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 1 

 To be a good programmer today is as much a privilege as it was to be a literate 
man in the sixteenth century. This privilege leads the programmer to expect rec-
ognition and respect on the part of society. Unfortunately, such recognition is 
not always realized. 

  — Andrei Ershov,  Aesthetics and the Human Factor in Programming , 1972 

 The Computer People 

 Chances are that you or someone close to you makes their living  “ working 
with computers. ”  In the decades since the 1950s, the technical spe-
cialists most directly associated with the electronic digital computer —
 computer programmers, systems analysts, and network and database 
administrators — have assumed an increasingly active and visible role in 
the shaping of our modern information society. All but the smallest 
organizations now have their own information technology departments 
fi lled with such specialists, and in many cases they represent some of the 
organization ’ s most valued — or at least most highly paid — employees. In 
the United States alone there are more than three million professional 
computer experts; the total worldwide estimate is nearly thirty-fi ve 
million.  1   There are now more people working in computing than in all 
of the other fi elds of engineering and architecture combined. In recent 
years,  “ computer people ”  have become some of our wealthiest citizens, 
most important business leaders and philanthropists, and most recog-
nized celebrities. 

 It is likely, however, that unless you yourself are one of these com-
puter people, you have at best a vague notion of what it actually means 
to work with computers. Even compared to other esoteric scientifi c or 
technical disciplines, the work of computer specialists is opaque to out-
siders. Their activities are often regarded by nonpractitioners as being at 
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once too diffi cult and technical to be understood by mere mortals, and 
too trivial and tedious to be worth the effort. The specialists themselves 
talk about what they do as being a mysterious blend of art and science, 
high tech and black magic. Many of the colloquial terms that are fre-
quently used to describe these experts —  “ hackers, ”   “ wizards, ”   “ cowboys, ”  
or  “ gurus ”  — refl ect the ambivalent fusion of wonder, awe, and suspicion 
with which they are generally regarded.  2   That so many of these computer 
specialists seem unwilling (or unable) to communicate to others what it 
is they do or how they do it only exacerbates the apparent impenetrabil-
ity of their discipline. 

 But while you might not know much about what it is that these com-
puter specialists do, you probably can at least imagine what they look 
like: the stereotype of the scruffy, bearded, long-haired programmer, 
wearing (inappropriately) sandals and a T-shirt, has been a staple of 
popular culture since at least the early 1960s.  3   He (always a he, at least 
in the stereotype) is usually curt, antisocial, and more concerned with 
maintaining the integrity of the  “ system ”  than in being truly helpful to 
the end user.  4   So recognized is this stereotype that a high degree of pro-
fi ciency in computer programming has been linked with mild forms of 
Asperger ’ s syndrome and autism — the so-called geek syndrome or engi-
neer ’ s disorder.  5   Regardless of the scientifi c validity of this particular 
diagnosis, the more general association of computer programming ability 
with a specifi c personality type — eccentric, arrogant, and antisocial — has 
a long and well-established history, and continues to defi ne how com-
puter specialists are seen by their colleagues and contemporaries. The 
archetype of the modern American  “ nerd ”  is no longer the engineer or 
scientist but rather the computer specialist.  6   

 However little you might know (or care) about the habits and char-
acter of the computer people, you can at least appreciate their contribu-
tions to contemporary society. The products of their labor are everywhere 
around us. We live in a society that has been so thoroughly computerized 
that even the most basic human activities involve us in constant interac-
tion with computers and computer-based technologies. Most obvious are 
the  “ personal ”  computers that many of us rely on daily to do our work, 
help us study, allow us to create and access entertainment, and facilitate 
communication with friends and family. Less visible, but no less signifi -
cant, are the millions of other tiny computing devices that lie hidden, 
embedded within other products and technologies, quietly gathering 
data, controlling processes, and communicating between components. 
Your automobile almost certainly has its own computer (in fact, proba-
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bly several), as does your cell phone, digital camera, and television. Even 
more intangible are the ways in which the electronic digital computer 
has transformed how we perceive and interact with our environment. In 
fi elds as diverse as molecular biology, anthropology, ecology, physics, 
cognitive science, economics, and medicine, the electronic digital com-
puter has been widely adopted, not only as a useful tool for gathering 
and manipulating data, but also as a fundamental metaphor for under-
standing ourselves and the world around us. In fact, it would be diffi cult 
to identify a single aspect of contemporary social, economic, political, 
or cultural life that has not been profoundly infl uenced by computers 
and computer-based technologies — and by extension, the computer spe-
cialists who designed and developed these technologies. 

 Despite their omnipresence in contemporary popular culture and 
sizable representation in the modern information economy, historians 
have thus far devoted little attention to these ubiquitous but mysterious 
computer specialists. There are, of course, whole shelves of books devoted 
to the small number of inventors and entrepreneurs — Bill Gates, Steve 
Jobs, and Larry Ellison, in particular — who have managed to translate 
their computing expertise into fabulous wealth and personal celebrity. 
There is also considerable literature on the intriguingly subversive sub-
culture of teenage computer hackers. Since the late 1970s, these geeky 
adolescents have been alternatively hailed as the heroic harbingers of 
the coming  “ computer revolution ”  or castigated as dangerous cyber-
criminals.  7   But neither of these groups is representative of the larger 
computing community. Little has yet been written about the silent major-
ity of computer specialists, the vast armies of largely anonymous engi-
neers, analysts, and programmers who designed and constructed the 
complex systems that make possible our increasingly computerized 
society. Even basic demographic information about them can be diffi cult 
to come by. 

 To a certain extent, this curious neglect of the computer people, at 
least in popular histories of technology, is simply the result of the con-
ventions of the genre. Compared to the celebratory and sensationalized 
accounts of genius inventors, important  “ fi rsts, ”  and machines that 
 “ changed the world ”  that generally dominate such histories, the stories 
of merely average computer workers would seem at fi rst glance mundane 
and inconsequential. Even sophisticated academic histories of technology 
have diffi culty incorporating the actions and agendas of nonelite actors, 
such as end users, operators, maintenance workers, and other  “ invisible 
technicians. ”   8   The stories of such actors are also surprisingly diffi cult to 



4  Chapter 1

document: technical specialists and other midlevel laborers rarely leave 
records, or at least the kind of records that are useful and accessible to 
historians. And since the community of specialists associated with the 
computer encompasses a broad and diverse range of occupational cate-
gories — from academic computer scientists to corporate computer pro-
grammers to machine operators and maintenance workers — they are an 
especially diffi cult group about which to generalize. It is not altogether 
startling, therefore, that many conventional histories of computing focus 
on easily identifi able pioneers and isolated incidents of technological 
innovation. 

