.

 78. Herbert Grosch, cited in “ New CDP Requirements ‘ Unduly Harsh ’
Professionals Protest, ” (1970), CBI 116, “ Institute for Certifi cation of Computer
Professionals Records, 1960 – 1993, ” Box 1, Folder 27, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 79. Alex Orden, “ The Emergence of a Profession, ” Communications of the
ACM 10, no. 3 (1967): 145 – 146.

 80. Sidlo, “ The Making of a Profession, ” 367.

 81. Edward Menkhaus, “ EDP: Nice Work If You Can Get It, ” Business
Automation 12, no. 3 (1969): 43.

 82. Thomas White, “ The 70 ’ s: People, ” Datamation 16, no. 7 (1970): 42 – 43.

 83. Robert Forest, “ EDP People: Review and Preview, ” Datamation 18, no. 6
(1972): 65 – 67.

 84. Edward Markham, “ Selecting a Private EDP School, ” Datamation 14, no.
5 (1968): 33.

 85. “ Executive Meeting Summary ” (1966), CBI 46, “ John K. Swearingen Papers,
1936 – 1993, ” Box 1, Folder 3, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 86. Charles Babbage Institute Archives, box 88, folder 18, fi le 28.

 87. “ Correspondence re: Improper Use of CDP Initials, ” (1966), CBI 88, “ Data
Processing Management Association records, ” Box 18, Folder 22, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 88. “ Correspondence re: Academic and Experience Req ’ s, ” (1966), CBI 88,
 “ Data Processing Management Association records, ” Box 18, Folder 22, Archives
of the Charles Babbage Institute, University of Minnesota, Minneapolis.

 89. Canning, “ The DPMA Certifi cate in Data Processing. ”

 90. Ibid.; “ Letter from Jack Yarbrough, ” CBI 46, Box 1, Folder 17.

 91. Milt Stone, “ In Search of an Identity, ” Datamation 18, no. 3 (1972):
53 – 54.

Notes 277

 92. Fred Gruenberger, cited in “ RAND Symposium, 1975: Problems of the
AFIPS Societies Revisited, ” CBI 78, Box 3, Folder 7.

 93. Ibid.

 94. “ DPMA Certifi cate Panel, ” CBI 46, Box 1, Folder 17.

 95. Arthur Kaupe, “ Letter to the Editors of Computerworld , March 1, 1972 ”
(1972), CBI 116, “ Institute for Certifi cation of Computer Professionals Records,
1960 – 1993, ” Box 1, Folder 30, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 96. John Seitz, “ Should DPMA Control Certifi cation Process? ” (letter to the
editor), Computerworld (1971), CBI 116, “ Institute for Certifi cation of Computer
Professionals Records, 1960 – 1993, ” Box 1, Folder 30, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 97. Willis Ware, “ AFIPS in Retrospect, ” Annals of the History of Computing
8, no. 3 (1986): 304.

 98. ARPA Survey, 1968, cited in “ AFIPS Constitution Letter, ” Communications
of the ACM 12, no. 3 (1969), 4.

 99. Bernard Galler, “ The AFIPS Constitution (President ’ s Letter to ACM
Membership), ” Communications of the ACM 12, no. 3 (1969): 188.

 100. Robert Rector, “ Personal Refl ections on the First Quarter Century of
AFIPS, ” Annals of the History of Computing 8, no. 3 (1986): 261 – 269.

 101. Richard Jones, “ A Time to Assume Responsibility, ” Datamation 13, no. 9
(1967): 160.

 102. “ Survey on the Use of Service Bureaus, ” Wall Street Journal (November 4,
1969): 24.

 103. RAND Symposium, “ Is It Overhaul or Trade-in Time: Part I, ” Datamation
5, no. 4 (1959), 24 – 33.

 104. Christopher Shaw, “ Programming Schisms, ” Datamation 8, no. 9 (1962):
32.

 105. Wolf Flywheel, “ Letter to the Editor (on Professionalism), ” Datamation 5,
no. 5 (1959): 2.

 106. Harry Tropp, cited in “ AFIPS Presidents Discussion ” (1985) CBI 114,
 “ Walter M. Carlson Papers, 1960 – 1990, ” Box 1, Folder 4, Archives of the
Charles Babbage Institute, University of Minnesota, Minneapolis.

 107. Herbert Grosch, cited in RAND Symposium, “ Is It Overhaul or Trade-in
Time: Part I. ”

 108. Editorial, “ Professional Societies . . . or Technician Associations? ”
 Datamation 11, no. 8 (1965): 23.

 109. Hans A. Rhee, Offi ce Automation in Social Perspective: The Progress and
Social Implications of Electronic Data Processing (Oxford: Basil Blackwell,
1968), 118.

 110. “ Minutes of the Annual Meeting of the Certifi cation Advisory Council ”
(1967).

278 Notes

 111. Gotterer, “ The Impact of Professionalization Efforts on the Computer
Manager, ” 368.

 112. Louis Fein, “ ACM Has a Crisis of Identity? ” Communications of the ACM
10, no. 1 (1967): 1.

 113. John Backus, cited in Richard Wexelblat, ed., History of Programming
Languages (New York: Academic Press, 1981), 69.

 114. Canning, “ Professionalism: Coming or Not? ” 2.

 115. “ Why Are Business Users Turned Off by ACM? ” (1974) CBI 23, Box 1,
Folder 3.

 116. George Glaser, “ Letter to W. Carlson, ” (July 15, 1974), CBI 23, “ George
Glaser Papers, 1960 – 1989, ” Box 1, Folder 3, Archives of the Charles Babbage
Institute, University of Minnesota, Minneapolis.

 Chapter 8

 1. Ronald Graham, cited in Peter Naur, Brian Randall, and John Buxton, ed.,
 Software Engineering: Proceedings of the NATO Conferences (New York:
Petrocelli/Charter, 1976), 32.

 2. Robert Glass, “ Is There Really a Software Crisis? ” IEEE Software 15, no. 1
(1998): 104 – 105.

 3. Robert Bemer, Computers and Crisis: How Computers Are Shaping Our
Future (New York: ACM Press, 1971).

 4. Robert Gordon, “ Review of Charles Lecht, The Management of Computer
Programmers , ” Datamation 14, no. 4 (1968): 200 – 202.

 5. Ibid., 7.

 6. Martin Campbell-Kelly and William Aspray, Computer: A History of the
Information Machine (New York: Basic Books, 1996), 210.

 7. W. Saba, “ Letter to the Editor, ” IEEE Computer 29, no. 9 (1996): 10;
Edward Nash Yourdon, ed., Classics in Software Engineering (New York:
Yourdon Press, 1979); Herbert Freeman and Phillip Lewis, Software Engineering
(New York: Academic Press, 1980).

 8. M. Douglas McIlroy, cited in ibid, 7.

 9. Douglas McIroy, cited in Naur, Randall, and Buxton, Software Engineering ,
7.

 10. Ibid.

 11. Brad Cox, “ There Is a Silver Bullet, ” Byte 15, no. 10 (1990): 209.

 12. Frederick Winslow Taylor, The Principles of Scientifi c Management (New
York: Harper and Brothers, 1911).

 13. Richard Canning, “ Issues in Programming Management, ” EDP Analyzer
12, no. 4 (1974): 1 – 14.

Notes 279

 14. Stuart Shapiro, “ Splitting the Difference: The Historical Necessity of
Synthesis in Software Engineering, ” IEEE Annals of the History of Computing
19, no. 1 (1997): 25 – 54.

 15. Gerald Weinberg, The Psychology of Computer Programming (New York:
Van Nostrand Rheinhold, 1971).

 16. Claude Baum, The Systems Builders: The Story of SDC (Santa Monica, CA:
System Development Corporation, 1981), 52.

 17. Ibid., 48.

 18. Thomas C. Rowan, “ The Recruiting and Training of Programmers, ”
 Datamation 4, no. 3 (1958): 16 – 18.

 19. Baum, The Systems Builders , 47.

 20. Philip Kraft, Programmers and Managers: The Routinization of Computer
Programming in the United States (New York: Springer-Verlag, 1977), 39.

 21. Philip Metzger, Managing a Programming Project (Englewood Cliffs, NJ:
Prentice-Hall, 1973).

 22. Richard Canning, “ Issues in Programming Management, ” EDP Analyzer
12, no. 4 (1974): 1 – 14.

 23. Joel Aron, Part I: The Individual Programmer (Reading, MA: Addison-
Wesley, 1974); Joel Aron, Program Development Process: The Programming
Team (Reading, MA: Addison-Wesley, 1983).

 24. Canning, “ Issues in Programming Management. ”

 25. Richard Canning, “ Professionalism: Coming or Not? ” EDP Analyzer 14,
no. 3 (1976): 1 – 12.

 26. Brian Rothery, Installing and Managing a Computer (London: Business
Books, 1968), 80.

 27. Robert Gordon, “ Personnel Selection, ” in Data Processing: Practically
Speaking , ed. Stanley Naftaly and Fred Gruenberger (Los Angeles: Data Processing
Digest, 1967): 85.

 28. B. Conway, J. Gibbons, and D. E. Watts, Business Experience with Electronic
Computers: A Synthesis of What Has Been Learned from Electronic Data
Processing Installations (New York: Price Waterhouse, 1959), 81.

 29. Ibid., 81 – 82.

 30. Gene Bylinsky, “ Help Wanted: 50,000 Programmers, ” Fortune 75, no. 3
(1967): 141.

 31. H. V. Reid, “ Problems in Managing the Data Processing Department, ”
 Journal of Systems Management 21, no. 5 (1970): 8 – 11; Richard Canning,
 “ Managing Staff Retention and Turnover, ” EDP Analyzer 15, no. 8 (1977):
1 – 13.

 32. Editorial, “ EDP ’ s Wailing Wall, ” Datamation 13, no. 7 (1967): 21.

 33. Baum, The Systems Builders , 52.

280 Notes

 34. Martin Campbell-Kelly, cited in Campbell-Kelly and Aspray, Computer ,
144.

 35. Thomas Wise, “ IBM ’ s $5,000,000,000 Gamble, ” Time , September 1966,
226.

 36. Thomas Watson Jr., cited in Campbell-Kelly and Aspray, Computer , 199.

 37. Frederick Brooks, cited in Campbell-Kelly and Aspray, Computer , 200;
Emerson Pugh, Lyle Johnson, and John Palmer, IBM ’ s 360 and Early 370
Systems (Cambridge, MA: MIT Press, 1991).

 38. Frederick P. Brooks, The Mythical Man-Month: Essays on Software
Engineering (New York: Addison-Wesley, 1975), 17.

 39. Ibid., 31.

 40. Ibid., 34 – 35.

 41. Ibid., 42, 7.

 42. Frederick P. Brooks, “ No Silver Bullet: Essence and Accidents of Software
Engineering, ” IEEE Computer 20, no. 4 (1987), 10 – 19.

 43. F. Terry Baker and Harlan Mills, “ Chief Programmer Teams, ” Datamation
19, no. 12 (1973): 198 – 199.

 44. Ibid., 200.

 45. Ibid., 201.

 46. Clement McGowan and John Kelly, Top-down Structured Programming
Techniques (New York: Petrocelli/Carter, 1975), 148.

 47. Barbara Barry and John Naughton, Structured Programming Series. Volume
X. Chief Programmer Team Operations Description (Gaithersburg, MD.: IBM
Ferderal Systems, 1975), 12 – 13.

 48. Stuart Shapiro, “ Splitting the Difference, ” 25.

 49. Barry Boehm, “ Software Engineering, ” IEEE Transactions on Computers ,
no. 12 (1976): 349; Yourdon, Classics in Software Engineering , 63.

 50. J. L. Ogdin, “ The Mongolian Hordes versus Superprogrammer, ” Infosystems
19, no. 12 (1973): 23.

 51. Daniel Couger and Robert Zawacki, “ What Motivates DP Professionals? ”
 Datamation 24, no. 9 (1978): 116 – 123; Canning, “ Issues in Programming
Management. ”

 52. C. Anthony Hoare, “ Software Engineering: A Keynote Address. ” In
 Proceedings of the 3rd International Conference on Software Engineering
(Piscataway, NJ: IEEE Press, 1978): 1 – 4.

 53. Carma McClure, Managing Software Development and Maintenance (New
York: Van Nostrand Rheinhold, 1981), 77.

 54. Ibid., 77 – 78, 86.

 55. John Golda, “ The Effects of Computer Technology on the Traditional Role
of Management ” (master ’ s thesis, Wharton School of Business, University of
Pennsylvania, 1965), 34.

Notes 281

 56. Weinberg, The Psychology of Computer Programming , 56.

 57. Ibid., 53.

 58. Ibid.

 59. Ibid.

 60. Ibid.

 61. Ogdin, “ The Mongolian Hordes versus Superprogrammer, ” 23.

 62. Canning, “ Issues in Programming Management, ” 6.

 63. Rudolph Hirsch, “ Programming Performance: Monitoring, Maximization,
and Prediction, ” in Special Interest Group on Computer Personnel Research
Annual Conference (New York: ACM Press, 1972), 36 – 46.

 64. Steve McConnell, Code Complete: A Practical Handbook of Software
Construction (Redmond, WA: Microsoft Press, 1993), 287; Girish Parikh,
 Programmer Productivity: Achieving an Urgent Priority (Reston, VA:
Reston Publishing, 1984), 209; Edward Yourdon, Writings of the Revolution:
Selected Readings on Software Engineering (New York, Prentice Hall, 1986),
288.

 65. Anthony Jay, Corporation Man (New York: Random House, 1971).

 66. Douglas McGregor, The Human Side of Enterprise (New York: McGraw-
Hill, 1960).

 67. Ogdin, “ The Mongolian Hordes versus Superprogrammer, ” 23.

 68. Bo Sanden, “ Programming Masters Break Out of the Managerial Mold, ”
 Computerworld (1986): 73.

 69. Henry Lucas, “ On the Failure to Implement Structured Programming and
Other Techniques , ” in Proceedings of 1975 ACM Annual Conference (New
York: ACM Press, 1975), 291 – 293.

 70. McClure, Managing Software Development and Maintenance , 74 – 75.

 71. Edsger Dijkstra, cited in Eloina Paleaz, “ A Gift from Pandora ’ s Box: The
Software Crisis ” (PhD diss., University of Edinburgh, 1988), 175.

 72. Donald MacKenzie, “ A View from the Sonnenbichl: On the Historical
Sociology of Software and System Dependability, ” in History of Computing:
Software Issues , ed. Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L. Norberg
(Berlin: Springer-Verlag, 2002): 97 – 122.