 A subtler and more signifi cant explanation for the lack of attention 
paid to computer specialists has to do with the traditional bias in the 
traditional emphasis of the history of  computing  on the history of the 
 computer . Or to be more specifi c, on the history of a particular type of 
computer: the electronic, programmable, digital computer. Most histo-
ries of computing begin and for the most part end with the invention of 
this particular artifact. The development of the fi rst modern electronic 
computers in the late 1940s is typically regarded as the seminal moment 
in the birth of the modern information age, the culmination of all the 
innovations in information technology that preceded it, and the precur-
sor and enabler of all that would come after. Once the electronic 
computer had embarked on its seemingly inexorable march toward 
Moore ’ s law — toward ever-smaller, faster, and more affordable comput-
ing power — the eventual  “ computerization ”  of all of society was both 
desirable and inevitable. 

 This focus on the invention and perfection of the technology of elec-
tronic computing makes for a clear and compelling narrative, and pro-
vides a straightforward and largely technologically determined explanation 
for the emergence of the electronic computer as the defi ning technology 
of the modern era. In doing so, however, it downplays or disregards the 
contributions of the majority of the computer people. Whatever it is that 
they really do, the typical computer specialist has almost nothing to do 
with either the design or construction of actual computers. There are 
certainly engineers and technicians whose primary responsibility is build-
ing computers, but they are an increasingly rare breed, and are generally 
concentrated in a small number of large and highly specialized computer 
manufacturers. The vast majority of computer specialists, from the earli-
est days of commercial computing to the present, spend little time inter-
acting with — and probably understand little about — the inner workings 
of an electronic computer. Their association with the computer is much 
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more tenuous and abstract. For them, the computer is not the primary 
object of interest but simply a tool with which to build other tools. In 
other words, the computer people are mainly concerned with the applica-
tion of computers (and computer applications), not the computer itself. 

 To the degree that the history of modern computing has been domi-
nated by the history of the computer as a machine, physical artifact, and 
tangible  “ thing, ”  the work of the average computer specialist can indeed 
be regarded as merely marginal. But from the broader perspective of the 
history of computerization — of the rise to dominance of the electronic 
computer as the defi ning technology of the modern era, our chosen tool 
for approaching almost every problem, social, economic, and political, 
and the fundamental metaphor through which we understand ourselves 
and our environment — then the computer people are those individuals 
most directly responsible for bringing about what is arguably the most 
profound social and technological development of our times. They did 
so not as inventors from the traditional mold but rather as the developers 
of the software (broadly defi ned to include programs, procedures, and 
practices) that integrated the novel technology of electronic computing 
into existing social, political, and technological networks. 

 In many respects, it is the history of computer software and not of 
the computer itself that is at the heart of the larger story of the great 
computer revolution of the mid- to late twentieth century. What makes 
the modern electronic digital computer so unique in all the history of 
technology — so powerful, fl exible, and capable of being applied to such 
an extraordinarily diverse range of purposes — is its ability to be recon-
fi gured, via software, into a seemingly infi nite number of devices. In fact, 
it is this ability to be programmed via software that has come to encap-
sulate the essence of modern computing: for a contemporary computer 
scientist, a computer is simply a device that can run a certain kind of 
software program. Whether that computer is electronic, digital, or even 
material is irrelevant. What matters is that it is programmable. 

 From a certain modern perspective, the signifi cance of software seems 
obvious. Software is what makes a computer useful. Software transforms 
the latent power of the theoretically general-purpose machine into a 
specifi c tool for solving real-world problems. A computer without soft-
ware is irrelevant, like an automobile without gasoline or a television set 
without a broadcast signal.  9   

 Software is also how most of us experience the computer. Although 
we might speak casually about  “ using the computer, ”  as if the computer 
was a specifi c, singular type of machine, most of us interact with the 
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computer not as one device but instead as many. Simply by installing 
new software, we can allow our computer to serve alternatively as an 
email application, video game console, digital photo album, or electronic 
diary. It is software that defi nes our relationship to the computer, soft-
ware that gives the computer its meaning. We might not know what kind 
of computer we are using or who manufactured it but we generally know 
what software we are currently using. Software is the interface between 
computer and society. 

 By allowing the computer to be perpetually reinvented for new pur-
poses, users, and social and economic contexts, software has transformed 
what was originally intended primarily as a special-purpose technol-
ogy — essentially a glorifi ed electronic calculator — into a  “ universal 
machine ”  that encompasses and supersedes all others, the central meta-
phor that informs our most fundamental conceptions of ourselves and 
our environment, and the embodiment and enabler of our highest cul-
tural and political aspirations. Historically speaking, it has been software 
that defi ned what a computer was and what it could be used for, software 
that provided the crucial link between the technology of computing and 
its larger socioeconomic environment. And so when people talk about 
the larger process of the computerization of modern society, or speak of 
the computer revolution transforming the ways in which they work, live, 
consume, recreate, and engage in social and personal relationships, they 
are really talking about the history of software. 

 But what exactly is software? Most of us today tend to think of soft-
ware as a consumer good, a product, a prepackaged application. We 
purchase (or download) a copy of Microsoft Word, Mozilla Firefox, or 
World of Warcraft; install it; and use it. In this sense, software resembles 
other, more familiar mass-market manufactured goods: someone, some-
where, produces some computer code, and that computer code in turn 
transforms, temporarily, your computer into a word processor, Web 
browser, or a gateway into the mythical world of Azeroth. Software, in 
this context, is simply the set of instructions or  “ code ”  that controls your 
computer — plus, perhaps, the physical media on which those instructions 
are encoded (a CD or DVD, for example), and possibly the printed 
manual that accompanied it. 

 Historically speaking, however, software was not something that was 
purchased off-the-shelf, nor was it a single application or product. 
Rather, it was a bundle of systems, services, and support.  10   When a fi rm 
in the 1950s wanted to computerize its accounting operations, for 
example, the software that it had to develop included not only computer 
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code but also an analysis of existing operations, the reorganization of 
procedures and personnel, the training of users, the construction of 
peripheral support tools and technologies, and the production of new 
manuals and other documents.  11   The concept of software encompassed 
all of these meanings and more. It was not until the late 1960s 
that software became a product that could be purchased separately 
from a computer, and even then software as code represented only 
a small component of a larger software system of services and support. 
To this day, the vast majority of software is custom produced for 
individual corporations in a process that resembles more the hiring 
of a management consulting fi rm than the purchase of a mass-market 
consumer good.  12   

 Although the idea of software is central to our modern conception of 
the computer as a universal machine, defi ning exactly what software is 
can be surprisingly diffi cult. It was not until more than a decade after 
the development of the fi rst electronic computers that the statistician 
John Tukey fi rst applied the word software to those elements of a typical 
computer installation that were not obviously  “ tubes, transistors, wires, 
tapes and the like. ”   13   Although Tukey clearly intended these other ele-
ments to include primarily computer code, by defi ning software in strictly 
negative terms — software was everything not explicitly understood to be 
hardware — he left open the possibility of a broader understanding of 
software that would quickly be adopted throughout the nascent comput-
ing community. For example, just a few years later the head of the newly 
established University of Michigan Computing Center declared that soft-
ware was essentially everything associated with computing that wasn ’ t 
the computer: for the user of the center,  “ the total computing facility 
provided for his use, other than the hardware, is the software. ”   14   The 
implication was that most users could not or did not distinguish between 
the elements of the software system: tools, applications, personnel, and 
procedures were all considered essential elements of the software experi-
ence.  15   By the end of the decade the term had been expanded even further 
to include documentation, development methodologies, user training, 
and consulting services.  16   In this broader conception of software, the true 
complexity of software development as a human activity becomes appar-
ent. Unlike hardware, which is almost by defi nition a tangible thing that 
can readily be isolated, identifi ed, and evaluated, software is inextricably 
intertwined with the larger sociotechnical system of computing that 
includes machines (computers and their associated peripherals), people 
(users, designers, and developers), and processes (the corporate payroll 
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system, for example). In this sense, software is an ideal illustration of 
what the historians and sociologists of technology call a sociotechnical 
system: that is to say, a system in which machines, people, and processes 
are inextricably interconnected and interdependent. As the sociologist 
John Law has suggested, the  “ heterogeneous engineering ”  required to 
assemble such complex systems blurs the boundaries between the tech-
nological and organizational, and typically creates a process fraught 
with confl ict, negotiation, disputes over professional authority, and the 
confl ation of social, political, and technological agendas.  17   Nowhere is 
this more true than in the history of software. 

 Software is perhaps the ultimate heterogeneous technology. It exists 
simultaneously as an idea, language, technology, and practice. Although 
intimately associated with the computer, it also clearly transcends it. For 
the most part software is invisible, ethereal, and ephemeral — and yet it 
is also obviously constructed. Certain aspects of software, such as a 
sorting algorithm, can be generalized and formalized as mathematical 
abstractions, while others remain inescapably local and specifi c, subject 
to the particular constraints imposed by corporate culture, informal 
industry standards, or government regulations. In this sense, software 
sits uncomfortably at the intersection of science, engineering, and busi-
ness. Software is where the technology of computing meets social rela-
tionships, organizational politics, and personal agendas. All technologies 
are to a certain extent social constructions, but in the case of software, 
the social dimensions of technology are particularly apparent. 

 Consider, for example, the aforementioned computerized accounting 
system. Much of the process of computerizing the accounting department 
happened without any reference to an actual computer. The vast major-
ity of the work involved documentation and analysis: the crucial step in 
designing the new system was understanding the old one, and then 
modifying it to fi t the requirements of the new computing mentality. 
Existing processes needed to be studied, charted, and analyzed. Clerical 
workers had to be interviewed, accounting experts consulted, and depart-
mental managers informed and placated. Reports needed to be written, 
fl owcharts constructed, and product specifi cations developed. The trans-
lation of established work fl ow into terms that could be understood or 
implemented by a computer generally required the modifi cation of related 
systems and practices. Often entire departments would need to be restruc-
tured to accommodate the new procedures. 

 Only after all this study and analysis could the design of the software 
even be considered. And since the development of new software fre-
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quently required the purchase of new hardware and peripherals, another 
set of actors — vendors, sales engineers, and technicians — would have to 
be brought in. After the software design architecture had been estab-
lished, it would be turned over to the programmers. Although program-
ming is usually thought of in terms of the translation of a design 
architecture into the coded language that a computer could understand, 
in fact, most programs were written in a higher-level language that a 
 human  could understand. Only later would this human-readable program 
be compiled into a lower-lever machine language meant only for a com-
puter. Once these various versions of the code were written and com-
piled, the software application would still need to be installed, tested, 
and debugged. At each step a different set of users, experts, and techni-
cians would be involved. 

 After the software had been tested and debugged (and possibly rede-
signed and reprogrammed), another series of documents — user manuals, 
training materials, and marketing materials — would have to be devel-
oped. Everyone involved in the accounting system, including not only 
those who interacted directly with the computerized system, such machine 
operators and clerical staff, but also higher-level managers or those 
members of other departments who needed to engage with or at least 
understand the new system, would have to be trained. The system would 
also have to be  “ operated ”  (a function that would eventually be taken 
over by yet another piece of software, called an operating system). 
Finally, the software would need to be continuously maintained — not 
because the software application would  “ break ”  but because the context 
in which it was used, or the other systems that it interacted with, included 
such nontechnical systems as corporate accounting policies and govern-
mental regulations, would change over time. As much as two-thirds of 
the cost of a software system was incurred  after  the software was devel-
oped and operational.  18   

 Viewed from this historical perspective, it is easy to see the signifi cance 
of software in the history of computing. Software was an ever-expanding 
category that grew not only in size and scale but also in scope. As the 
nuts and bolts of computer hardware became faster, more reliable, and 
less expensive — and therefore increasingly invisible to the end user — the 
relative importance of software became even more pronounced.  19   In 
effect, for most organizations, by the end of the 1960s software had 
become the computer: software, rather than the computer, had become 
the focus of all discussion, debate, and dissension within the computing 
community. 
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 The heterogeneity of software, its inherent messiness, and permeabil-
ity, are everywhere apparent in the historical documents. Compared to 
the history of computer hardware, which is characterized by regular and 
remarkable progress, the history of software is replete with tension, 
confl ict, failure, and disillusionment. The fi rst commercial computers 
had been out for only a few years when the availability of useful and 
reliable software was identifi ed as one of the critical bottlenecks hinder-
ing the expansion of the industry.  20   Unlike computer hardware, which 
was constantly becoming smaller, faster, and cheaper, software always 
seemed to be getting more expensive and less reliable. By the early 1960s 
industry observers and corporate managers increasingly warned against 
a growing  “ software gap ”  as well as a sense of  “ frustration, ”   “ disen-
chantment, ”  and  “ disillusionment ”  with electronic computing provoked 
by problems associated with the rising costs of software development.  21   
By the end of the decade many were talking openly of a looming soft-
ware crisis that threatened the health and future of the entire com-
mercial computer industry. For the next several decades, corporate 
managers, academic computer scientists, and government offi cials would 
release ominous warnings about the desperate state of the software 
industry with almost ritualistic regularity.  22   In fact, what is most striking 
about much of the literature from the supposed Golden Age of the com-
puter revolution is how contentious it is, how fraught with anger and 
anxiety. In an industry characterized by rapid change and innovation, 
the rhetoric of the software crisis has proven remarkably persistent. The 
Y2K crisis, the H1-B visa debates, and recent concerns about the loss 
of programming jobs to India and Pakistan are only the most recent 
manifestations of the industry ’ s apparent predilection for apocalyptic 
rhetoric. 