 73. Friedrich L. Bauer, “ Software Engineering: A Conference Report, ”
 Datamation 15, no. 10 (1969).

 74. John N. Buxton, cited in Paleaz, “ A Gift from Pandora ’ s Box, ” 185.

 75. Douglas Ross, cited in Paleaz, “ A Gift from Pandora ’ s Box, ” 182.

 76. Campbell-Kelly and Aspray, Computer , 201.

 77. Michael Mahoney, “ The Roots of Software Engineering, ” CWI Quarterly
3, no. 4 (1980): 325 – 334.

 78. Christopher Strachey, cited in Randall and Buxton, Software Engineering ,
147.

282 Notes

 79. Ibid.

 80. Ibid.

 81. Ann Dooley, “ 100% Over Budget, ” Computerworld (1987): 5.

 82. Gary Chapman, “ Bugs in the Program, ” Communications of the ACM 33,
no. 3 (1990): 251 – 252.

 83. David Morrison, “ Software Crisis, ” Defense 21, no. 2 (1989): 72.

 84. William Wayt Gibbs, “ Software ’ s Chronic Crisis, ” Scientifi c American 271,
no. 3 (1994): 86.

 Chapter 9

 1. J. Jimms, “ Could Y2K cause a global recession? ” Fortune 138, no. 7 (1998):
172 – 176.

 2. Fred Kaplan, “ Military on Year 2000 alert, ” Boston Globe (June 21, 1998):
A1.

 3. David Edgerton, The Shock of the Old: Technology and Global History since
1900 (Oxford: Oxford University Press, 2007).

 4. B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “ Characteristics of
application software maintenance, ” Communications of the ACM 21, no. 6
(1978): 466 – 471; Girish Parikh, “ Software Maintenance: Penny Wise, Program
Foolish, ” SIGSOFT Software Engineering Notes 10, no. 5 (1985): 89 – 98; Ruchi
Shukla and Arun Kumar Misra, “ Estimating Software Maintenance Effort: A
Neural Network Approach, ” In ISEC ‘ 08: Proceedings of the 1st Conference on
India Software Engineering Conference (Hyderabad, India: ACM, 2008),
107 – 112.

 5. Richard Canning, “ The Maintenance ‘ Iceberg, ’ ” EDP Analyzer 10, no. 10
(1972): 1 – 13.

 6. Gerardo Canfora and Aniello Cimitile, Software Maintenance (Technical
report, University of Sannio, 2000).

 7. Maurice Wilkes, Memoirs of a Computer Pioneer (Cambridge: MIT Press,
1985).

 8. David Rine, “ A Short Overview of a History of Software Maintenance: As It
Pertains to Reuse, ” SIGSOFT Software Engineering Notes 16, no. 4 (1991):
60 – 63.

 9. Canning, “ The Maintenance ‘ Iceberg ’ ” (1972).

 10. E. Burton Swanson, “ The Dimensions of Maintenance, ” in ICSE ‘ 76:
Proceedings of the 2nd International Conference on Software Engineering (San
Francisco: IEEE Computer Society Press, 1976), 492 – 497.

 11. Girish Parikh, “ What Is Software Maintenance Really? What Is in a Name? ”
 SIGSOFT Software Engineering Notes 9, no. 2 (1984): 114 – 116.

 12. Frederick Brooks, The Mythical Man-Month: Essays on Software Engineering
(New York: Addison-Wesley, 1975), 7.

Notes 283

 13. Bjarne Stroustrup, “ A History of C++, ” in History of Programming
Languages , ed. Thomas M. Bergin and R.G. Gibson (New York, ACM Press,
1996).

 14. Michael Swaine, “ Is Your Next Language COBOL? ” Dr. Dobbs Journal
(2008).

 15. Andrew Pollack, “ Year 2000 Problem Tests Professionalism of Programmers, ”
 New York Times (May 3, 1999): C1; Mark Manion and William M. Evan, “ The
Y2K Problem: Technological Risk and Professional Responsibility, ” ACM
SIGCAS Computers and Society 29, no. 4 (1999): 24 – 29.

 16. John Shore, “ Why I Never Met a Programmer I Could Trust, ” Communications
of the ACM 31, no. 4 (1988): 372.

 17. Shoshana Zuboff, In the Age of the Smart Machine: The Future of Work
and Power (New York: Basic Books, 1988).

 18. Thomas Gieryn, “ Boundary-Work and the Demarcation of Science from
Non-Science: Strains and Interests in Professional Ideologies of Scientists, ”
 American Sociological Review 48, no. 4 (1983): 781 – 795.

 19. Ibid.

 20. Andrei P. Ershov, “ Aesthetics and the Human Factor in Programming, ”
 Communications of the ACM 15, no. 7 (1972): 502.

 21. Gieryn, “ Boundary work, ” 792.

 22. Harold Wilensky, “ The Professionalization of Everyone? ” American Journal
of Sociology 70, no. 2 (1964): 137 – 158.

 23. Nathan Ensmenger, “ The ‘ Question of Professionalism ’ in the Computer
Fields, ” IEEE Annals of the History of Computing 23, no. 4 (2001): 56 – 73.

 24. Magali Sarfatti Larson, The Rise of Professionalism: A Sociological Analysis .
(Berkeley: University of California Press, 1977).

 25. Robert Zussman, Mechanics of the Middle Class: Work and Politics among
American Engineers . (Berkeley: University of California Press, 1985).

 26. “ Professionalism Termed Key to Computer Personnel Situation, ” Personnel
Journal 51, no 2. (1971): 156 – 157.

 27. Wanda Orlikowski and Baroudi, Jack, “ The Information Systems Profession:
Myth or Reality? ” Offi ce: Technology & People 4 (1989): 13 – 30.

 28. William Aspray, “ The History of Computer Professionalism in America, ”
(unpublished manuscript, 2001).

 29. Philip Kraft, Programmers and Managers: The Routinization of Computer
Programming in the United States (New York: Springer-Verlag, 1977), 26 –
28.

 30. Joan Greenbaum, “ On Twenty-fi ve Years with Braverman ’ s ‘ Labor and
Monopoly Capital. ’ (Or, How Did Control and Coordination of Labor Get into
the Software so Quickly?), ” Monthly Review 50, no. 8 (1999).

 31. Wanda Orlikowski, “ The DP Occupation: Professionalization or
Proletarianization? ” Research in the Sociology of Work 4 (1988): 95 – 124.

284 Notes

 32. Brian Rothery, Installing and Managing a Computer (London: Business
Books, 1968), 152.

 33. Kraft, Programmers and Managers , 26.

 34. Enid Mumford, Job Satisfaction: A Study of Computer Specialists (London:
Longman Group Limited, 1972), 175.

 35. Robert Head, “ Controlling Programming Costs, ” Datamation 13, no. 7
(1967): 141.

 36. Andrew Friedman and Dominic Cornford, Computer Systems Development:
History, Organization, and Implementation (Chichester, UK: Wiley, 1989); M.
Beirne, H. Ramsay, and A. Panteli, “ Developments in Computing Work: Control
and Contradiction in the Software Labour Process, ” in Developments in
Computing Work: Control and Contradiction in the Software Labour Process ,
ed. P. Thompson and C. Warhurst (New York: Macmillan, 1998), 142 – 162.

 37. Andrew Abbott, The Systems of Professions: An Essay on the Division of
Expert Labor (Chicago: University of Chicago Press, 1988); Paul DiMaggio,
 “ Review of Andrew Abbott, Systems of Professions , ” American Journal of
Sociology 95, no. 2 (1989): 534 – 535.

 38. Nathan Ensmenger, “ The ‘ Question of Professionalism ’ in the Computer
Fields, ” IEEE Annals of the History of Computing 4, no. 23 (2001): 56 – 73.

 39. Stephen Barley, “ Technicians in the Workplace: Ethnographic Evidence for
Bringing Work into Organization Studies, ” Administrative Science Quarterly 41
(1996): 404 – 441.

 40. Ibid.

 41. Stacia Zabusky and Stephen Barley, “ Redefi ning Success: Ethnographic
Observations on the Careers of Technicians, ” in Broken Ladders: Managerial
Careers in the New Economy , ed. Paul Osterman (New York: Oxford University
Press, 1996), 185 – 214.

 42. Barley, “ Technicians in the Workplace, ” 422.

 43. Ibid., 430.

 44. Ibid., 427.

 45. Adele Mildred Koss, “ Programming on the Univac 1, ” IEEE Annals of the
History of Computing 25, no. 1 (2003): 48 – 59; Scott M. Campbell, “ Beatrice
Helen Worsley, ” IEEE Annals of the History of Computing 25, no. 4 (2003):
51 – 62.

 46. Nathan Ensmenger, “ Making Programming Masculine, ” in Gender Codes:
Women and Men in the Computing Professions , ed. Thomas Misa (New York:
Wiley, forthcoming).

 47. Richard Canning, “ Issues in Programming Management, ” EDP Analyzer
12, no. 4 (1974): 1 – 14.

 48. Bruce Gilchrist and Richard Weber, “ Enumerating Full-Time Programmers, ”
 Communications of the ACM 17, no. 10 (1974): 592 – 593.

 49. Valerie Rockmael, “ The Woman Programmer, ” Datamation 9, no. 1 (1963):
4.

Notes 285

 50. Lois Mandel, “ The Computer Girls, ” Cosmopolitan (April 1967): 52 – 56.

 51. Ibid., 52.

 52. Ibid., 51.

 53. Ibid., 56.

 54. Margaret Rossiter, Women Scientists in America (Baltimore: Johns Hopkins
University Press, 1982); Jeffrey Hearn, “ Notes on Patriarchy, Professionalization
and the Semi-Professions, ” Sociology 16, no. 2 (1982): 184 – 202; Ruth Oldenziel,
 Making Technology Masculine (Amsterdam: Amsterdam University Press,
1999).

 55. Claudia Goldin, Lawrence Katz, and Ilyana Kuziemko, “ The Homecoming
of American College Women, ” Journal of Economic Perspectives 20, no. 4
(2006): 133 – 156.

 56. Thomas D ’ Auria, “ ACM Membership Profi le Report, ” Communications of
the ACM 20, no. 10 (1977): 688 – 692.

 57. Theodore Willoughby, “ Psychometric Characteristics of the CDP
Examination, ” Proceedings of the Thirteenth Annual SIGCPR Conference (New
York: ACM Press, 1975), 152 – 160.

 58. Gerald Weinberg, The Psychology of Computer Programming (New York:
Van Nostrand Rheinhold, 1971).

 59. Carol Cohn, “ War, Wimps, and Women, ” in Gendering War Talk , ed. M.
Cooke and A. Woolcott (Princeton: Princeton University Press Princeton, 1993),
227 – 246.

 60. Ensmenger, “ Making Programming Masculine. ”

 61. Edith Martin and Albert Badre, “ Problem Formulation for Programmers, ”
in Proceedings of the 7th SIGCSE Technical Symposium on Computer Science
Education (New York: ACM Press, 1977), 133 – 138.

 62. Frederick Brooks, “ No Silver Bullet: Essence and Accidents of Software
Engineering, ” IEEE Computer 20, no 4 (1987): 18.

 63. Jack Little, cited in RAND Symposium, “ On Programming Languages, Part
I, ” Datamation 8, no. 10 (1962): 29 – 30.

 64. Morrison, “ Software Crisis, ” 72.

 65. Brad Cox, “ There Is a Silver Bullet, ” Byte Magazine 15, no. 10 (1990):
209.

 66. Maurice Black, “ The Art of Code ” (PhD diss., University of Pennsylvania,
2002); Scott Rosenberg, Dreaming in Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, and One Quest for Transcendent Software (New York:
Crown Publishers, 2007).

 67. James Paul and Gregory Simon, “ Bugs in the Program: Problems in Federal
Government Computer Software Development and Regulation, ” Staff Study for
the House Committee on Science, Space, and Technology, September 1989.

 68. Gibbs, “ Software ’ s Chronic Crisis. ”

 Abbott , Andrew . The Systems of Professions: An Essay on the Division of Expert
Labor . Chicago : University of Chicago Press , 1988 .

 “ Abstracts of Papers for the Fourteenth Annual Meeting of the Radiation
Research Society, Coronado, California February 13-16, 1966. ” Radiation
Research 27 (3) (1966): 487 – 554 .

 ACM Curriculum Committee . “ An Undergraduate Program in Computer Science:
Preliminary Recommendations . ” Communications of the ACM 8 (9) (1965):
 543 – 552 .

 “ AFIPS Presidents Discussion ” (1985) CBI 114, “ Walter M. Carlson Papers,
1960 – 1990, ” Box 1, Folder 4, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Aid to recovery: The economic impact of IT, software, and the Microsoft eco-
system on the global economy . Springfi eld, MA : Interactive Data Corporation ,
 2009 .

 Akera , Atsushi . “ Calculating a Natural World: Scientists, Engineers, and
Computers in the United States, 1937 – 1968. ” PhD diss., University of
Pennsylvania, 1998 .

 Alexander , Thomas. “ Computers Can ’ t Solve Everything . ” Fortune 80 (5)
(1969) : 126 – 129 , 168 , 171 .

 Altshuler , Gene . “ Programmers and Analysts ” (letter to the editor) Datamation
 16 (1) (1970): 47 .

 Anderegg , David . Nerds: Who They Are and Why We Need More of Them . New
York : Jeremy P. Tarcher , 2007 .

 “ Angels, Pins, and Language Standards . ” Datamation 9 (4) (1963): 23 – 25 .

 Armer , Paul . “ Editor ’ s Readout: Suspense Won ’ t Kill Us . ” Datamation 19 (6)
(1973): 53 .

 Armer , Paul . “ Thinking Big ” (letter to editor) . Communications of the ACM 2
(1) (1959): 2 – 4 .

 Aron , Joel . Program Development Process: The Individual Programmer . Reading,
MA : Addison-Wesley Reading , 1974 .

 Bibliography

288 Bibliography

 Aron , Joel . Program Development Process: The Programming Team . Reading,
MA : Addison-Wesley Reading , 1983 .

 Aspray , William. “ Was Early Entry a Competitive Advantage? US Universities
That Entered Computing in the 1940s . ” IEEE Annals of the History of Computing
 22 (3) (2000): 42 – 87 .

 Atchison , William F. , and John W. Hamblen . “ Status of Computer Sciences
Curricula in Colleges and Universities . ” Communications of the ACM 7 (4)
(1964): 225 – 227 .

 Austing , Richard , Bruce Barnes and Gerald Engel . “ A Survey of the Literature
in Computer Science Education since Curriculum ’ 68 . ” Communications of the
ACM 20 (1) (1977): 13 – 21 .

 Backus , John . “ Automatic Programming Properties and Performance of
FORTRAN Systems I and II. ” In Proceedings of Symposium on the Mechanization
of the Thought Processes , 232 – 255. Middlesex, UK: National Physical Laboratory
Press, 1958 .

 Backus , John . “ Programming in America in the 1950s: Some Personal
Impressions . ” In A History of Computing in the Twentieth Century: A Collection
of Essays , ed. Nicholas Metropolis , Jack Howlett , and Gian-Carlo Rota . New
York : Academic Press , 1980 , 125 – 135 .

 Backus , John , Robert Beeber , Sheldon Best , Richard Goldberg , Lois Haibt ,
 Harlan Herrick , Robert Nelson , et al. “ The FORTRAN Automatic Coding
System. ” In Proceedings of the West Joint Computer Conference . New York:
ACM Press, 1957 , 188 – 198.

 Baker , F. Terry , and Harlan Mills . “ Chief Programmer Teams . ” Datamation 19
(12) (1973): 58 .

 Bardini , Thierry . Bootstrapping: Douglas Englebart, Coevolution, and the
Origins of Personal Computing . Stanford, CA : Stanford University Press ,
 2000 .

 Barley , Stephen . “ Technicians in the Workplace: Ethnographic Evidence for
Bringing Work into Organization Studies . ” Administrative Science Quarterly 41
(3) (1996): 404 – 441 .