 To many observers of the computer industry, reconciling the two 
dominant but opposing views of the history of computing — the glorious 
history of computer hardware and the dismal history of computer soft-
ware — often has been diffi cult, if not impossible. The seeming paradox 
between the inevitable progress promised by Moore ’ s Law and the per-
petual crisis in software production challenges conventional assumptions 
about the progressive nature of computer technology. This is perhaps 
the most signifi cant lessons to be learned from the history of software: 
 There is no Moore ’ s Law for software technology . But the real problem 
with software is not so much that it is  “ hard ”  (as computer scientist 
Donald Knuth famously declared) but rather that it is inherently con-
tested; the problem was generally not that the software itself did 
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not work but instead that the work that it did do turned out to have 
undesirable side effects for the organizations that used them.  23   
Computerization projects created  “ unusual internal implications, ”  
 “ placed stress on established organizational relationships, ”  and demanded 
 “ skills not provided by the previous experience of people assigned to the 
task. ”   24   Such projects generally crossed organizational boundaries and 
disrupted existing hierarchies and power relationships. Information tech-
nology, as Thomas Whisler observed, tended to  “ shift and scramble the 
power structure of organizations among the various functional depart-
ments. ”   25   What might on the surface appear to be disagreements about 
the particular technical challenges associated with software development 
were in reality local disputes about organizational power and authority 
and, more signifi cant for this purposes of this book, about the peculiar 
character of the people involved with software development. Ostensibly 
debates about the  “ one best way ”  to manage a software development 
project, they were in fact a series of highly contested social negotiations 
about the role of electronic computing — and computing professionals —
 in modern corporate and academic organizations. 
  
 This is a book about the history of software, and the intersection between 
the history of software and the larger social history of the computer 
revolution of the mid- to late twentieth century. It is a book about how 
software gets made, why, and for what purposes. Of particular concern 
is the series of software crises that plagued the computer industry 
throughout its early history, and the way in which these crises highlight 
the heterogeneous nature of software development. Rather than treating 
the software crises as a well-defi ned and universally understood phenom-
enon, as they are usually assumed to be in the industry and historical 
literature, this book considers them as socially constructed historical 
artifacts. It interprets debates about the core problems facing the soft-
ware industry — and more important, claims about how it could best be 
resolved — within the larger context of the struggle for control over orga-
nization power and occupational authority. Specifi c claims about the 
nature and extent of the crisis can be used as a lens through which to 
examine broader issues in the history of software — and from there, the 
larger social history of computing. As with all crises, the software crisis 
can be used to reveal the hidden fault lines within a community: points 
of tension between groups or individuals, differing perceptions of reality 
or visions for the future, and subtle hierarchies and structures of power 
relationships. 
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 The focus of the book is on the consultants, analysts, programmers, 
operators, and other technical specialists who build software, and the 
ways in which these specialists constructed for themselves a unique 
occupational identity based on their control over the nascent technology 
of electronic computing. Earlier in this book these specialists were 
referred to as computer people; from here on out, they will be called by 
the name given to them by their contemporaries: namely, the  “ computer 
boys. ”  This was in part a term of endearment, in part a disparagement, 
and in either case, a fairly accurate representation of who these people 
were: young, male, and technologically inclined. This is not to say that 
there were not many female computer specialists. In fact, the computing 
professions, at least in the early decades of commercial computing, were 
surprisingly accepting of women. It was only later that the computing 
occupations became highly masculinized. This book tells a portion of 
that story. 

 The book traces the history of the computer boys as they struggled 
to establish a role for themselves within traditional organizational, pro-
fessional, and academic hierarchies. It focuses on the tensions that 
emerged between the craft-centered practices of vocational program-
mers, the increasingly theoretical agenda of academic computer science, 
and the desire of corporate managers to control and routinize the process 
of software development. It describes the ways in which confl icts within 
the computing community played out in the development of professional 
societies, programming languages, computer science curricula, and cor-
porate training and recruitment programs. Seen from this perspective, 
what are dismissed as merely internal debates about the technical fea-
tures of programming languages, the inclusion of a specifi c course in a 
computer science curriculum, or the imposition of software engineering 
methodologies for managing development projects are revealed rather 
as strategic moves in this negotiation over professional status and 
identity. 

 A central theme of the book is that computer specialists possessed 
skills and abilities that transcended existing boundaries between scien-
tifi c, technical, and business expertise. As the electronic computer moved 
out of the laboratory and into the marketplace, it became an increasingly 
valuable source of professional and institutional power and authority. 
In their role as mediators between the technical system (the computer) 
and its social environment (existing structures and practices), computer 
programmers played a crucial role in transforming the computer from 
a scientifi c instrument into a powerful tool for corporate control and 
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communication. As such, they also served as a focus for opposition to 
and criticism of the use of new information technologies. To many 
observers of the computer revolution of the mid-twentieth century, it 
seemed as if the computer boys were taking over — not just in the corpo-
rate setting but also in government, politics, and society in general.  26   

 By virtue of their control over the powerful new technology of elec-
tronic computing, however, computer specialists were granted an unprec-
edented degree of independence and authority. Their work brought them 
into confl ict with established networks of power and authority. This was 
particularly true in the corporate environment, where the incorporation 
of new forms of information technology  “ placed stresses on established 
organizational relationships. ”   27   The systems they developed often 
replaced, or at least substantially altered, the work of traditional white-
collar employees.  28   As the computer transformed from a tool  to be  
managed into a tool  for  management, computer specialists emerged as 
powerful  “ change agents ”  (to use the management terminology of the 
era). Faced with this perceived challenge to their occupational territory, 
traditional white-collar employees attempted to reassert their control 
over corporate computerization efforts. The result was a highly charged 
struggle over the proper place of the programmer in traditional occupa-
tional and professional hierarchies. 

 Finally, this is book about the invention of the computer user. 
Historians have long suggested that technological innovators, including 
the designers of electronic computers, also invent the kind of people they 
expect to use their innovations.  29   The two acts of invention are in fact 
inseparable: assumptions made about who will be using a technology, 
how, and for what purposes inevitably infl uence its eventual design. This 
means that the invention of the user, like the invention of the technology 
itself, is a highly contested social process involving confl ict and negotia-
tion. The emergence and transformation of the computer boys as the 
dominant group of computer users provides a fascinating glimpse into 
the social and cultural history of the computer, the development of tech-
nical communities and distinctive subcultures, the relationship between 
science and craft in engineering practice, and the role of technical elites 
in modern corporate hierarchies. These are central research agendas in 
the labor history, business history, and the history of technology to 
which we as historians of computing are well suited to contribute. 

 Note that the principal group of computer specialists who this book 
deals with is computer programmers. Programmers were not, of course, 
the only computer boys attempting to lay claim to the professional status 
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and authority conveyed by the electronic computer. Systems analysts, 
operations researchers, management consultants, and data processing 
specialists, among others, were all associated with the emergence of the 
nascent technology. In many respects, the term computer boys came to 
refer more generally not simply to actual computer specialists but rather 
to the whole host of smart, ambitious, and technologically inclined 
experts that emerged in the immediate postwar period. But computer 
programmers were the original and exemplary computer boys, and the 
term programmer was applied by contemporaries to the entire range of 
specialists involved with computing in this period. As much as the 
various computer specialists themselves worked to differentiate them-
selves from each other — systems analysts usually saw themselves as being 
distinct from programmers, and many academic computer scientists had 
no time at all for occupational programmers — they were generally all 
lumped together by outsiders as programmers.  30   

 A Brief History of Programming 

 The story of the computer boys begins, intriguingly enough, with a group 
of women. These women, generally referred to by contemporaries as the 
Electronic Numerical Integrator and Computer (ENIAC)  “ girls ”  — were 
female  “ human computers ”  recruited by the male ENIAC engineers/
managers to  “ setup ”  the general-purpose ENIAC machine to perform 
specifi c  “ plans of computation. ”  The ENIAC, which was the most widely 
publicized of the wartime experiments in electronic computing, con-
tained many (but not all) of the architectural elements of the modern 
computer: it was digital, electronic, and programmable. And so although 
the idea of the computer program had not yet been developed, the 
women of ENIAC are nevertheless widely celebrated as the world ’ s 
earliest computer programmers. 

 It is no coincidence that the fi rst software workers were women. The 
use of the word software in this context is, of course, anachronistic — the 
word itself would not be introduced until 1958 — but the hierarchical 
distinctions and gender connotations it embodies — between  “ hard ”  tech-
nical mastery, and the  “ softer, ”  more social (and implicitly, of secondary 
importance) aspects of computer work — are applicable even in the earli-
est of electronic computing development projects.  31   In the status hierar-
chy of the ENIAC project, it was clearly the male computer engineers 
who were signifi cant. The ENIAC women, the computer programmers, 
as they would later be known, were expected to simply adapt the plans 
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of computation already widely used in human computing projects to the 
new technology of the electronic computer. These plans of computation 
were themselves highly gendered, having been traditionally developed by 
women for women (human computing had been largely feminized by the 
1940s). The ENIAC women would simply set up the machine to perform 
these predetermined plans; that this work would turn out to be diffi cult 
and require radically innovative thinking was completely unanticipated.  32   
The telephone switchboardlike appearance of the ENIAC programming 
cable-and-plug panels reinforced the notion that programmers were mere 
machine operators, that programming was more handicraft than science, 
more feminine than masculine, more mechanical than intellectual. 

 The idea that the development of hardware was the real business of 
computing, and that software was at best secondary, persisted through-
out the 1940s and early 1950s. In the fi rst textbooks on computing 
published in the United States, for example, John von Neumann and 
Herman Goldstine outlined a clear division of labor in computing — pre-
sumably based on their experience with the ENIAC project — that clearly 
distinguished between the headwork of the (male) scientist or  “ planner, ”  
and the handwork of the (largely female)  “ coder. ”  In the von Neumann 
and Goldstine schema, the planner did the intellectual work of analysis 
and the coder simply translated this work into a form that a computer 
could understand. Coding was, according to von Neumann and Goldstine, 
a  “ static ”  process — one that could be performed by a low-level clerical 
worker. Coding implied manual labor, and mechanical translation or 
rote transcription; coders were obviously low on the intellectual and 
professional status hierarchy. It was not unreasonable to expect that as 
was the case in the ENIAC project, most of these coders would be 
women. 

 To the surprise of engineers and managers at the ENIAC and other 
wartime computing projects, however, programming turned out to be 
much more diffi cult, time-consuming, and expensive than had originally 
been imagined. What had been expected to be a straightforward process 
of coding an algorithm turned out to involve many layers of analysis, 
planning, testing, and debugging. For many, this unanticipated and 
unwelcome divergence between expectation and reality was already a 
crisis in the making. For others, the discovery of the hidden complexities 
posed a stimulating intellectual challenge. For the computer scientist 
Maurice Wilkes (one of the authors of the fi rst computer programming 
textbook), it was a little bit of both.  “ It had not occurred to me that 
there was going to be any diffi culty about getting programs working, ”  
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Wilkes recalls of his experience programming the EDSAC (Electronic 
Delay Storage Automatic Calculator — arguably the world ’ s fi rst elec-
tronic, digital stored-program computer).  “ And it was with somewhat 
of a shock that I realized that for the rest of my life I was going to spend 
a good deal of my time fi nding mistakes that I had made in my 
programs. ”   33   

 Wilkes might have been one of the fi rst to recognize the inherent dif-
fi culties of computer programming, but he was hardly the last. Particularly 
in the pioneering electronic computing projects of the late 1940s and 
early 1950s, involving as they did custom-built prototype machines that 
were highly idiosyncratic and unreliable, programmers were required to 
be at the same time scientists and tinkerers. Many of these early program-
mers were in fact migrants from scientifi c and engineering disciplines. 
They acquired a reputation as being both geniuses and mavericks; as 
John Backus, the inventor of the FORTRAN programming language 
later described this period, programming in the 1950s was  “ a black art, 
a private arcane matter . . . in which the success of a program depended 
primarily on the programmer ’ s private techniques and inventions. ”   34   
This reputation would later come back to haunt the industry: the need 
to transform the black art of programming into the  “ science ”  of software 
engineering became a major theme of the software crisis rhetoric of the 
next several decades. 

 In the meantime, the computer itself was gradually being reinvented 
as a business technology. The focus of electronic computing shifted from 
scientifi c and military agendas (which emphasized mathematics and 
highly optimized code) to electronic data processing (EDP) and informa-
tion management (in which more commercial considerations of cost, 
reliability, generality, and the availability of peripherals dominated). As 
general-purpose electronic computers became less expensive, more reli-
able, and better integrated into existing business processes and informa-
tion technology systems, they were adopted by a larger and more diverse 
range of companies. Most of these companies did not possess large engi-
neering or even data processing departments, making the availability of 
high-quality applications programs and systems tools even more essential 
(and conversely, their defi ciencies even more noticeable). At the same 
time, the scale and scope of computerization projects increased dramati-
cally. Whereas the fi rst generation of commercial computers were gener-
ally used to replicate existing data processing applications, by the 1950s 
computers were being used for less familiar and more ambitious pur-
poses, such as management planning and control. 
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 Prior to the invention of the electronic digital computer, information 
processing in the corporation had largely been handled by conventional 
clerical staffs and traditional offi ce managers. There had been attempts 
by aspiring  “ systems managers ”  to leverage expertise in the technical and 
bureaucratic aspects of administration into a broader claim to authority 
over the design of elaborate, custom information-processing systems.  35   
In certain cases, strong-willed executives were able to use information 
technology to consolidate control over lower levels of the organizational 
hierarchy. For the most part, however, the use of such technologies did 
not contribute to the rise of a class of technical professionals capable of 
challenging the power of traditional management.  36   

 As more and more corporations began to integrate electronic comput-
ers into their data processing operations, however, it became increasingly 
clear that this new technology threatened the stability of the established 
managerial hierarchy. Early commercial computers were large, expen-
sive, and complex technologies that required a high level of technical 
competence to operate effectively. Many nontechnical managers who 
had adapted readily to other innovations in offi ce technology, such as 
complicated fi ling systems and tabulating machinery, were intimidated 
by computers — and computer specialists. Many of them granted their 
computer specialists an unprecedented degree of independence and 
authority. The increasing centrality of the electronic computer to the 
economic, social, and politic life of industrialized nations also started to 
raise profound questions about the qualifi cations of computer workers. 
Who were these computer boys who were not just processing the payroll 
but also radically reshaping organizations? Despite their relatively low 
status in the managerial hierarchy, they seemed to exert an undue degree 
of power and autonomy. What were their qualifi cations? They were 
increasingly responsible for constructing systems that were increasingly 
mission and safety critical. But who were these people? Were they sci-
entists, engineers, or technicians? Should they be required to be college 
educated, certifi ed by the state, or members of a professional society? 