 Barley , Stephen , and Gideon Kunda . Gurus, Hired Guns, and Warm Bodies:
Itinerant Experts in a Knowlege Economy . Princeton, NJ : Princeton University
Press , 2004 .

 Barley , Stephen , and Julian Orr , eds. Between Craft and Science: Technical Work
in US Settings . Ithaca, NY : ILR Press , 1997 .

 Barnett , Michael . Computer Programming in English . New York : Harcourt,
Brace and World , 1969 .

 Barry , Barbara , and John Naughton . Chief Programmer Team Operations
Description . vol. X . Structured Programming Series. Gaithersburg, MD : IBM
Federal Systems , 1975 .

 Bauer , Friedrich L. “ Software Engineering: A Conference Report. ” Datamation
15, no. 10 (1969).

Bibliography 289

 Baum , Claude . The Systems Builders: The Story of SDC . Santa Monica, CA :
 System Development Corporation , 1981 .

 Becker , Joseph . “ Review: [untitled]. ” Library Quarterly 32 (1) (1962): 86 – 88 .

 Beirne , Martin , and Harold Ramsay and Androniki Panteli . “ Developments in
Computing Work: Control and Contradiction in the Software Labour Process . ”
In Developments in Computing Work: Control and Contradiction in the Software
Labour Process , ed. Paul Thompson and Chris Warhurst , 142 – 162 . New York :
 Macmillan , 1998 .

 Bell , Daniel . The Coming of Post-Industrial Society . New York : Basic Books ,
 1973 .

 Bemer , Robert . Computers and Crisis: How Computers Are Shaping Our Future .
 New York : ACM Press , 1971 .

 Bendix Computer Division . “ Is Your Programming Career in a Closed Loop? ”
(ad). Datamation 8 (9) (1962): 86 .

 Benington , Herbert . “ Production of Large Computer Programs ” (reprint) . IEEE
Annals of the History of Computing 5 (4) (1983): 350 – 361 .

 Berger , Raymond M. “ Computer personnel selection and criteria development. ”
In Proceedings of the 2nd SIGCPR Conference on Computer Personnel Research ,
65 – 77. New York: ACM Press, 1964 .

 Berger , Raymond M. , and Robert C. Wilson . “ Correlates of Programmer
Profi ciency. ” In SIGCPR ’ 66: Proceedings of the Fourth SIGCPR Conference on
Computer Personnel Research , 83 – 95. New York: ACM Press, 1966 .

 Berkeley , Edmund Callis . Giant Brains; or, Machines That Think . New York :
 Wiley , 1949 .

 Black , Maurice . “ The Art of Code. ” PhD diss., University of Pennsylvania,
 2002 .

 Block , I. Edward. “ Report on Meeting Held at University of Pennsylvania
Computing Center ” (1959).

 Bloom , Allan . “ Advances in Use of Programmer Aptitude Tests . In Advances in
Computer Programming Management , ed. Thomas Rullo, 31 – 60 . Philadelphia :
 Heyden , 1980 .

 Boehm , Barry . “ Software and Its Impact: A Quantitative Assessment . ” Datamation
 19 (5) (1973): 48 – 59 .

 Boehm , Barry . “ Software Engineering . ” IEEE Transactions on Computers (12)
(1976): 1226 – 1241 .

 Boguslaw , Robert , and Warren Pelton . “ Steps: A Management Game for
Programming Supervisors . ” Datamation 5 (6) (1959): 13 – 16 .

 Bowker , Geoffrey . “ How to Be Universal: Some Cybernetic Strategies, 1943 –
 1970 . ” Social Studies of Science 23 (1) (1993): 107 – 127 .

 Bradford , P. , and L. R. Cottrell . “ Factors Infl uencing Business Data Processors
Turnover: A Comparative Case History. ” In Proceedings of the 1977 Annual
Conference (New York: ACM Press, 1977): 202 – 205.

290 Bibliography

 Brandon , Richard . “ The Problem in Perspective. ” In Proceedings of the 1968
23rd ACM National Conference , 332 – 334. New York: ACM Press, 1968 .

 Bromberg , Howard . “ Survey of Programming Languages and Processors . ”
 Communications of the ACM 6 (3) (1965): 93 – 99 .

 Brooks , Frederick P. The Mythical Man-Month: Essays on Software Engineering .
 New York : Addison-Wesley , 1975 .

 Brooks , Frederick P. “ No Silver Bullet: Essence and Accidents of Software
Engineering. ” IEEE Computer 20 (4) (1987): 10 – 19 .

 Bureau of Labor Statistics . U.S. Department of Labor, Occupational Outlook
Handbook , 2008 – 9 edition. Available online at http://www.bls.gov/oco/ocos258
.htm (accessed December 16, 2009).

 Bylinsky , Gene . “ Help Wanted: 50,000 Programmers . ” Fortune 75 (3) (1967):
 141 – 168 .

 Callahan , John . “ Letter to the Editor . ” Datamation 7 (3) (1961): 7 .

 Campbell , Scott M. “ Beatrice Helen Worsley . ” IEEE Annals of the History of
Computing 25 (4) (2003): 51 – 62 .

 Campbell-Kelly , Martin . “ The Airy Tape: An Early Chapter in the History
of Debugging. ” IEEE Annals of the History of Computing 14 (4) (1992):
 16 – 26 .

 Campbell-Kelly , Martin . “ Development and Structure of the International
Software Industry, 1950 – 1990 . ” Business and Economic History 24 (2) (1995):
 73 – 110 .

 Campbell-Kelly , Martin . From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry . Cambridge, MA : MIT Press , 2003 .

 Campbell-Kelly , Martin , and William Aspray . Computer: A History of the
Information Machine . New York : Basic Books , 1996 .

 Canfora , Gerardo , and Aniello Cimitile . Software Maintenance . Technical re-
port. University of Sannio, 2000 .

 Canning , Richard . “ The DPMA Certifi cate in Data Processing . ” EDP Analyzer
 3 (7) (1965): 1 – 12 .

 Canning , Richard . “ Issues in Programming Management . ” EDP Analyzer 12 (4)
(1974): 1 – 14 .

 Canning , Richard . “ The Maintenance ‘ Iceberg. ’ ” EDP Analyzer 10 (10) (1972):
 1 – 14 .

 Canning , Richard . “ Managing Staff Retention and Turnover . ” EDP Analyzer
 15 (8) (1977): 1 – 13 .

 Canning , Richard . “ Managing the Programming Effort . ” EDP Analyzer 6 (6)
(1968): 1 – 15 .

 Canning , Richard . “ The Persistent Personnel Problem . ” EDP Analyzer 5 (5)
(1967): 1 – 14 .

 Canning , Richard . “ Professionalism: Coming or Not? ” EDP Analyzer 14 (3)
(1976): 1 – 12 .

Bibliography 291

 Canning , Richard . “ The Question of Professionalism . ” EDP Analyzer 6 (12)
(1968): 1 – 13 .

 “ Careers in Computers ” (ad) . Datamation 8 (1) (1962): 80 .

 Carlson , Jack W. “ On Determining C. S. Education Programs . ” Communications
of the ACM 9 (3) (1966): 135 .

 Carter , Susan B. , Scott Sigmund Gartner , Michael R. Haines , Alan L. Olmstead ,
 Richard Sutch , and Gavin Wright , eds. Historical Statistics of the United States
Millennial Edition Online . New York : Cambridge University Press , 2006 .

 “ CDP Advisory Council, Minutes of the Third Annual Meeting, Jan 17 – 18,
1964 ” (1964), CBI 88, “ Data Processing Management Association records, ” Box
22, Folder 3, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 “ The Certifi cate and Undergraduate Program ” (1959) CBI 46, “ John K.
Swearingen Papers, 1936 – 1993, ” Box 1, Folder 13, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 “ The Certifi cate and Undergraduate Program ” (1959), CBI 88, “ Data Processing
Management Association records, ” Box 22, Folder 1, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 “ Certifi cate in Data Processing . ” Datamation 9 (8) (1963): 59 .

 Ceruzzi , Paul . “ Electronics Technology and Computer Science, 1940 – 1975: A
Coevolution . ” IEEE Annals of the History of Computing 10 (4) (1989):
 257 – 275 .

 Chandler , Alfred . The Visible Hand: The Managerial Revolution in American
Business . Cambridge, MA : Harvard University Press , 1977 .

 Chapin , Ned . “ Teaching Business Data Processing with the Aid of a Computer. ”
 Accounting Review 38 (4) (1963): 835 – 839 .

 Chapman , Gary . “ Bugs in the Program. ” Communications of the ACM 33 (3)
(1990): 251 – 252 .

 Chinitz , M. Paul. “ Contributions of Industrial Training Courses in Computers. ”
In Proceedings of the First Conference on Training Personnel for the Computing
Machine Field , ed. Arvid Jacobson, 29 – 32. Detroit: Wayne State University Press,
 1955 .

 Christian , Richard C. “ The Computer and the Marketing Man. ” Journal of
Marketing 26 (3) (1962): 79 – 82 .

 Claghorn , William . “ Rough draft of a reply to Alan Taylor, ” (1971), CBI 88,
 “ Data Processing Management Association records, ” Box 18, Folder 47, Archives
of the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Clippinger , Richard F. A Logical Coding System Applied to the ENIAC
(Electronic Numerical Integrator and Computer). Technical report. Ballistic
Research Laboratories, Ordnance Department, Aberdeen Proving Ground,
 1948 .

 Cohen , I. Bernard . Howard Aiken: Portrait of a Computer Pioneer . Cambridge,
MA : MIT Press , 1999 .

292 Bibliography

 Cohen , I. Bernard, Gregory W. Welch , and Robert V. D. Campbell . Makin ’
Numbers: Howard Aiken and the Computer . Cambridge, MA : MIT Press ,
 1999 .

 Coleman , John S. “ Computers as Tools for Management . ” Management Science
 2 (2) (1956): 107 .

 “ The Computer Personnel Research Group . ” Datamation 9 (1) (1963): 38 –
39 .

 Conway , B. , J. Gibbons , and D. E. Watts . Business Experience with Electronic
Computers: A Synthesis of What Has Been Learned from Electronic Data
Processing Installations . New York : Price Waterhouse , 1959 .

 Correll , Quentin . “ Letters to the Editor . ” Communications of the ACM 1 (7)
(1958): 2 .

 “ Correspondence re: Academic & Experience Req ’ s ” (1966), CBI 88, “ Data
Processing Management Association records, ” Box 18, Folder 22, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 “ Correspondence re: ACM/DPMA Liason ” (1966), CBI 88, “ Data Processing
Management Association records, ” Box 22, Folder 1, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 “ Correspondence re: Improper Use of CDP Initials ” (1966), CBI 88, “ Data
Processing Management Association records, ” Box 18, Folder 22, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Cortada , James W. “ Commercial Applications of the Digital Computer in
American Corporations, 1945 – 1995 . ” IEEE Annals of the History of Computing
 18 (2) (Summer 1996): 18 – 29 .

 Cortada , James W . Information Technology as Business History: Issues in the
History and Management of Computers . Westport, CT : Greenwood Press ,
 1996 .

 “ The Cost of Professionalism . ” Datamation 9 (10) (1963): 23 .

 Cougar , Daniel , and Robert Zawacki . “ What Motivates DP Professionals? ”
 Datamation 24 (9) (1978): 116 – 123 .

 Cox , Brad . “ There Is a Silver Bullet . ” Byte Magazine 15 (10) (1990): 209 .

 “ Curriculum 68 . ” Datamation 14 (5) (1968): 114 – 116 .

 DATA-LINK , editors of. “ What ’ s in a Name? ” (letter to editor) . Communications
of the ACM 1 (4) (1958): 6 .

 D ’ Auria , Thomas . “ ACM Membership Profi le Report . ” Communications of the
ACM 20 (10) (1977): 688 – 692 .

 Dauw , Dean . “ Vocational Interests of Highly Creative Computer Personnel . ”
 Personnel Journal 46 (10) (1967): 653 – 659 .

 Davies , Margery W. Woman ’ s Place Is at the Typewriter: Offi ce Work and
Offi ce Workers, 1870 – 1930 . Philadelphia : Temple University Press , 1982 .

 De Brabander , Bert , and Anders Edstrom . “ Successful Information System
Development Projects . ” Management Science 24 (2) (1977): 191 – 199 .

Bibliography 293

 Dearden , John . “ How to Organize Information Systems . ” Harvard Business
Review 43 (2) (1965): 65 – 73 .

 Dearden , John . “ MIS Is a Mirage . ” Harvard Business Review 50 (11) (1972):
 90 – 99 .

 Dearden , John . “ Myth of Real-Time Management Information . ” Harvard
Business Review 44 (3) (1966): 123 – 132 .

 DeNelsky , Garland , and Michael McKee . “ Prediction of Computer Programmer
Training and Job Performance Using the AAPB Test . ” Personnel Psychology 27
(1) (1974): 129 – 137 .

 Deutsch and Shea, Inc. “ A Profi le of the Programmer . ” Communications of the
ACM 6 (10) (1963): 592 – 594, 647 .

 Dickmann , Robert A. , and John Lockwood . “ 1966 Survey of Test Use in
Computer Personnel Selection. Technical Report . ” In Proceedings of the Fourth
SIGCPR Conference on Computer Personal Research . New York : ACM Press ,
 1966 .

 Diebold , John . “ ADP: The Still-Sleeping Giant . ” Harvard Business Review 42
(5) (1964): 60 – 65 .

 Diebold , John . “ Bad Decisions on Computer Use . ” Harvard Business Review 47
(1) (1969): 14 – 21 .

 Dijkstra , Edsger . “ Communication with an Automatic Computer. ” PhD diss.,
University of Amsterdam, 1959 .

 Dijkstra , Edsger . “ Go to Statement Considered Harmful . ” Communications of
the ACM 11 (3) (1968): 147 – 148 .

 Dijkstra , Edsger . “ The Humble Programmer . ” Communications of the ACM 15
(10) (1972): 859 – 866 .

 Dijkstra , Edsger. “ Programming as a Discipline of Mathematical Nature . ”
 American Mathematical Monthly 81 (6) (1974): 608 – 612 .

 DiMaggio , Paul . “ Review of Andrew Abbott, Systems of Professions . ” American
Journal of Sociology 95 (2) (1989): 534 – 535 .

 DiNardo, George. “ Software Management and the Impact of Improved
Programming Technology . ” In Proceedings of 1975 ACM Annual Conference
Software Management and the Impact of Improved Programming Technology ,
288 – 290. New York: ACM Press, 1975 .

 “ Discussion of DPMA/ACM Merger ” (1970), CBI 88, “ Data Processing
Management Association records, ” Box 22, Folder 3, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 Ditri , Arnold , and Donald Woods . The End of the Beginning – The Fizzle of the
 “ Computer Revolution. ” Touche Ross and Company , 1959 .

 Dooley , Ann . “ 100% over Budget . ” Computerworld 21 (7) (1987): 5 .

 “ DPMA Board of Directors, 9th Meeting, March 11 – 12, 1966 ” (1966), CBI 88,
 “ Data Processing Management Association records, ” Box 22, Folder 7, Archives
of the Charles Babbage Institute, University of Minnesota, Minneapolis.

294 Bibliography

 “ DPMA Board of Directors, 10th Meeting, March 11 – 12, 1966 ” (1966), CBI
88, “ Data Processing Management Association records, ” Box 22, Folder 7,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 “ DPMA Board of Directors, 12th Meeting, 1967 Las Vegas ” (1967), CBI 88,
 “ Data Processing Management Association records, ” Box 22, Folder 8, Archives
of the Charles Babbage Institute, University of Minnesota, Minneapolis.

 “ DPMA Certifi cate Panel ” (1964), CBI 46, “ John K. Swearingen Papers, 1936 –
 1993, ” Box 1, Folder 17, Archives of the Charles Babbage Institute, University
of Minnesota, Minneapolis.

 “ DPMA Certifi cation Council minutes, 23rd meeting, April 1-4, 1970, ” (1970)
CBI 116, “ Institute for Certifi cation of Computer Professionals Records, 1960-
1993, ” Box 1, Folder 26, Archives of the Charles Babbage Institute, University
of Minnesota, Minneapolis.

 “ DPMA Revises CDP Test Requirements. ” Data Management (1967): 34 –
35.

 Dwyer , John . “ Analysts Couched ” (letter to the editor) Datamation 16 (1)
(1970): 47 .

 Edgerton , David . The shock of the old: technology and global history since 1900 .
 Oxford : Oxford University Press , 2007 .

 “ Editor ’ s Readout: The Certifi ed Public Programmer . ” Datamation 8 (3) (1962):
 23 – 24 .

 “ Editor ’ s Readout: A Long View of a Myopic Problem . ” Datamation 8 (5)
(1962): 21 – 22 .

 “ EDP ’ s Wailing Wall . ” Datamation 13 (7) (1967): 21 .

 Eglash , Ron . “ Race, Sex, and Nerds: From Black Geeks to Asian American
Hipsters . ” Social Text 2 (20) (2002): 49 – 64 .

 Eilbert , Henry . “ The Development of Personnel Management in the United
States . ” Business History Review 33 (1959): 345 – 364 .

 11th RAND Symposium (1969), CBI 78, “ RAND Symposia on Computing
Transcripts, ” Box 3, Folder 4, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Elliot , Richard . “ Thinking Big: In Computer Software, the Reach Frequently
Exceeds the Grasp . ” Barron’s National Business and Financial Weekly 47 (40)
(October 2, 1967): 3 , 18 – 22 .

 Elliot , Richard . “ Thinking Big: Profi ts in Computer Software Are Not What They
Seem . ” Barron’s National Business and Financial Weekly 47 (41) (October 9,
 1967): 5 , 8, 10, 12 .

 Elliott , Calvin . “ DPMA: Its Function and Future . ” Datamation 9 (6) (1963):
 35 – 36 .

 Englebardt , Stanley . “ Wanted: 500,000 Men to Feed Computers. ” Popular
Science (January 1965), 106 – 109.

Bibliography 295

 Ensmenger , Nathan . “ From ‘ Black Art ’ to Industrial Disciple: The Software
Crisis and the Management of Programmers. ” PhD diss., University of
Pennsylvania, 2001 .

 Ensmenger , Nathan . “ Letting the ‘ Computer Boys ’ Take Over: Technology and
the Politics of Organizational Transformation . ” International Review of Social
History 48 (no. S11) (2003): 153 – 180 .

 Ensmenger , Nathan . Making Programming Masculine . In Gender Codes: Women
and Men in the Computing Professions , ed. Thomas Misa . New York : Wiley ;
 Forthcoming .

 Ensmenger , Nathan . “ The ‘ Question of Professionalism ’ in the Computer Fields . ”
 IEEE Annals of the History of Computing 23 (4) (2001): 56 – 73 .

 Ershov , Andrei P. “ Aesthetics and the Human Factor in Programming . ”
 Communications of the ACM 15 (7) (1972): 501 – 505 .

 “ Executive Meeting Summary ” (1966) CBI 46, “ John K. Swearingen Papers,
1936 – 1993, ” Box 1, Folder 3, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 “ The Facts of Life . ” Datamation 14 (3) (1968): 21 .

 Fein , Louis . “ ACM Has a Crisis of Identity? ” Communications of the ACM 10
(1) (1967): 1 .

 Fein , Louis . “ Computer-Related Sciences (Synnoetics) at a University in 1975 . ”
 Datamation 7 (9) (1961): 34 – 41 .

 Fein , Louis . “ The Role of the University in Computers, Data Processing, and
Related Fields . ” Communications of the ACM 2 (10) (1959): 7 – 14 .

 Fike , John . “ Vultures Indeed . ” Datamation 13 (5) (1967): 12 .

 Fiock , L. R. “ Seven Deadly Dangers of EDP. ” Harvard Business Review 40 (3)
(1962): 88 – 96 .

 “ First Programmer Class at Sing-Sing Graduates . ” Datamation 14 (6) (1968):
 97 – 98 .

 Flamm , Kenneth . Creating the Computer: Government, Industry, and High
Technology . Washington, DC : Brookings Institution Press , 1988 .

 Flywheel , Wolf . “ Letter to the Editor (on Professionalism) . ” Datamation 5 (5)
(1959): 2 .

 Forest , Robert . “ EDP People: Review and Preview . ” Datamation 18 (6) (1972):
 65 – 67 .

 Forsythe , George E. “ What to Do Till the Computer Scientist Comes . ” American
Mathematical Monthly 75 (5) (1968): 454 – 462 .

 Forte , Allen . “ Review: Conference on the Use of Computers in Humanistic
Research. ” Computers and the Humanities 1 (3) (1967): 110 – 112 .

 Freeman , Herbert , and Phillip Lewis . Software Engineering . New York : Academic
Press , 1980 .

 Friedman , Andrew , and Dominic Cornford . Computer Systems Development:
History, Organization, and Implementation . Chichester, UK : Wiley , 1989 .

296 Bibliography

 Fritz , W. Barkley. “ The Women of Eniac . ” IEEE Annals of the History of
Computing 18 (3) (1996): 13 – 23 .

 Galison , Peter . Computer Simulations in the Trading Zone . In The Disunity of
Science , ed. Peter Galison and David Stump, 118 – 157 . Stanford, CA : Stanford
University Press , 1996 .

 Galler , Bernard . “ The AFIPS Constitution (President ’ s Letter to ACM
Membership) . ” Communications of the ACM 12 (3) (1969): 188 .

 Galler , Bernard . “ Defi nition of Software . ” Communications of the ACM 5 (1)
(1961): 6 .

 Galler , Bernard . “ The Journal ” (president ’ s letter to ACM membership) .
 Communications of the ACM 12 (2) (1969): 65 – 66 .

 Gass , Saul . “ ACM Class Structure ” (letter to editor) . Communications of the
ACM 2 (5) (1959): 4 .

 Geckle , Jerome . “ Letter to the Editor . ” Datamation 11 (9) (1965): 12 – 13 .

 Gibbs , William Wayt . “ Software ’ s Chronic Crisis. ” Scientifi c American 271 (3)
(1994): 86 .

 Gieryn , Thomas . “ Boundary-Work and the Demarcation of Science from Non-
Science: Strains and Interests in Professional Ideologies of Scientists . ” American
Sociological Review 48 (4) (1983): 781 – 795 .

 Gilbert , Jean P. , and David B. Mayer . “ Experiences in Self-selection of
Disadvantaged People into a Computer Operator Training Program. ” In SIGCPR
 ’ 69: Proceedings of the Seventh Annual Conference on SIGCPR , 79 – 90. New
York: ACM Press, 1969 .

 Gilchrist , Bruce , and Richard Weber , eds. The State of the Computer Industry
in the United States . New York : American Federation of Information Processing
Societies , 1972 .

 Gilchrist , Bruce , and Richard Weber . “ Enumerating Full-Time Programmers . ”
 Communications of the ACM 17 (10) (1974): 592 – 593 .

 Gill , Brendan , and Andy Logan . “ Talk of the Town . ” New Yorker 5 (January
 1957): 18 – 19 .

 Ginzberg , Michael J. “ Key Recurrent Issues in the MIS Implementation Process . ”
 MIS Quarterly 5 (2) (1981): 47 – 59 .

 Glaser , George . “ Letter to W. Carlson ” (July 15, 1974), CBI 23, “ George Glaser
Papers, 1960-1989, ” Box 1, Folder 3, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Glass , Robert . “ Is There Really a Software Crisis? ” IEEE Software 15 (1) (1998):
 104 – 105 .

 Golda , John . “ The Effects of Computer Technology on the Traditional Role of
Management. ” Master ’ s thesis, Wharton School of Business, University of
Pennsylvania, 1965 .

 Goldin , Claudia , Lawrence Katz , and Ilyana Kuziemko . “ The Homecoming of
American College Women . ” Journal of Economic Perspectives 20 (4) (2006):
 133 – 156 .

Bibliography 297

 Goldstine , Adele . A Report on the ENIAC (Electronic Numerical Integrator and
Computer) . Technical report, Moore School of Electrical Engineer, University of
Pennsylvania, June 1, 1946 .

 Gordon , Robert. “ Personnel Selection . ” In Data Processing, Practically Speaking,
ed. Stanley Naftaly and Fred Gruenberger , 79 – 90 . Los Angeles: Data Processing
Digest, 1967.

 Gordon , Robert . “ Review of Charles Lecht, The Management of Computer
Programmers . ” Datamation 14 (4) (1968): 200 – 202 .

 Gotterer , Malcolm . “ The Impact of Professionalization Efforts on the Computer
Manager. ” In Proceedings of 1971 ACM Annual Conference , 367 – 375. New
York: ACM Press, 1971 .

 Gotterer , Malcolm , and Ashford W. Stalnaker . “ Predicting Programmer
Performance among Non-Preselected Trainee Groups. ” In SIGCPR ’ 64:
Proceedings of the Second SIGCPR Conference on Computer Personnel Research ,
29 – 37. New York: ACM Press, 1964 .

 Granholm , Jackson . “ How to Hire a Programmer . ” Datamation 8 (8) (1962):
 31 – 32 .

 Greenbaum , Joan . “ On Twenty-fi ve years with Braverman ’ s ‘ Labor and
Monopoly Capital ’ (Or, How Did Control and Coordination of Labor Get into
the Software So Quickly?). ” Monthly Review 50 (8) (1999): 28 – 32 .

 Greenberger , Martin . Management and the Computer of the Future . Cambridge,
MA : MIT Press , 1962 .

 Gregg , Charles R. “ Personnel Requirements in Government Agencies in Machine
Computation. ” In Proceedings of the First Conference on Training Personnel for
the Computing Machine Field , ed. Arvid Jacobson, 9 – 14. Detroit: Wayne State
University Press, 1955 .

 Grier , David Allan . “ The ENIAC, the Verb to Program, and the Emergence of
Digital Computers . ” IEEE Annals of the History of Computing 18 (1) (1996):
 51 – 55 .

 Grier , David Allan . When Computers Were Human . Princeton, NJ : Princeton
University Press , 2005 .

 Grosch , Herbert . Computerworld (August 19, 1970).

 Grosch , Herbert . “ Plus and Minus . ” Datamation 5 (6) (1959): 51 .

 Grosch , Herbert . “ Magic Languages Debugged . ” Datamation 9 (2) (1963):
 27 – 28 .

 Grosch , Herbert . “ Programmers: The Industry ’ s Cosa Nostra . ” Datamation 12
(10) (1966): 202 .

 Grosch , Herbert . “ Software in Sickness and Health . ” Datamation 7 (7) (1961):
 32 – 33 .

 Gruenberger , Fred . “ Problems and Priorities . ” Datamation 18 (3) (1972):
 47 – 50 .

 Guarino , Roger . “ Managing Data Processing Professionals . ” Personnel Journal
 48 (12) (1969): 972 – 975 .

298 Bibliography

 Guerrieri , John A. “ Certifi cation: Evolution, Not Revolution . ” Datamation 14
(11) (1973): 101 .

 Gupta , Gopal . “ Computer Science Curriculum Developments in the 1960s . ”
 IEEE Annals of the History of Computing 29 (2) (2007): 40 – 54 .

 Hafner , Katie . Cyberpunk: Outlaws and Hackers on the Computer Frontier,
Revised . New York : Simon and Schuster , 1995 .

 Haigh , Thomas . “ The Chromium-Plated Tabulator: Institutionalizing an
Electronic Revolution, 1954 – 1958 . ” IEEE Annals of the History of Computing
 4 (23) (2001): 75 – 104 .

 Haigh , Thomas . “ Inventing Information Systems: The Systems Men and the
Computer, 1950 – 1968 . ” Business History Review 75 (1) (2001): 15 – 61 .

 Haigh , Thomas . “ Software in the 1960s as Concept, Service, and Product . ” IEEE
Annals of the History of Computing 24 (1) (2002): 5 – 13 .

 Haigh , Thomas . “ Technology, Information and Power: Managerial Technicians
in Corporate America: 1917 – 2000. ” PhD diss., University of Pennsylvania,
 2002 .

 Halpern , Mark I. “ Memoirs (Part 1) . ” IEEE Annals of the History of Computing
 13 (1) (1991): 101 – 111 .

 Hamming , Richard . “ One Man ’ s View of Computer Science . ” Journal of the
ACM 16 (1) (1969): 3 – 12 .

 “ Hardware And Software. ” British Medical Journal 1 (5449) (1965): 1509 .

 Hayes , Robert M. , Ralph H. Parker , and Gilbert W. King . “ Automation and
the Library of Congress: Three Views. ” Library Quarterly 34 (3) (1964):
 229 – 239 .

 Head , Robert . “ Controlling Programming Costs . ” Datamation 13 (7) (1967):
 141 – 142 .

 Hearn , Jeffrey . “ Notes on Patriarchy, Professionalization and the Semi-
Professions . ” Sociology 16 (2) (1982): 184 – 202 .

 Heller , George . “ Organizing a Local Program in Computing Education . ”
 Datamation 9 (1) (1963): 57 – 61 .

 Hemmendinger , David . “ The ACM and IEEE-CS Guidelines for Undergraduate
CS Education . ” Communications of the ACM 50 (5) (2007): 46 – 53 .

 Hertz , David . New Power for Management . New York : McGraw-Hill , 1969 .

 Heterick , R.C. “ Letter to Ben Payne. ” (September 17, 1971) CBI 88, “ Data
Processing Management Association records, ” Box 18, Folder 22, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Higgins , Robert . “ Letter to the DPMA. ” (1973) CBI 46, “ John K. Swearingen
Papers, 1936 – 1993, ” Box 1, Folder 16, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Hirsch , Rudolph . “ Programming Performance: Monitoring, Maximization, and
Prediction. ” In Special Interest Group on Computer Personnel Research Annual
Conference , 26 – 36. New York: ACM Press, 1972 .

Bibliography 299

 Hoare , C. Anthony . “ Software Engineering: A Keynote Address. ” In Proceedings
of the 3 rd International Conference on Software Engineering , 1 – 4. Piscataway,
NJ: IEEE Press, 1978 .

 Hollenbeck , George P. , and Walter J. McNamara . “ Cucpat and Programming
Aptitude . ” Personnel Psychology 18 (1) (1965): 101 – 106 .

 Hughes , Thomas , and Agatha Hughes , eds. Systems, Experts, and Computers:
The Systems Approach in Management and Engineering, World War II and
After . Cambridge, MA : MIT Press , 2000 .