 The  “ Labor Crisis ”  in Programming 

 One of the immediate implications of this transformation and expansion 
of commercial computing was a sharp increase in the demand for busi-
ness programmers. At the fi rst-ever Conference on Training Personnel 
for the Computing Machine Field, held at Wayne State University in 
1956, industry observers warned of an imminent shortage of the kinds 
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of programmers required by the rapidly expanding EDP industry:  “ The 
development of these machines is resulting in even greater recognition 
of, and paying a greater premium for, the man who is above average in 
training and mental ability. ”   37   By 1961, industry journals such as 
 Datamation  were using crisis rhetoric to describe the looming  “ program-
ming gap ”  that threatened the  “ bright and rosy future ”  of the industry.  38   
A year later, Daniel McCracken talked about the  “ software turmoil ”  
that threatened to set back the industry. By the mid-1960s, it was widely 
estimated that there were at least a hundred thousand people working 
as programmers in the United States alone, with an expected immediate 
demand for at least fi fty thousand more.  “ Competition for programmers 
has driven salaries up so fast, ”  warned a contemporary article in  Fortune  
magazine,  “ that programming has become probably the country ’ s highest 
paid technological occupation. . . . Even so, some companies can ’ t fi nd 
experienced programmers at any price. ”   39   

 The burgeoning information technology labor shortage of the late 
1950s (to apply yet another contemporary term anachronistically) was 
complicated by the general lack of consensus about what skills and 
characteristics were required of a good programmer. The problem was 
not just simply that demand for programmers far outstripped supply. In 
fact, numerous attempts to ramp up the supply of programmers, either 
through in-house training programs, private vocational training schools, 
or academic computer science programs, generally failed to alleviate 
the growing crisis. A 1968 study by the Association for Computing 
Machinery (ACM) Special Interest Group on Computer Personnel 
Research (SIGCPR) warned of a growing  oversupply  of computer per-
sonnel:  “ The ranks of the computer world are being swelled by growing 
hordes of programmers, systems analysts and related personnel. 
Educational, performance and professional standards are virtually non-
existent and confusion growths rampant in selecting, training, and 
assigning people to do jobs. ”   40   In part this critique refl ects the immaturity 
of the industry, and the lack of established institutions for educating and 
certifying programmers. That similar critiques have continued to plague 
the industry to this day suggest a deeper structural problem worth 
exploring. As with various other iterations of information technology 
labor shortages (past and present), the problem was not so much an 
absolute shortage of programmers but rather a shortage of a  particular 
kind of programmer . What this particular kind of programmer might 
look like — what skills they need to possess, what level of professionalism 
they aspire to, what wages they require, and how willing they are to 
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conform to the managerial goals of the corporation — is the real question 
underlying many of these debates about labor shortages and other pro-
grammer personnel crises. 

 One of the perennial problems facing the computer industry, in the 
1950s and 1960s as well as the present, was defi ning precisely what 
characteristics or training made for a good computer programmer. As 
was mentioned earlier, programming was frequently seen as a black art 
whose success or failure was dependent on the idiosyncratic abilities of 
individual programmers. This notion was reinforced by a series of apti-
tude tests and personality profi les that suggested that computer program-
mers, like chess masters or virtuoso musicians, were endowed with a 
uniquely creative ability. Great disparities were discovered between the 
productivity of individual programmers.  “ When a programmer is good, 
he is very, very good. But when he is bad, he is horrid, ”  declared one 
widely quoted IBM study of programmer performance.  41   The same study 
introduced the meme — which despite the original study ’ s serious meth-
odological limitations and a general paucity of follow-up empirical 
research, continues to be repeated — that a good programmer was at least 
twenty-fi ve times more effi cient than his or her merely average colleague. 
Whether the exact ratio of performance was precisely twenty-fi ve to one 
(or a hundred to one — another commonly quoted fi gure) did not much 
matter. What did matter is that whatever its defi ciencies, this study and 
others seemed to confi rm plentiful anecdotal evidence that good pro-
grammers appeared to have been  “ born, not made. ”   42   

 It should be noted that computer programming is not by any means 
the only technical occupation in which elements of both art and science 
are seen as being inextricably intertwined. There is a large literature in 
the history of science and technology that describes the role of intuition, 
tacit knowledge, and craft technique in many technical industries.  43   
Computer work is different in the degree to which this blurry boundary 
is perceived to be a central contributing factor to an ongoing crisis. 

 The administrative and managerial problems associated with fi nding 
and keeping the  “ right ”  programmers was complicated by both the 
newness of the discipline and the extent and duration of the early com-
puter revolution. The nascent computing professions were so pressed for 
resources that they had little time to construct the institutional frame-
work required to produce and regulate software development. Almost 
from their very origins university computer science programs were criti-
cized as being too theoretical in focus, too concerned with  “ playing 
games, making fancy programs that really do not work, [and] writing 
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trick programs ”  to  “ discipline their own efforts so that what they say 
they will do gets done on time and in practical form. ”   44   In fact, this focus 
on theory served computer science well as a disciplinary strategy in the 
modern research university; if it did not satisfactorily meet the needs of 
industry, then so be it. Professional certifi cation programs run by the 
professional societies — such as the Certifi ed Data Processor (CDP) 
program offered by the National Machine Accounting Association 
(NMAA, or later the Data Processing Management Association, or 
DPMA) — also proved unsatisfactory for various reasons.  45   The computer 
programming business appeared to many to be a free-for-all in which 
 “ anyone with ten dollars can join the ACM and proclaim himself a 
professional computer expert. ”   46   The competing pressures to regulate the 
industry while at the same providing enough programmers to meet con-
stantly growing demand proved diffi cult to balance. 

 Perhaps the most important reason why the  “ personnel problem ”  
dominated the industry literature during the late 1950s and early 1960s 
has to do with a fundamental structural change in the nature of software 
development. It was clear to most observers during this period that not 
only were many more programmers required to meet the demands of a 
rapidly expanding industry but also that the type and range of skills 
required of programmers had changed and expanded dramatically. The 
mathematical training essential for scientifi c programming was seen as 
being increasingly irrelevant in the business context, which stressed the 
application of specifi c knowledge, training in systems analysis, and the 
ability to work well with others. New programming languages were 
developed that highlighted the specifi c needs of corporate programmers: 
legibility, ease of use, continuity with older data processing systems 
(as was the case with RPG), and the ability to be read and understood 
by corporate managers (an ostensible selling point of COBOL, for 
example). 

 A Crisis in Programmer Management 

 The increasingly widespread use of the word software — which as we 
have seen, included not only computer code but also the tools and pro-
cesses used to create it — emphasized the systemic dimensions of comput-
erization projects. Describing the products of computerization as 
software — as opposed to applications or programs, for instance — implied 
a much larger organizational role for computer personnel. As Willis 
Ware argued in a 1965 editorial in the trade journal  Datamation ,  “ It is 



Introduction: Computer Revolutionaries  21

clear that only a part — perhaps a small part, at that — of the program-
ming process is involved with actually using a language for writing rou-
tines. ”  And since the rest of the work involved required  “ intellectual 
activity, mathematical investigation [and] discussions between people, ”  
Ware maintained, there was no easy fi x to the programming problem. 
 “ All the programming language improvement in the world will not 
shorten the intellectual activity, the thinking, the analysis, that is inherent 
in the programming process. ”   47   Many companies did attempt to formally 
differentiate between programming tasks and systems analysis, but in 
practice these distinctions proved diffi cult to maintain.  48   

 The merging of computer programming into systems analysis aggra-
vated the training and personnel problems of many corporations. The 
principle diffi culty, contended Daniel McCracken,  “ seems to be that 
systems work is not so much a body of factual knowledge, as an approach 
to problem solving — and no one knows how to teach the problem solving 
approach. ”  Perhaps even more than programming ability, the skills 
associated with systems analysis were diffi cult to teach:  “ All that we seem 
to be able to do is let the coder work with an experienced systems man, 
and hope that some of the skills get transferred by osmosis. ”   49   At the 
least they were clearly not easy to replicate on the scale required by the 
growing industry. 

 The increasing inclusion of computer personnel as active participants 
in all phases of software development, from design to implementation, 
brought them into increasing contact — and confl ict — with other corpo-
rate employees. As software projects expanded in scope to encompass 
not only traditional data processing applications (payroll, for example) 
but also management and control, computer personnel began to encroach 
on the domains of operational managers. These managers resented the 
perceived impositions of the computer boys, regarding them as threats 
to their occupational status and authority.  50   

 The growing use of computerized  “ management information systems ”  
corresponded with a general shift in management practices in the postwar 
period. The Second World War had produced a series of  “ management 
sciences ”  — including operations research, game theory, and systems 
analysis — all of which offered a mathematical, scientifi c approach to 
business management. Many of this new breed of management consul-
tants were already familiar with the computer from their experience with 
the military and pushed heavily for information technological solutions 
to perceived management problems. And because these computer-based 
solutions were extremely capital intensive, they were generally pitched 
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to and approved by high-level executives — in many cases without any 
input from the midlevel managers whose work would be most affected 
by their implementation. 

 The combination of  “ professional management ”  and computerized 
management systems threatened to remove power from the hands of 
local managers. In a widely cited 1958 article in the  Harvard Management 
Review , Harold Leavitt and Thomas Whisler predicted that within thirty 
years, the combination of management science and information technol-
ogy would decimate the ranks of middle management and lead to the 
centralization of managerial control.  51   Whisler would later suggest that 
EDP specialists were the direct benefi ciaries of such centralization, which 
occurred at the expense of traditional managers. He quoted one insur-
ance executive who claimed that  “ there has actually been a lateral shift 
to the EDP manager of decision-making from other department man-
agers whose departments have been computerized. ”   52   Or as one Wharton 
MBA graduate warned his colleagues in a 1965 article,  “ As the EDP 
group takes on the role of a corporate service organization, able to cut 
across organizational lines, a revolution in the organizational power 
structure is bound to occur. ”   53   In a 1971 book describing  How Computers 
Affect Management , Rosemary Stewart argued how computer specialists 
mobilized the mystery of their technology to  “ impinge directly on a 
manager ’ s job and be a threat to his security or status. ”   54   

 In addition to this direct threat to their occupational authority, tradi-
tional managers had other reasons to resent EDP specialists.  “ Computer 
people tend to be young, mobile, and quantitatively oriented, and look 
to their peers both for company and for approval ”  suggested a 1969 
 Fortune  article explaining why  “ Computers Can ’ t Solve Everything ” : 
 “ Managers, on the other hand, are typically older and tend to regard 
computer people either as mere technicians or as threats to their position 
and status. ”   55   As the persistent demand for qualifi ed computer personnel 
pushed up salaries and created considerable opportunities for occupation 
mobility, computer personnel acquired a reputation — deserved or other-
wise — for being fl ighty, arrogant, and lacking in corporate loyalty. 

 As might be expected, the perceived impositions of the computer boys 
prompted a determined response from midlevel managers. By the end of 
the 1960s the management literature was full of reports of a growing 
crisis in  “ software management. ”  An infl uential 1968 report by McKinsey 
and Company suggested that most computer installations were unprofi t-
able — not because the technology was not effective but rather because 
 “ many otherwise effective top managements . . . have abdicated control 
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to staff specialists — good technicians who have neither the operation 
experience to know the jobs that need doing nor the authority to get 
them done right. ”   56   The secret to  “ unlocking the computer ’ s profi t poten-
tial, ”  according to the McKinsey report, was to restore the proper 
balance between managers and programmers:  “ Only managers can 
manage the computer in the best interests of the business. The companies 
that take this lesson to heart today will be the computer profi t leaders 
of tomorrow. ”   57   The combination of new software development meth-
odologies and stricter administrative controls promised to eliminate 
management ’ s dangerous dependency on individual programmers. 

 By accusing computer specialists of being self-interested peddlers of 
 “ whiz-bang ”  technologies, or referring to electronic data processing as 
 “ the biggest rip-off that has been perpetrated on business, industry, and 
government over the past 20 years, ”  managers were as much playing 
organizational politics as they were responding to any real crisis.  58   In 
their representation of programmers as shortsighted, self-serving techni-
cians, managers reinforced the notion that they were ill equipped to 
handle big picture, mission-critical responsibilities. By redefi ning contem-
porary understandings of the nature and causes of the software crisis, 
turning the focus of debate away from  “ fi nding and caring for good 
programmers, ”  and squarely toward the problem of programmer man-
agement, the McKinsey report (among many others) also relocated the 
focus of its solution, removing it from the domain of the computer spe-
cialist and placing it fi rmly in the hands of traditional managers.  59   

 The growing management frustration with software systems cannot, 
of course, be attributed solely to organizational politics. There is no 
question that in this same period the costs of software increased dramati-
cally. In the internal language of the discipline, an  “ inversion in the 
hardware-software cost ratio curve ”  occurred in the mid-1960s that 
clearly demanded a managerial response.  60   Put more simply, the cost of 
the actual computers went down at the same time that the cost of using 
them (developing and maintaining software) went up. By the middle of 
the decade the expenses associated with commercial data processing were 
dominated by software maintenance and programmer labor rather than 
equipment purchases. And since the management of labor fell under the 
traditional domain of the midlevel manager, these managers quickly 
developed a deep interest in the art of software development. 