 Hunter , G. Truman . “ Manpower Requirements by Computer Manufacturers. ”
In Proceedings of the First Conference on Training Personnel for the Computing
Machine Field , ed. Arvid Jacobson, 14 – 18. Detroit: Wayne State University Press,
 1955 .

 Hurni , M. L. “ Some Implications of the Use of Computers in Industry . ”
 Accounting Review 29 (3) (1954): 447 – 455 .

 IBM Corporation . “ Are You the Man to Command Electronic Giants? ” New
York Times , May 13, 1956 : 157.

 “ Is the Computer Running Wild? ” U.S. News and World Report , February
 1964 .

 Jacobson , Arvid , ed. Proceedings of the First Conference on Training Personnel
for the Computing Machine Field . Detroit: Wayne State University Press,
 1955 .

 Jamous , Haroun , and Bernard Peliolle . “ Changes in the French University
Hospital System . ” In Professions and Professionalisation , ed. J. A. Jackson ,
 111 – 152 . Cambridge : Cambridge University Press , 1970 .

 Jay , Anthony . Corporation Man . New York : Random House , 1971 .

 Jenks , James . “ Starting Salaries of Engineers Are Deceptively High . ” Datamation
 13 (1) (1967): 13 .

 Jesiek , Brent . “ The Sociotechnical Boundaries of Hardware and Software: A
Humpty-Dumpty History . ” Bulletin of Science, Technology, and Society 26 (6)
(2006): 497 – 509 .

 Jimms , J. “ Could Y2K cause a global recession? ” Fortune 138 (7) (1998):
 172 – 176 .

 Johnsrud , John . “ Computer Makers Set Up Own ‘ Universities ’ ” New York
Times (September 24, 1961): F1.

 Jones , Richard . “ Practical Control of Preparatory Programming Time for a
Computer Installation. ” NAA Bulletin 43 (8) (1962): 71 .

 Jones , Richard . “ A Time to Assume Responsibility . ” Datamation 13 (9) (1967):
 160 .

 Kandel , Abraham . “ Computer Science: A Vicious Circle. ” Communications of
the ACM 15 (6) (1972): 470 – 471 .

 Kaplan , Fred . “ Military on Year 2000 alert. ” Boston Globe (June 21, 1998):
A1.

300 Bibliography

 Kasson , John . Civilizing the Machine: Technology and Republican Values in
America, 1776 – 1900 . Harmondsworth, UK : Penguin , 1976 .

 Kaufman , Felix . “ EDP and the Disenchanted . ” California Management Review
 1 (4) (1959): 67 – 73 .

 Kaufman , Louis , and Richard Smith . “ Let ’ s Get Computer Personnel on the
Management Team . ” Training and Development Journal 20 (11) (1966):
 24 – 29 .

 Kaupe , Arthur . “ Letter to the Editors of Computerworld, ” (March 1, 1972), CBI
116, “ Institute for Certifi cation of Computer Professionals Records, 1960-1993, ”
Box 1, Folder 30, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 Kay , Lily . “ Who Wrote the Book of Life? Information and the Transformation
of Molecular Biology . ” Science in Context 8 (4) (1995): 609 – 634 .

 Keelan , Charles . “ Controlling Computer Programming. ” Journal of Systems
Management 20 (1) (1969): 30 – 33 .

 Keller , Arnold . “ Crisis in Machine Accounting. ” Management and Business
Automation 5 (6) (1961): 30 – 31 .

 Kessler-Harris , Alice . Out to Work: A History of Wage-Earning Women in the
United States . New York : Oxford University Press , 1982 .

 Kevles , Daniel J. “ Testing the Army ’ s Intelligence: Psychologists and the Military
in World War I . ” Journal of American History 55 (3) (1968): 565 – 581 .

 King , William R. , and David I. Cleland . “ The Design of Management Information
Systems: An Information Analysis Approach . ” Management Science 22 (3)
(1975): 286 – 297 .

 Kline , Ronald . “ Cybernetics, Management Science, and Technology Policy: The
Emergence of ‘ Information Technology ’ as a Keyword, 1948 – 1985 . ” Technology
and Culture 47 (3) (2006): 513 – 535 .

 Knoebel , Robert M. “ The Federal Government ’ s Role in the Education of Data
Processing Personnel. ” In SIGCPR ’ 67: Proceedings of the Fifth SIGCPR
Conference on Computer Personnel Research , 77 – 84. New York: ACM Press,
 1967 .

 Knuth , Donald Ervin . The Art of Computer Programming, Volume 1:
Fundamental Algorithms. Reading, MA : Addison-Wesley , 1968 .

 Knuth , Donald Ervin . Literate Programming . Stanford, CA : Center for the Study
of Language/Information , 1992 .

 Koss , Adele Mildred . “ Programming on the UNIVAC 1 . ” IEEE Annals of the
History of Computing 25 (1) (2003): 48 – 59 .

 Kraft , Philip . Programmers and Managers: The Routinization of Computer
Programming in the United States . New York : Springer-Verlag , 1977 .

 Kuch , T. D. C. “ Unions or Licensing? or Both? or Neither? ” Infosystem 20 (1)
(1973): 42 – 43.

 Kuhn , Thomas S. The Structure of Scientifi c Revolutions . Chicago : University of
Chicago Press , 1962 .

Bibliography 301

 Larson , Harry . “ EDP: A 20 Year Ripoff! ” Infosystems 21 (11) (1974): 26 – 30 .

 Larson , Magali Sarfatti . The Rise of Professionalism: A Sociological Analysis .
 Berkeley : University of California Press , 1977 .

 Law , John . “ Notes on the Theory of Actor-Network: Ordering, Strategy, and
Heterogeneity . ” Systems Practice 5 (4) (1992): 379 – 393 .

 Law , John . Technology and Heterogeneous Engineering: The Case of the
Portuguese Expansion . In The Social Construction of Technical Systems: New
Directions in the Sociology and History of Technology , ed. Wiebe Bijker , Trevor
 Pinch , and Thomas Hughes, 111 – 134 . Cambridge, MA : MIT Press , 1987 .

 Lawson , Charles . “ A Survey of Computer Facility Management . ” Datamation
 8 (7) (1962): 29 – 32 .

 Lear , J. “ Can a Mechanical Brain Replace You? ” Colliers 131 , April 4, 1953 ,
 58 – 63 .

 “ Learning a Trade . ” Datamation 12 (10) (1966): 21 .

 Leavitt , Harold , and Thomas Whisler . “ Management in the 1980s . ” Harvard
Management Review 36 (6) (1958): 41 – 48 .

 Lecht , Charles . The Management of Computer Programming Projects . New
York : American Management Association , 1967 .

 “ Letter Re: Four Year Degree Requirement ” (1970), CBI 116, “ Institute for
Certifi cation of Computer Professionals Records, 1960-1993, ” Box 1, Folder 27,
Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 Levy , Steven . Hackers: Heroes of the Computer Revolution . Garden City, NY :
 Anchor Press , 1984 .

 Lewis , Ralph . “ Never Overestimate the Power of a Computer . ” Harvard Business
Review 35 (5) (1957): 77 – 84 .

 Lientz , B. P. , E. B. Swanson , and G. E. Tompkins . “ Characteristics of application
software maintenance. ” Communications of the ACM 21 (6) (1978): 466 – 471 .

 “ Local Chapter CDP publicity ” (1964), CBI 46, “ John K. Swearingen Papers,
1936 – 1993, ” Box 1, Folder 17, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Lohr , Steve . Go to: The Story of the Math Majors, Bridge Players, Engineers,
Chess Wizards, Maverick Scientists, and Iconoclasts — The Programmers Who
Created the Software Revolution . New York : Basic Books , 2001 .

 Lucas , Henry . “ On the Failure to Implement Structured Programming and Other
Techniques. ” In Proceedings of 1975 ACM Annual Conference , 291 – 293. New
York: ACM Press, 1975 .

 Lupton , Deborah . “ The Embodied Computer User . ” Body and Society 1 (3 – 4)
(1995): 97 – 112 .

 MacKenzie , Donald . “ A View from the Sonnenbichl: On the Historical Sociology
of Software and System Dependability . ” In History of Computing: Software
Issues , ed. Ulf Hashagen , Reinhard Keil-Slawik , and Arthur L. Norberg , 97 – 122 .
 Berlin : Springer-Verlag , 2002 .

302 Bibliography

 MacPherson , D. J. “ Letter to R.C. Elliot re: unauthorized use of CDP initials. ”
(October 26, 1970) CBI 88, “ Data Processing Management Association records, ”
Box 18, Folder 22, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 Madden , Don . “ The Population Problem: Inexperience Will Dominate . ”
 Datamation 8 (1) (1962): 26 .

 Madden , J. D. “ Letter to Calvin Elliot. ” (June 27, 1967). CBI 88, “ Data
Processing Management Association records, ” Box 22, Folder 1, Archives of the
Charles Babbage Institute, University of Minnesota, Minneapolis.

 Mahoney , Michael . Computer Science: The Search for a Mathematical Theory .
In Science in the Twentieth Century , ed. John Krige and Dominique Pestre ,
 617 – 634 . Amsterdam : Harwood Academic Publishers , 1997 .

 Mahoney , Michael . “ In Our Own Image: Creating the Computer . ” In The
Changing Image of the Sciences , ed. Ida Stamhuis, Teun Koetsier, and Kees de
Pater, 9 – 27. Dordrecht : Kluwer Academic Publishers , 2002 .

 Mahoney , Michael . “ The Roots of Software Engineering . ” CWI Quarterly 3 (4)
(1980): 325 – 334 .

 Mahoney , Michael . “ Software: The Self-Programming Machine . ” In From 0 to
1: An Authoritative History of Modern Computing , ed. Atsushi Akera and
 Frederik Nebeker, 91 – 100 . New York : Oxford University Press , 2002 .

 Mahoney , Michael . “ Software as Science — Science as Software . ” In History of
Computing: Software Issues , ed. Ulf Hashagen , Reinhard Keil-Slawik , and Arthur
 Norberg . Berlin : Springer-Verlag , 2002 , 25 – 48 .

 Mahoney , Michael. “ What Makes the History of Software Hard . ” IEEE Annals
of the History of Computing 30 (3) (2008): 8 – 18 .

 Malone , Cheryl Knott . “ Imagining Information Retrieval in the Library: Desk
Set in Historical Context . ” IEEE Annals of the History of Computing 24 (3)
(2002): 14 – 22 .

 Mandel , Lois . “ The Computer Girls. ” Cosmopolitan , April 1967 , 52 – 56.

 Manion , Mark , and William M. Evan . “ The Y2K problem: technological risk
and professional responsibility. ” ACM SIGCAS Computers and Society 29 (4)
(1999): 24 – 29 .

 Markham , Edward . “ EDP Schools: An Inside View . ” Datamation 14 (4) (1968):
 22 – 27 .

 Markham , Edward . “ Selecting a Private EDP School . ” Datamation 14 (5) (1968):
 33 – 40 .

 Martin , Edith , and Albert Badre . “ Problem formulation for programmers. ” In
 Proceedings of the 7th SIGCSE Technical Symposium on Computer Science
Education , 133 – 138. New York: ACM Press, 1977 .

 Mayer , David , and Ashford Stainaker . “ Selection and Evaluation of
Computer Personnel: The Research History of SIG/CPR. ” In Proceedings of the
1968 23rd ACM National Conference , 657 – 670. New York: ACM Press,
 1968 .

Bibliography 303

 McClure , Carma . Managing Software Development and Maintenance . New
York : Van Nostrand Rheinhold , 1981 .

 McConnell , Steve . Code Complete: A Practical Handbook of Software
Construction . Redmond, WA : Microsoft Press , 1993 , 287 .

 McCracken , Daniel . “ Is There FORTRAN In Your Future? ” Datamation 19 (5)
(1973): 236 – 237 .

 McCracken , Daniel . “ The Human Side of Computing . ” Datamation 7 (1) (1961):
 9 – 11 .

 McCracken , Daniel . “ The Software Turmoil: Nine Predictions for ’ 62 . ”
 Datamation 8 (1) (1962): 21 – 22 .

 McCracken , Daniel . “ Vote on ACM Name Change ” (1978), CBI 43, “ Daniel
D. McCracken Papers, 1958 – 1983, ” Box 3, Folder 10, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 McFarland , Robert . “ Electronic Power Grab. ” Business Automation 12 (2)
(1965): 30 – 39 .

 McGowan , Clement , and John Kelly . Top-down Structured Programming
Techniques . New York : Petrocelli/Carter , 1975 .

 McGregor , Douglas . The Human Side of Enterprise . New York : McGraw-Hill ,
 1960 .

 McKinsey and Company . “ Unlocking the Computer ’ s Profi t Potential . ”
 Computers and Automation 16 (7) (1969): 24 – 33 .

 McMurrer , J. A. , and J. R. Parish . “ The People Problem . ” Datamation 16 (7)
(1970): 57 – 59 .

 McNamara , Walter J. “ The Selection of Computer Personnel: Past, Present,
Future. ” In SIGCPR ’ 67: Proceedings of the Fifth SIGCPR Conference on
Computer Personnel Research , 52 – 56. New York: ACM Press, 1967 .

 McNamara , Walter J. , and John L. Hughes . “ A Review of Research on the
Selection of Computer Programmers . ” Personnel Psychology 14 (1) (1961):
 39 – 51 .

 Mengel , Milton E. “ Present and Projected Computer Manpower Needs in
Business and Industry. ” In Proceedings of the First Conference on Training
Personnel for the Computing Machine Field , ed. Arvid Jacobson, 4 – 9. Detroit:
Wayne State University Press, 1955 .

 Menkhaus , Edward . “ EDP: Nice Work If You Can Get It . ” Business Automation
 12 (3) (1969): 41 – 45, 74 .

 Metropolis , Nicholas , John Howlett , and Gian-Carlo Rota , eds. A History of
Computing in the Twentieth Century: A Collection of Essays . New York :
 Academic Press , 1980 .

 Metzger , Philip . Managing a Programming Project . Englewood Cliffs, NJ :
 Prentice-Hall , 1973 .

 Meyers , G. J. Software Reliability: Principles and Practices . New York : John
Wiley and Sons , 1976 .

304 Bibliography

 Milkman , Ruth . Gender at Work: The Dynamics of Job Segregation by Sex
during World War II. Urbana : University of Illinois Press , 1987 .

 Mirowski , Philip . Machine Dreams: Economics Becomes a Cyborg Science .
 Cambridge : Cambridge University Press , 2002 .

 Mitchell , George W. “ Exogenous Forces in the Development of Our Banking
System. ” Law and Contemporary Problems 32 (1) (1967): 3 – 14 .

 Mitchell , Grace . The 704 FORTRAN II Automatic Coding System . Yorktown
Heights, NY : IBM Research Center , 1959 .

 Mitre Corporation . “ Are You Working Your Way toward Obsolescence? ”
 Datamation 12 (6) (1966): 99 .

 Mody , P. “ Is Programming an Art? ” Software Engineering Notes 17 (4) (1992):
 19 – 21 .

 Moore , Gordon . “ Cramming More Components onto Integrated Circuits. ”
 Electronics 38 (8) (1965): 114 – 117 .

 Morgan , H. L. , and J. V. Soden . “ Understanding MIS Failures . ” Database 5 (2)
(1973): 157 – 171 .

 Morrison , David . “ Software Crisis . ” Defense 21 (2) (1989): 72 .

 Mumford , Enid . Job Satisfaction: A Study of Computer Specialists . London :
 Longman Group Limited , 1972 .

 Mumford , Enid , and Thomas Ward . Computers: Planning for People . London :
 B. T. Batsford , 1968 .

 Murray , Fergus , and David Knights . “ Inter-managerial Competition and Capital
Accumulation: IT Specialists, Accountants, and Executive Control . ” Critical
Perspectives on Accounting 1 (2) (June 1990): 167 – 189 .

 Nadesan , Majia Holmer . Constructing Autism: Unravelling the “ Truth ” and
Understanding the Social . London : Routledge , 2005 .

 Naftaly , Stanley . “ How to Pick a Programming Language . ” In Data Processing,
 Practically Speaking , eds. Stanley Naftaly and Fred Gruenberger , 91 – 106 . Los
Angeles : Data Processing Digest , 1967.

 Napoli , Donald S. “ The Mobilization of American Psychologists, 1938 – 1941 . ”
 Military Affairs 42 (1) (1978): 32 – 36 .

 Naur , Peter “ The Science of Datalogy ” (letter to editor) . Communications of the
ACM 9 (7) (1966): 485 .

 Naur , Peter , Brian Randall , and John Buxton eds. Software Engineering:
Proceedings of the NATO Conferences. New York: Petrocelli/Charter, 1976 .

 Nelson , Daniel . “ A Newly Appreciated Art: The Development of Personnel Work
at Leeds & Northrup, 1915 – 1923 . ” Business History Review 94 (4) (1970),
520 – 535.

 Nesse , Arthur . “ A User Looks at Software. ” Datamation 14 (10) (1968):
 48 – 51 .

 “ New CDP Requirements ‘Unduly Harsh’ Professionals Protest ” (1970) CBI
116, “ Institute for Certifi cation of Computer Professionals Records, 1960-1993, ”

Bibliography 305

Box 1, Folder 27, Archives of the Charles Babbage Institute, University of
Minnesota, Minneapolis.

 “ Notes on ACM/DPMA merger ” (1964), CBI 88, “ Data Processing Management
Association records, ” Box 22, Folder 2, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 “ Not Quite All About MIS . ” Datamation 13 (5) (1967): 21 .

 Nugent , Benjamin . American Nerd: The Story of My People . New York : Scribner ,
 2008 .

 O ’ Shields , Joseph . “ Selection of EDP Personnel . ” Personnel Journal 44 (9)
(1965): 472 – 474 .

 Oettinger , Anthony . “ ACM Sponsors Professional Development Program ”
(president ’ s letter to ACM membership) . Communications of the ACM 9 (10)
(1966): 712 – 713 .

 Oettinger , Anthony . “ The Hardware-Software Complexity . ” Communications
of the ACM 10 (10) (1967): 604 – 606 .

 Oettinger , Anthony . “ On ACM ’ s Responsibility ” (president ’ s letter to ACM
membership 1966) . Communications of the ACM 9 (8) (1966): 545 – 546 .

 Oettinger , Anthony. “ President ’ s Letter to the ACM Membership . ”
 Communications of the ACM 9 (12) (1966): 838 – 839 .

 Oettinger , Anthony . “ President ’ s Reply to Louis Fein . ” Communications of the
ACM 10 (1) (1967): 1, 61.

 “ Offi ce Robots . ” Fortune 45 , January 1952 , 82 – 87, 112, 114, 116, 118 .

 Ogdin , Jerry L. “ The Mongolian Hordes versus Superprogrammer . ” Infosystems
 19 (12) (1972): 20 – 23 .

 Oldenziel , Ruth . Making Technology Masculine . Amsterdam : Amsterdam
University Press , 1999 .

 Opler , Ascher . “ Testing Programming Aptitude . ” Datamation 9 (10) (1963):
 28 – 31 .

 Orden , Alex . “ The Emergence of a Profession . ” Communications of the ACM
 10 (3) (1967): 145 – 147 .

 Orlikowski , Wanda . “ The DP occupation: professionalization or proletarianiza-
tion? ” Research in the Sociology of Work 4 (1988): 95 – 124 .

 Orlikowski , Wanda , and Jack Baroudi . “ The Information Systems Profession:
Myth or Reality? ” Offi ce: Technology & People 4 (1989): 13 – 30 .

 Osborn , Roddy . “ GE and UNIVAC: Harnessing the High-Speed Computer . ”
 Harvard Business Review 32 (4) (1954): 99 – 107 .

 Oswald , H. “ The Various FORTRANS . ” Datamation 10 (8) (1964): 25 – 29 .

 Oudshoorn , Nelly , and Trevor Pinch , eds. How Users Matter: The Co-
construction of Users and Technologies. Cambridge, MA : MIT Press , 2003 .

 Owens , Larry . “ Where Are We Going Phil Morse? Changing Agendas and the
Rhetoric of Obviousness in the Transformation of Computing at MIT, 1939 –
 1957 . ” IEEE Annals of the History of Computing 18 (4) (1996): 34 – 41 .

306 Bibliography

 Paleaz , Eloina . “ A Gift from Pandora ’ s Box: The Software Crisis. ” PhD diss.,
University of Edinburgh, 1988 .

 Palmer , George . “ Programming, The Profession That Isn’t . ” Datamation 21 (4)
(1975): 23 – 24 .

 Parikh , Girish . Programmer Productivity: Achieving an Urgent Priority . Reston,
VA : Reston Publishing , 1984 , 209 .

 Parikh , Girish . “ Software maintenance: Penny wise, program foolish. ” SIGSOFT
Software Engineering Notes 10 (5) (1985): 89 – 98 .

 Parikh , Girish . “ What is software maintenance really? What is in a name? ”
 SIGSOFT Software Engineering Notes 9 (2) (1984): 114 – 116 .

 Parlante , Nick . “ What is computer science? ” SIGCSE Bulletin 37 (2) (2005):
 24 – 25 .

 Parnas , David . “ On the Preliminary Report of C3S ” (letter to editor) .
 Communications of the ACM 9 (4) (1966): 242 – 243 .

 Paschell , William . Automation and Employment Opportunities for Offi ce
Workers: A Report on the Effect of Electronic Computers on Employment of
Clerical Workers . Washington, DC : Bureau of Labor Statistics , 1958 .

 Patrick , Robert . “ The Gap in Programming Support . ” Datamation 7 (5) (1961):
 37 .

 Patterson Hume , J. N. “ Development of Systems Software for the Ferut Computer
at the University of Toronto, 1952 to 1955 . ” IEEE Annals of the History of
Computing 16 (2) (1994): 13 – 19 .

 Paul , James , and Gregory Simon . “ Bugs in the Program: Problems in Federal
Government Computer Software Development and Regulation. ” Staff Study for
the House Committee on Science, Space, and Technology, September 1989.

 Payne , Robert . “ Reaction to Publication Proposal ” (letter to editor) .
 Communications of the ACM 8 (1) (1965): 71 .

 Perry , Dallis , and William Cannon . “ Vocational Interests of Computer
Programmers . ” Journal of Applied Psychology 51 (1) (1967): 28 – 34 .

 Perry , Dallis , and William Cannon . “ Vocational Interests of Female Computer
Programmers . ” Journal of Applied Psychology 52 (1) (1968): 31 .

 Polin , Terrence , Robert Morse , and John Zenger . “ Selecting Programmers from
In-Plant Employees . ” Personnel Journal 41 (8) (1962): 398 – 400 .

 Pollack , Andrew . “ Year 2000 Problem Tests Professionalism of Programmers. ”
 New York Times (May 3, 1999): C1.

 Popkin , Gary . “ The Junior College as a Source of Programming Personnel. ” In
 Proceedings of the Ninth Annual SIGCPR Conference , 130 – 139. New York:
ACM Press, 1971 .

 Porat , Avner , and James Vaughan . “ Computer Personnel: The New Theocracy —
 or Industrial Carpetbaggers . ” Personnel Journal 48 (6) (1968): 540 – 543 .

 Postley , John . “ Letter to Editor . ” Communications of the ACM 3 (1) (1960):
 A6 .

Bibliography 307

 Preliminary Report: Specifi cations for the IBM Mathematical Formula Translating
System . New York: Programming Research Group, Applied Science Division,
IBM Corporation, November 10, 1954 .

 “ Professionalism Termed Key to Computer Personnel Situation . ” Personnel
Journal 51 (2) (1971): 156 – 157 .

 “ Professional Societies . . . or Technician Associations? ” Datamation 11 (8)
(1965): 23 .

 Pugh , Emerson , Lyle Johnson , and John Palmer . IBM ’ s 360 and Early 370
Systems . Cambridge, MA : MIT Press , 1991 .

 Randall , Peggy . “ Need for Warm Bodies . ” Datamation 9 (10) (1963): 14 .

 Randell , Brian. “ The Origins of Computer Programming . ” IEEE Annals of the
History of Computing 16 (4) (1994): 6 – 14 .

 Rector , Robert . “ Personal Refl ections on the First Quarter Century of AFIPS . ”
 Annals of the History of Computing 8 (3) (1986): 261 – 269 .

 Reid , H. V. “ Problems in Managing the Data Processing Department. ” Journal
of Systems Management 21 (5) (1970): 8 – 11 .

 Reinstedt , Robert N. “ 1966 Survey of Test Use in Computer Personnel Selection. ”
In Proceedings of the 4th Annual Computer Personnel Research Conference , 1 –
 8. New York: ACM Press, 1966 .

 Reinstedt , Robert N. , and Raymond Berger. “ Certifi cation: A Suggested Approach
to Acceptance . ” Datamation 19 (11) (1973): 97 – 100 .

 Reinstedt , Robert N. , and Beulah C. Hammidi , Sherwood H. Peres , and Evelyn
L. Ricard . Computer Personnel Research Group Programmer Performance
Prediction Study. Technical Report . Santa Monica, CA: RAND Corporation
Publications , 1964 .

 Remington Rand UNIVAC . Introduction to Programming: Programming for
the UNIVAC, Part 1. (1949) Hagley Museum Archives, Accession 1825, Box
372.

 Remington Rand UNIVAC . An Introduction to Programming the UNIVAC
1103A and 1105 Computing Systems (1958) Hagley Museum Archives, Accession
1825, Box 368.

 “ Report from the ACM Ad-hoc Committee on Private EDP Schools. ” (January
20, 1970) CBI 88, “ Data Processing Management Association records, ” Box 21,
Folder 38, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 “ Response to Business Automation article on CDP ” (1964), CBI 46, “ John K.
Swearingen Papers, 1936 – 1993, ” Box 1, Folder 16, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 Rhee , Hans A. Offi ce Automation in Social Perspective: The Progress and Social
Implications of Electronic Data Processing . Oxford : Basil Blackwell , 1968 .

 Rine , David C. “ A short overview of a history of software maintenance: as it
pertains to reuse. ” SIGSOFT Software Engineering Notes 16 (4) (1991):
 60 – 63 .

308 Bibliography

 Rockmael , Valerie . “ The Woman Programmer. ” Datamation 9 (1) (1963): 41 .

 Rojas , Raul , and Ulf Hashagen , eds. The First Computers: History and
Architectures . Cambridge, MA : MIT Press , 2000 .

 Ronayne , Maurice F. “ ‘ Leads ’ to Pertinent ADP Literature for the Public
Administrator. ” Public Administration Review 24 (2) (1964): 119 – 125 .

 Rose , Michael . Computers, Managers, and Society . Harmondsworth, UK :
 Penguin , 1969 .

 “ Roseman Takes Firm Position against Private EDP Schools . ” Communications
of the ACM 11 (3) (1968): 206 – 207 .

 Rosenberg , Scott . Dreaming in Code: Two Dozen Programmers, Three Years,
4,732 Bugs, and One Quest for Transcendent Software . New York : Crown
Publishers , 2007 .

 Rosin , Robert . “ Relative to the President ’ s December Remarks . ” Communications
of the ACM 10 (6) (1967): 342 .

 Ross , David . “ Certifi cation and Accreditation . ” Datamation 14 (9) (1968):
 183 – 184 .

 Rossiter , Margaret . Women Scientists in America . Baltimore : Johns Hopkins
University Press , 1982 .

 Rotella , Elyce J. From Home to Offi ce: U.S. Women at Work, 1870 – 1930.
Volume No. 25 . Ann Arbor, MI : UMI Research Press , 1981 .

 Rothery , Brian . Installing and Managing a Computer . London : Business Books ,
 1968 .

 Rowan , Thomas C. “ Psychological Tests and Selection of Computer
Programmers . ” Journal of the ACM 4 (3) (1957): 348 – 353 .

 Rowan , Thomas C. “ The Recruiting and Training of Programmers . ” Datamation
 4 (3) (1958): 16 – 18 .

 Saba , W. “ Letter to the Editor . ” IEEE Computer 29 (9) (1996): 10 .

 Sackman , Hal . “ Conference on Personnel Research . ” Datamation 14 (7) (1968):
 74 – 76, 81 .

 Sackman , Hal , W. J. Erickson , and E. E. Grant . “ Exploratory Experimental
Studies Comparing Online and Offl ine Programming Performance . ”
 Communications of the ACM 11 (1) (1968): 3 – 11 .

 Sammet , Jean . “ Brief Summary of the Early History of COBOL. ” IEEE Annals
of the History of Computing 7 (4) (1985): 203 – 288 .

 Sammet , Jean E . Programming Languages: History and Fundamentals . Englewood
Cliffs, NJ : Prentice-Hall , 1969 .

 Sammet , Jean E. “ Programming Languages History . ” Annals of the History of
Computing 13 (1) (1991): 49 .

 Sanden , Bo . “ Programming Masters Break Out of the Managerial Mold . ”
 Computerworld 20 (24) (1986): 73 – 78 .

 Saxon , James . “ Programming Training: A Workable Approach . ” Datamation 9
(12) (1963): 48 – 50 .

Bibliography 309

 “ SCDP Draft Legislation ” (1974), CBI 116, “ Institute for Certifi cation of
Computer Professionals Records, 1960 – 1993, ” Box 11, Folder 42, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Schnaars , Steven P. , and Sergio Carvalho . “ Predicting the Market Evolution of
Computers: Was the Revolution Really Unforeseen . ” Technology in Society 26
(1) (2004): 1 – 16 .

 Scranton , Philip . “ None-too-Porous Boundaries: Labor History and the History
of Technology. ” Technology and Culture 29 (4) (1988): 744 – 778 .

 2nd RAND Symposium (1959) CBI 78, “ RAND Symposia on Computing
Transcripts, ” Box 1, Folder 1, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Seiner , J. P. “ Programmer Aptitude and Competence Test Systems (PACTS). ” In
 Proceedings of the Ninth Annual SIGCPR , 3 – 25. New York: ACM Press,
 1971 .

 Seitz , John . “ Should DPMA Control Certifi cation Process? ” (letter to the editor)
Computerworld (1971). CBI 116, “ Institute for Certifi cation of Computer
Professionals Records, 1960 – 1993, ” Box 1, Folder 30, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 17th RAND Symposium: Problems of the AFIPS Societies Revisited (1975), CBI
78, “ RAND Symposia on Computing Transcripts, ” Box 3, Folder 7, Archives
of the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Shannon , Claude , and Warren Weaver . A Mathematical Theory of Communication .
 Urbana : University of Illinois Press , 1949 .

 Shapiro , Stuart . “ Splitting the Difference: The Historical Necessity of Synthesis
in Software Engineering . ” IEEE Annals of the History of Computing 19 (1)
(1997): 20 – 54 .

 Shapiro , Stuart , and Steven Woolgar . “ Balancing acts: reconciling competing
visions of the way software technologists work. ” In Proceedings of the Eighth
IEEE International Workshop on Incorporating Computer Aided Software
Engineering , 364 – 370. Los Alamitos, CA: IEEE Computer Society Press,
 1997 .

 Shaw , Christopher . “ Programming Schisms . ” Datamation 8 (9) (1962):
 32 .

 Shneiderman , Ben . “ The Relationship between COBOL and Computer Science . ”
 Annals of the History of Computing 7 (4) (1985): 348 – 352 .

 Shore , John . “ Why I Never Met a Programmer I Could Trust . ” Communications
of the ACM 31 (4) (1988): 372 .

 Shukla , Ruchi , and Arun Kumar Misra . “ Estimating software maintenance
effort: a neural network approach. ” In ISEC ’ 08: Proceedings of the 1st
Conference on India Software Engineering Conference , 107 – 112. Hyderabad,
India: ACM, 2008 .

 Sidlo , C. M. “ The Making of a Profession ” (letter to editor) . Communications
of the ACM 4 (8) (1961): 366 – 367 .

310 Bibliography

 Silberman , Steve . “ The Geek Syndrome . ” Wired 9 (12) (2001), 175 – 183.

 Simon , Herbert Alexander . Administrative Behavior: A Study of Decision-
Making Processes in Administrative Organization . New York : Macmillan ,
 1947 .

 Simon , Herbert Alexander . The New Science of Management Decision . New
York : Harper , 1960 .

 Simon , Herbert A. The Sciences of the Artifi cial . Cambridge, MA : MIT Press ,
 1969 .

 Simon , Herbert A. , Allen Newell , and Alan Perlis . “ Computer Science ” (letter to
editor) . Science 157 (3795) (1967): 1373 – 1374 .

 “ Six Measures of Professionalism ” (1962), CBI 88, “ Data Processing Management
Association records, ” Box 21, Folder 40, Archives of the Charles Babbage
Institute, University of Minnesota, Minneapolis.

 Smith , Malcolm . “ Complaint about Boston exam ” (1969) CBI 116, “ Institute
for Certifi cation of Computer Professionals Records, 1960 – 1993, ” Box 1, Folder
19, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 “ Social Science Notes. ” Science News 91 (13) (1967): 312 .

 “ Software Gap: A Growing Crisis for Computers. ” Business Week 127
(November 5, 1966): 131 .

 Spigelman , J. H. “ Implications of Recent Advances in Electronic Data Processing. ”
 Financial Analysts Journal 20 (5) (1964): 137 – 143 .

 Spigelman , J. H. “ Implications of Recent Advances in Electronic Data Processing:
Part II. ” Financial Analysts Journal 20 (6) (1964): 87 – 93 .

 Steinbuch , Karl . INFORMATIK: Automatische Informationsverarbeitung .
 Berlin : SEG-Nachrichten , 1957 .

 Stewart , Rosemary . How Computers Affect Management . Cambridge, MA : MIT
Press , 1971 .

 Stone , Milt . “ In Search of an Identity . ” Datamation 18 (3) (1972): 52 –
59 .

 Strom , Sharon Hartman . Beyond the Typewriter: Gender, Class, and the Origins
of Modern American Offi ce Work, 1900 – 1930 . Urbana : University of Illinois
Press , 1992 .

 Stroustrup , Bjarne . A History of C . In History of Programming Languages , ed.
 Thomas Bergin and R. G. Gibson . New York : ACM Press , 1996 .

 “ Survey on the Use of Service Bureaus. ” Wall Street Journal (November 4, 1969):
24.

 Swaine , Michael . Is Your Next Language COBOL? Dr. Dobbs Journal,
2008 .

 Swanson , E. Burton . “ The dimensions of maintenance. ” In ICSE ’ 76: Proceedings
of the 2nd International Conference on Software Engineering , 492 – 497. San
Francisco, IEEE Computer Society Press, 1976 .

Bibliography 311

 Swanson , E. Burton , and Cynthia Mathis Beath . “ Departmentalization in soft-
ware development and maintenance. ” Communications of the ACM 33 (6)
(1990): 658 – 667 .

 RAND Symposium . “ Is It Overhaul or Trade-in Time: Part I . ” Datamation 5 (4)
(1959): 24 – 33 .

 RAND Symposium . “ On Programming Languages, Part I . ” Datamation 8 (10)
(1962): 25 – 32 .

 RAND Symposium . “ On Programming Languages, Part II . ” Datamation 8 (11)
(1962): 23 – 30 .

 Tanaka , Richard . “ Fee or Free Software . ” Datamation 13 (10) (1967):
 205 – 206 .

 Taylor , Frederick Winslow . The Principles of Scientifi c Management . New York :
 Harper and Brothers , 1911 .

 Taylor , Alan . “ DPMA Should be Saved Now, If At All Possible. ” (Computerworld,
 1971). CBI 116, “ Institute for Certifi cation of Computer Professionals Records,
1960 – 1993, ” Box 1, Folder 30, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Taylor , Alan . “ Members Look More Like Markets From Park Ridge. ”
Computerworld (April 14, 1971). CBI 116, “ Institute for Certifi cation of
Computer Professionals Records, 1960 – 1993, ” Box 1, Folder 30, Archives of
the Charles Babbage Institute, University of Minnesota, Minneapolis.

 Taylor , Alan . “ Taylor Replies. ” (Computerworld, 1971). CBI 116, “ Institute for
Certifi cation of Computer Professionals Records, 1960 – 1993, ” Box 1, Folder
30, Archives of the Charles Babbage Institute, University of Minnesota,
Minneapolis.

 “ The Thinking Machine. ” Time Magazine , January 23, 1950 : 54 – 60.

 “ The Thoughtless Information Technologist . ” Datamation 12 (8) (1966):
 21 – 22 .

 Thurstone , L. L. Primary Mental Abilities . Chicago : University of Chicago Press ,
 1938 .

 Trimble , George , and Elmer Kubie . “ Principles of Optimum Programming of the
IBM Type 650. ” IBM Applied Science Division Technical Newsletter 8 (1954):
 5 – 16 .

 Tropp , Henry S. “ ACM ’ s 20th Anniversary: 30 August 1967 . ” Annals of the
History of Computing 9 (3) (1988): 269 .

 “ Trouble . . . I Say Trouble, Trouble in DP City . ” Datamation 14 (7) (1968):
 21 .

 Tucker , Allan . Programming Languages . Reading, MA : Addison-Wesley ,
 1977 .

 Tukey , John . “ The Teaching of Concrete Mathematics . ” American Mathematical
Monthly 65 (1) (1958): 1 – 9 .

 Tukiainen , Markku , and Eero M ö nkk ö nen . “ Programming Aptitude Testing as
a Prediction of Learning to Program. ” In Proceedings of the 14th Annual

312 Bibliography

Workshop of the Psychology of Programming Interest Group , eds. Jasna Kuljis
and Lynne Baldwin and Rosa Scoble, 45 – 57. Berlin: Springer, 2002 .

 Turkle , Sherry . The Second Self: Computers and the Human Spirit . New York :
 Simon and Schuster , 1984 .

 Vanlommel , E. , and Bert De Brabander . “ The Organization of Electronic Data
Processing (EDP) Activities and Computer Use . ” Journal of Business 48 (3)
(1975): 391 – 410 .

 von Neumann , John . First Draft of a Report on the EDVAC . Technical report,
contract no. W-670-ORD-4926. Philadelphia: Moore School of Electrical
Engineering, University of Pennsylvania, June 30, 1945 .

 Walker , W. R. “ MIS Mysticism ” (letter to editor). Business Automation 16 (7)
(1969): 8 .

 Ware , Willis . “ AFIPS in Retrospect . ” IEEE Annals of the History of Computing
 8 (3) (1986): 303 – 311 .

 Ware , Willis . “ As I See It: A Guest Editorial . ” Datamation 11 (5) (1965):
 27 – 28 .

 Webster , Bruce . “ The Real Software Crisis . ” Byte Magazine 21 (1) (1996):
 218 .

 Wegner , Peter . “ Three Computer Cultures: Computer Technology, Computer
Mathematics, and Computer Science . ” Advances in Computers 10 (1970):
 7 – 78 .

 Wegner , Peter . “ Undergraduate Programs in Computer Science. ” In SIGCPR
 ’ 66: Proceedings of the Fourth SIGCPR Conference on Computer Personnel
Research , 121 – 129. New York: ACM Press, 1966 .

 Weinberg , Gerald M. An Introduction to General Systems Thinking . New York :
 Wiley , 1975 .

 Weinberg , Gerald M . The Psychology of Computer Programming . New York :
 Van Nostrand Rheinhold , 1971 .

 Weinwurm , George F. , ed. On the Management of Computer Programmers .
 New York : Auerbach Publishers , 1970 .

 Weiss , Eric . “ Publications in Computing: An Informal Review . ” Communications
of the ACM 15 (7) (1972): 492 – 497 .

 Weizenbaum , Joseph . Computer Power and Human Reason: From Judgment to
Calculation . New York : Penguin , 1976 .

 Wexelblat , Richard , ed. History of Programming Languages . New York :
 Academic Press , 1981 .

 “ What ’ s Happening with COBOL? ” Business Automation 14 (4) (1966):
 42 – 43 .

 Whisler , Thomas . The Impact of Information Technology on Organizational
Control . In The Impact of Computers on Management , ed. Charles A. Myers .
 Cambridge, MA : MIT Press , 1967 , 16 – 48 .

 White , Thomas . “ The 70 ’ s: People . ” Datamation 16 (7) (1970): 40 – 46 .

Bibliography 313

 “ Why Are Business Users Turned Off by ACM? ” (1974), CBI 23, “ George Glaser
Papers, 1960 – 1989, ” Box 1, Folder 3, Archives of the Charles Babbage Institute,
University of Minnesota, Minneapolis.

 Wiener , Norbert . Cybernetics, or, Control and Communication in the Animal
and the Machine . Cambridge, MA : Technology Press , 1948 .

 Wilensky , Harold . “ The Professionalization of Everyone? ” American Journal of
Sociology 70 (2) (1964): 137 – 158 .

 Wilkes , Maurice V. Memoirs of a Computer Pioneer . Boston : MIT Press ,
 1985 .

 Wilkes , Maurice , David Wheeler , and Stanley Gill . Preparation of Programs for
an Electronic Digital Computer . Reading, MA : Addison-Wesley , 1951 .

 Willoughby , Theodore . “ Are Programmers Paranoid? ” In Proceedings of
the Tenth Annual Conference on SIGCPR , 47 – 52. New York: ACM Press,
 1972 .

 Willoughby , Theodore . “ Staffi ng the MIS Function . ” ACM Computing Surveys
 4 (4) (1972): 241 – 259 .

 Willoughby , Theodore . “ Psychometric Characteristics of the CDP Examination. ”
In Proceedings of the Thirteenth Annual SIGCPR Conference , 152 – 160. New
York: ACM Press, 1975 .

 “ Will You Vote for an Association Name Change to ACIS? ” Communications
of the ACM 8 (7) (1965): 424 – 426 .

 Wise , Thomas . “ IBM ’ s $5,000,000,000 Gamble. ” Fortune 74 (September)
(1966): 118 – 123, 224, 226, 228 .

 Wishner , Raymond . “ Comment on Curriculum 68 . ” Communications of the
ACM 11 (10) (1968): 658 .

 Wolfe , Jack . “ Perspectives on Testing for Programming Aptitude . ” In Proceedings
of 1971 ACM Annual Conference , 268 – 277. New York: ACM Press, 1971 .

 Xerox Corporation . “ At Xerox, We Look at Programmers . . . and See
Managers. ” Ad. Datamation 14 (4) (1968).

 Yarbrough , Jack . “ Letter from John Swearingen ” (1964), CBI 46, “ John K.
Swearingen Papers, 1936 – 1993, ” Box 1, Folder 17, Archives of the Charles
Babbage Institute, University of Minnesota, Minneapolis.

 Yates , JoAnne . “ Application Software for Insurance in the 1960s and Early
1970s. ” Business And Economic History 24 (1) (1995): 123 – 134 .

 Yates , JoAnne . Control Through Communication: The Rise of System in
American Management . Baltimore : Johns Hopkins University Press , 1989 .

 Yates , JoAnne . Structuring the Information Age: Life Insurance and Technology
in the Twentieth Century . Baltimore : Johns Hopkins University Press , 2005 .

 Yood , Charles . “ Attack of the Giant Brains. ” Research Penn State Online 24 (3)
(September 2003). Available at http://www.rps.psu.edu/0309/brains.html .

 Yourdon , Edward . Writings of the Revolution: Selected Readings on Software
Engineering . New York : Prentice Hall , 1986 , 288 .

314 Bibliography

 Yourdon , Edward Nash , ed. Classics in Software Engineering . New York :
 Yourdon Press , 1979 .

 Zabusky , Stacia , and Stephen Barley . Redefi ning Success: Ethnographic
Observations on the Careers of Technicians . In Broken Ladders: Managerial
Careers in the New Economy , ed. Paul Osterman , 185 – 214 . New York : Oxford
University Press , 1996 .

 Zaphyr , P. A. “ The Science of Hypology ” (letter to editor) . Communications of
the ACM 2 (1) (1959): 4 .

 Zuboff , Shoshana . In the Age of the Smart Machine: The Future of Work and
Power . New York : Basic Books , 1988 .

 Zussman , Robert . Mechanics of the middle class: Work and politics among
American engineers . Berkeley : University of California Press , 1985 .

 Index

 Abbott, Andrew, 234
 ACM (Association for Computing

Machinery)
 academic orientation of, 173 – 174,
191

 Communications of the ACM , 101,
114 – 115, 173, 182

 confl ict with DPMA, 177, 182, 189,
196

 Education Committee, 118, 173,
234

 history of, 170 – 175
 Journal of the ACM , 173
 membership statistics, 170 – 171

 Adaptive programming. See Egoless
programming

 AFIPS (American Federation of
Information Processing Societies),
145, 177, 187 – 189

 Aiken, Howard, 27, 119 – 120
 Algorithms, 8, 116, 130 – 132, 151
 Applied epistemology, 118
 Aptitude testing, 53, 61 – 64, 70,

77 – 80
 Aptitude Assessment Battery:
Programming, 67

 Basic Programming Knowledge Test,
67

 Burroughs aptitude test, 72
 IBM PAT (Programmer Aptitude
Test), 64 – 67, 76 – 77

 NCR programming aptitude test, 72
 Revised Programmer Aptitude Test,
67

 Armer, Paul, 114, 173, 187
 Aron, Joel, 202, 206
 Aspray, William, 117, 231
 Association for Computing

Machinery. See ACM
 Atanasoff, John, 32
 Automatic programming systems,

83 – 84. See also Programming
languages

 compilers, 86 – 87
 object oriented, 108

 Backus, John, 16, 43, 90 – 93, 109,

151
 Backus-Naur Form, 92, 101, 104,

107
 Baker, F. Terry, 207, 210
 Barley, Stephen, 235
 Bell Telephone, 55, 197
 Bemer, Robert, 52 – 53
 Bendix Corporation, 166 – 167
 Berkeley, Edmund, 28, 138
 Bilas, Francis, 35
 Black art, 16, 19, 112, 228 – 229
 Blanche, Gertrude, 38
 Boundary work, 128 – 129,

228 – 231
 Braverman, Harry, 231 – 233
 Brooks, Frederick, 45 – 48, 87, 108,

151, 207 – 208
 Mythical Man-Month, The , 47, 206,
209

 “ No Silver Bullet, ” 87, 108, 209
 Bugs, 15 – 16, 44, 223 – 225

316 Index

 Burroughs Corporation, 28, 56, 58,
72, 94

 Business programming, 42, 58 – 59, 66

 Caldwell, Samuel, 120, 125, 170
 Cambridge University, 34, 43, 84 – 85
 Canning, Richard, 187, 225
 Cannon, William, 68 – 69, 78
 CDP (Certifi ed Data Processor), 20,

82, 164 – 165
 CDP statistics, 164, 177 – 178
 complaints about, 182
 educational requirements, 177 – 178,
179, 183, 184

 fraud concerns, 182
 Chess, 52 – 53
 Chief Programmer Team (CPT), 199,

206 – 210
 Church-Turing Thesis, 31, 128
 CODASYL, 94, 96, 99, 101 – 102
 Short Range Committee, 94, 96, 98

 Coders/coding, 15, 35 – 39, 231
 versus planners, 36 – 37, 39 – 40
 versus programmers, 38 – 39

 Columbia University, 119, 124
 Comptology, 118
 Computerization, 4, 11, 39
 politics of, 11 – 12

 Computer revolution, 10, 25 – 26,
27 – 28, 112

 Computer revolutionaries, 3, 126
 Computers
 disenchantment with, 153 – 154
 electronic computer industry, 28,
54, 140

 limitations of, 42
 pervasiveness of, 2 – 3
 and unemployment, 139

 Computers and society, 5 – 6, 112
 Computer science
 departments, 120 – 121
 history of, 115, 117, 125 – 126
 confl ict between science and
practice, 115 – 117, 134

 confl ict with other academic
disciplines, 117, 121 – 124, 126,
130

 confl ict with vocational
programmers, 100 – 101, 107, 129,
133, 169, 172, 175, 192

 science as professionalization
strategy, 135 – 136

 theory, 112, 114, 125 – 26, 129 – 130,
135

 Control Data Corporation,
76

 Cosmopolitan, 73, 78, 238 – 239
 CPT (Chief Programmer Team), 199,

206 – 210
 Curriculum, 68, 132 – 134, 174
 Cybernetics, 119, 155, 238 – 239

 Datalogy, 118
 Datamation, 18, 74, 114, 134,

163 – 164, 169
 Data Processing Management

Association. See DPMA
 Dearden, John, 141
 Deskilling, 210, 231 – 232. See also

Programming, routinization of
 Desk Set , 137 – 139
 Development support library,

209 – 210
 Diebold, John, 141, 155 – 156
 Differential analyzer, 120
 Dijkstra, Edsger, 100, 111 – 113, 127,

129
 DPMA (Data Processing Management

Association), 20, 164, 175 – 177,
186, 188

 confl ict with ACM, 177, 182,
189 – 190

 professionalism program, 175 – 176,
183, 185

 Eckert, J. Presper, 32, 34, 196
 EDP (Electronic data processing),

16 – 17, 140
 EDSAC (Electronic Delay Storage

Automatic Calculator), 34, 43 – 44,
84 – 85

 EDVAC (Electronic Discrete Variable
Automatic Computer), 33

 Effi ciency experts, 139

Index 317

 Egoless programming, 199, 212,
216 – 217

 Electronic data processing (EDP),
16 – 17, 140

 Elliot, Calvin, 164
 ENIAC, 14, 15, 32 – 36
 programmers, 14 – 15, 35 – 38

 Ershov, Andrei, 1, 230

 Fein, Louis, 118, 127, 173, 192

 Galler, Bernard, 7, 105, 173
 Gates, Bill, 3, 27
 Gender, 2, 27 – 29, 89 – 90, 149,

236 – 240
 masculinization, 12, 77 – 79,
239 – 240

 women in computing, 12, 14 – 15,
73, 236 – 239

 General Electric, 28
 Gieryn, Thomas, 228 – 230
 Gill, Stanley, 85
 Goldstine, Herman, 15, 36
 Gregg, Charles, 56
 Grosch, Herbert, 107, 137, 144, 173,

184, 187, 190
 Gruenberger, Fred, 135,

186 – 187

 Hamming, Richard, 111, 134,

187
 Hartree, Douglas, 27
 Harvard Mark I, 33, 119 – 120
 Harvard University, 55
 Heterogeneous technology, 8, 10 – 11,

226, 241
 Hierarchical management,

200 – 203
 Hoare, C. A. R., 211
 Holberton, Elizabeth (Betty) Snyder,

35, 37, 237
 Honeywell, 28, 94, 99, 205
 Hopper, Grace, 38, 73, 86 – 87, 94,

236 – 237
 Hughes, John, 63
 Hunter, Truman, 56, 58
 Hypology, 118

 IBM Corporation, 28, 51 – 54, 60, 71,
89, 99 – 100, 118 – 119, 137 – 138,
140, 171

 IBM 650, 56
 IBM 704, 90
 IBM Federal Systems Division, 199,
202

 IBM OS/360, 45 – 47, 205 – 206
 IBM System/360, 45, 204 – 205

 ICCP (Institute for the Certifi cation
of Computing Professionals),
179 – 180

 IEEE Computer Society, 179,
187 – 188

 IFIP (International Federation on
Information Processing Societies),
188

 Informatics, 130
 Information science, 118, 130

 Jay, Antony, 216
 Jennings, Betty Jean, 35
 Jurisdictional struggles, 234

 Knuth, Donald, 10, 131 – 132, 151
 Kuhn, Thomas, 130 – 132

 Labor history, 231 – 233
 Law, John, 8
 Leavitt, Howard, 154
 Legislation, 72, 181, 191
 Lichterman, Ruth, 35

 Mahoney, Michael, 129, 135, 220
 Management
 attitudes towards programmers, 22,
146, 150 – 151, 202

 confl ict with computerization, 144,
146, 152 – 154, 156 – 159

 Management control, 147, 201 – 202
 Management sciences, 22, 154
 Management systems, 71, 140,

155 – 156
 Management theory, 60 – 61,

216 – 217
 Marx, Karl, 210
 Marxist interpretation, 231 – 233

318 Index

 Massachusetts Institute of
Technology. See MIT

 Mathematics, 16, 65 – 66, 74, 114,
116, 129

 Mauchly, John, 32, 85 – 86
 McIlroy, M. Douglas, 197
 McKinsey & Company, 142 – 143,

147
 McKinsey Report, 22 – 23, 142 – 143,
147

 McNamara, Walter, 63
 McNulty, Kathleen, 35
 Mills, Harlan, 206 – 207, 210
 MIT (Massachusetts Institute of

Technology), 55, 120 – 121, 124,
170

 MIT Center for Analysis, 120
 MIT Laboratory for Computer
Science, 120

 MIT Lincoln Laboratory, 61, 120
 Mongolian Horde, 61, 200
 Moore ’ s Law, 4, 10

 National Bureau of Standards, 38
 National Computer Conferences,

171, 187 – 188
 NATO Conference on Software

Engineering, 24, 48 – 49, 142, 161,
195, 218

 confl ict among participants, 219
 Garmisch Conference (1968),
196 – 197

 Rome Conference (1969), 206,
218 – 220

 NCR, 28, 72 – 73, 94
 Nerds, 2
 NMAA (National Machine

Accountants Association), 20, 164,
175. See also DPMA

 Oettinger, Anthony, 116, 173,

187
 Olsen, Ken, 27
 Organizational confl ict, 17, 22 – 23,

139 – 140, 153 – 154, 156 – 158, 230,
234

 Computerization and, 8, 11 – 13

 Perry, Dallis, 68 – 69, 78
 Personality profi les, 61 – 63, 67 – 70,

77 – 79
 Price Waterhouse, 39 – 40, 42
 Princeton University, 121, 124
 Professionalism, 109, 159, 193 – 194,

219 – 220
 certifi cation of, 166 – 169
 codes of ethics, 168 – 169, 176, 180 –
 181, 236

 lack of, 163 – 165, 186
 licensing, 180 – 181
 as masculinization, 239 – 240
 professionalizing as strategy, 114,
134, 185

 professional societies, 180 – 181, 192
 “ Question of Professionalism, ” 165
 as a solution to the software crisis,
168

 Programmers
 anti-social aspects, 2, 69 – 70, 78 – 79,
159, 213

 as “ cosa nostra, ” 144
 craft knowledge, 37, 40, 42 – 43, 48,
112, 198, 211

 defi ning characteristics, 19 – 20,
29 – 30, 40, 52 – 53, 58, 74, 149

 historical signifi cance of, 13 – 14
 and paranoia, 69 – 70
 as prima donnas, 146, 211
 productivity metrics, 148
 recruitment, 51 – 53, 72 – 73
 salaries, 72, 75, 81
 stereotypes, 2, 51 – 52
 total number of, 29, 55
 training, 57, 70 – 71, 74 – 77
 turnover, 72, 145, 204, 210, 215
 vocational versus academic, 49

 Programming
 analogy to music, 52, 54
 creativity and, 40, 42, 45 – 47, 54, 67
 debugging (see Bugs)
 defi nitions of, 36, 154
 as innate ability, 67 – 68
 as literary activity, 45, 48, 151, 226
 as magic, 45
 narrowness of, 66, 159 – 160

Index 319

 routinization of, 231 – 232
 and sex, 225
 unique challenges of, 21, 40, 42,
87 – 88, 110, 148, 152 – 153

 Programming languages
 ADA, 25, 109, 198, 221
 AIMOCAO, 94
 ALGOL, 99, 102 – 104, 107, 174
 APT, 105
 Autocoder, 96
 A-0 Compiler, 86
 BASIC, 93, 105
 Cambrian explosion of, 105 – 106
 COBOL, 20, 84, 93 – 101, 104, 107,
146, 159, 203, 227

 COBOL ’ s rejection by computer
scientists, 100 – 101

 Comtran, 94 – 95
 C++, 227
 FACT, 99
 Flowmatic, 94, 96
 FORTRAN, 16, 84, 90, 102, 104,
123, 146

 IBM Commercial Translator, 96
 JOVIAL, 104, 213
 MAD, 194
 NELIAC, 104
 PL/1, 88 – 89
 politics of, 190, 203, 213, 241 – 242
 RPG, 20, 96
 Short-Order Code, 85 – 86
 standardization, 92, 100
 SURGE, 96

 Psychometric tools. See Aptitude
testing; Personality profi les

 RAND Corporation, 55, 59 – 60, 114
 RAND Symposium, 83, 87, 105,
186, 190

 RCA, 28, 41, 94, 99
 Remington Rand UNIVAC, 39, 57,

86 – 87, 92, 94
 Rhodes, Ida, 38
 Rowan, Thomas, 63 – 64

 SAGE (Semi-Automated Ground

Environment), 59 – 61, 200

 Sammet, Jean, 107, 237
 SCDP (Society of Certifi ed Data

Processors), 179 – 181
 Scientifi c computing, 92 – 93, 119 – 122
 SDC (System Development

Corporation), 59 – 63, 68, 81, 199
 development methodologies,
200 – 202

 as trainers, 201
 Service Bureau Corporation, 46
 Shannon, Claude, 130
 SIGCPR (Special Interest Group on

Computing Personnel Research),
18, 74, 165 – 166

 Simon, Herbert, 116, 127, 131, 155
 Social construction, 8, 12 – 13
 Society of Certifi ed Data Processors

(SCDP), 179 – 181
 Sociotechnical system, 7 – 8
 Software
 challenges of, 43 – 44, 108 – 109
 costs of, 23, 45 – 46, 144 – 145, 198,
223

 defi nition of, 5 – 10
 historical signifi cance of, 9
 maintenance, 9, 97, 224 – 227
 as palimpsest, 226

 Software crisis, 10 – 11, 18, 25, 44,
55, 117 – 118, 142, 195, 220 – 221,
223, 240 – 241

 applications crisis, 143
 crisis of professionalism, 165 – 166
 labor crisis, 17 – 18, 51, 55, 57,
70 – 71, 89, 114

 management crisis, 143, 161
 Y2K crisis, 10, 25, 100, 223 – 224

 Software development methodologies.
 See also Chief Programmer Team;
Egoless programming; Hierarchical
management; Structured
programming

 politics of, 202 – 203, 209, 211, 213 –
 214, 232 – 233

 as professionalization strategy, 208
 Software engineering, 196 – 198, 209,

221
 as ideology, 219 – 220

320 Index

 Software evolution, 226
 Software factory, 60 – 61, 63, 232
 Special Interest Group on Computing

Personnel Research. See SIGCPR
 Structured programming, 209
 and GOTO Statement debate, 109

 Superprogrammer, 206, 208,
211 – 212, 215

 Surgical team approach, 207
 Synnoetics, 118 – 119
 System Development Corporation.

 See SDC
 Systems analysts, 14, 145, 152

 Tabulating machines, 34, 51, 126,

140
 Taylor, Frederick, 197
 Technicians, 158, 166, 169, 215,

235 – 236
 Theory versus practice, 31, 176, 184,

189 – 190, 192 – 194, 219 – 220, 230
 Top-down programming, 209. See

also Hierarchical management
 Tower of Babel, 106
 Tukey, John, 7, 121
 Turing, Alan, 30 – 31
 Turing Award, 112, 125, 134
 Turingeering, 118
 Turing Machine, 30 – 31, 128

 Vocational schools, 74 – 77, 164, 185
 and accreditation, 76

 von Neumann, John, 15, 33, 36 – 37,
128

 University of Michigan, 7, 104 – 105
 University of Pennsylvania, 32 – 38,

93, 124
 United States military
 Air Defense Command, 63
 Air Force Materiel Command, 56,
59

 Army Corp of Engineers, 164
 Army Map Service, 85
 Ballistics Research Laboratory, 35
 Department of Defense, 94, 108, 221
 Naval Electronics Laboratory, 104

 Offi ce of Naval Research, 55, 92
 U.S. Air Force, 120
 U.S. Army, 35
 U.S. Navy, 119

 Ware, Willis, 20 – 21
 Watson, Thomas, 27
 Wayne State University, 55 – 56
 Wegner, Peter, 126, 132
 Weinberg, Gerald, 65, 199, 212 – 215.

 See also Egoless programming
 Psychology of Computer
Programming, The , 199, 212 – 216,
239

 Wescoff, Marlyn, 35
 Wheeler, David, 85
 Whisler, Thomas, 11, 154, 156 – 157
 Wiener, Norbert, 28
 Wilkes, Maurice, 15 – 16, 43, 85, 225
 Worsley, Beatrice Helen, 237