 At the same time that the costs of software were visibly rising, a series 
of highly public software disasters — the software-related destruction of 
the Mariner I spacecraft, the IBM OS/360 debacle, and a devastating 
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criticism of contemporary EDP practices published by McKinsey and 
Company — lent credence to the popular belief that an industry-wide 
software crisis was imminent. The industry literature from this period is 
rife with scandals, complaints, laments, and self-recriminations. 

 This all suggests that by the mid-1960s, the rhetoric of crisis became 
fi rmly entrenched in the vernacular of commercial computing. All of the 
elements of the subsequent debates had been articulated: a widespread 
critique of the artisanal practices of programmers; the growing tension 
between the personnel demands of industry employers and the academic 
agenda of university computer science departments; emerging turf battles 
between technical experts and traditional corporate managers; and a 
shared perception that software was becoming increasingly expensive, 
expansive, infl uential, and out of control. The culmination of this period 
of tension was the 1968 North Atlantic Treaty Organization (NATO) 
Conference on Software Engineering, widely regarded as one of the 
seminal moments in the history of modern software development.  61   By 
defi ning the software crisis in terms of the discipline of software engineer-
ing, the NATO conference set an agenda that infl uenced many of the 
technological, managerial, and professional developments in commercial 
computing for the next several decades. In the interest of effi cient soft-
ware manufacturing, the black art of programming had to make way for 
the science of software engineering. 

 The NATO conference has achieved almost mythical status in the lit-
erature on software development. Not only did it deeply imprint the 
discourse of software crisis on the consciousness of both the computer 
industry and the broader public; it also introduced a compelling solution. 
The general consensus among historians and practitioners alike is that 
the NATO meeting marked  “ a major cultural shift ”  in the computing 
community, the moment when computer programming  “ started to make 
the transition from being a craft for a long-haired programming priest-
hood to becoming a real engineering discipline. ”   62   The call to integrate 
 “ good engineering principles ”  into the software development process has 
been the rallying cry of software developers from the late 1960s to the 
present.  63   By defi ning the software crisis in terms of the discipline of 
software engineering, the NATO conference set an agenda that substan-
tially infl uenced many of the technological, managerial, and professional 
developments in commercial computing for the next several decades. 

 And yet, despite the consensus reached at the NATO conference, the 
crisis continued to rage on. Although the specifi cs varied over time, the 
core issues remained the same: a perceived shortage of a certain type of 
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 “ qualifi ed ”  programmer; calls to replace  “ pseudo-artists [programmers] 
by engineers and to treat programming as a normal branch of engineer-
ing ” ; and rising costs and increased incidence of failure.  64   In 1987, the 
editors of  Computerworld  complained that  “ the average software project 
is often one year behind plan and 100% over budget. ”   65   Two years later 
the House Committee on Science, Space, and Technology released a 
report highly critical of the  “ shoot-from-the-hip ”  culture of the software 
industry. Later that same year the Pentagon launched a broad campaign 
to  “ lick its software problems ”  that included funds for a Software 
Engineering Institute and the widespread adoption of the ADA program-
ming language.  66   The list of critical reports, denunciations of contempo-
rary methodologies, and proposed silver bullet solutions continued to 
grow. And yet, in the words of one industry observer, by the mid-1980s 
 “ the software crisis has become less a turning point than a way of life. ”   67   
In the late 1990s the Y2K crisis called new public attention to this 
long-standing debate; in many respects, however, it added little to an 
already-established discourse. It is a rare article on software engineering 
that does not make at least a token reference to the ongoing crisis. The 
legacy of the past continues to shape the possibilities of the future. 

 Computing as a Human Activity 

 It is tempting, from the vantage point of the early twenty-fi rst century, 
to view the widespread adoption of the electronic computer as an uncom-
plicated and technologically determined process, driven by the growing 
informational demands of modern scientifi c, corporate, and governmen-
tal organizations along with the obvious superiority of the general-
purpose, programmable digital computer as a tool for managing and 
manipulating information. Indeed, from a modern perspective, it is dif-
fi cult to imagine a more obviously useful and desirable technology. The 
inherently protean nature of the electronic computer — its ability to be 
easily reconfi gured, via software, to accomplish an almost infi nite number 
of applications — combined with regular and impressive improvements in 
the underlying hardware makes the computerization of modern society 
seem, in retrospect, overdetermined, almost inevitable. 

 But like all great social and technological innovations, the computer 
revolution of the previous century didn ’ t just happen. It had to be made 
to happen, and it had to be made to happen by individual people, not 
impersonal processes. One of the most signifi cant and lasting insights of 
recent scholarship in the history of technology is that technological 
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innovation is as much driven by social processes as by inherent techno-
logical imperatives. That is to say, there is never a single, ideal type 
toward which any given technology will inevitably evolve. Specifi c tech-
nologies are developed to solve specifi c problems, for specifi c users, in 
specifi c times and places. How certain problems get defi ned as being most 
in need of a solution, which users are considered most important to 
design for, what other technological systems need to be provided or 
accounted for, who has the power to set certain technical and economic 
priorities — these are fundamentally social considerations that deeply 
infl uence the process of technological development. Nowhere are the 
social dimensions of technological development more apparent than in 
the history of computing. 

 If we take seriously the notion, foundational to the history of technol-
ogy, that the things that human beings build matter — that the vast tech-
nological systems that we construct to understand and manipulate our 
environment both refl ect our social, economic, and political values, and 
constrain them — then it is absolutely essential that we understand how 
these systems get built, by whom, and for what purposes. If there was 
indeed a computer revolution of the mid- to late twentieth century, then 
computer specialists were its primary revolutionaries; it behooves us, 
therefore, to understand something about who they were and what they 
hoped to accomplish. 



 

 2 

 When a programmer is good, he is very, very good. But when he is bad, he is 
horrid. 

  — IBM study on programmer performance, 1968 

 An Unexpected Revolution 

 One of the great myths of the computer revolution is that nobody saw 
it coming — particularly not the so-called computer experts. In one widely 
repeated but apocryphal anecdote, Thomas Watson, the legendary 
founder and longtime chair of the IBM Corporation, is said to 
have predicted as late as 1943 a total world market for  “ maybe fi ve 
computers. ”  The story of this wildly inaccurate forecast, alternatively 
attributed to Watson, the Harvard professor and computing pioneer 
Howard Aiken, or the Cambridge professor of computer science Douglas 
Hartree, among others, is generally mobilized as a kind of modern moral-
ity play, a cautionary tale about the dangers of underestimating the 
power and rapidity of technological progress.  1   Similar tales (similarly 
apocryphal) are told about a series of unimaginative computer industry 
executives — from Digital Equipment Corporation ’ s Ken Olsen to 
Microsoft ’ s Bill Gates — whose alleged lack of imagination prevented 
them from fully appreciating the transformative potential of computer 
technology. Such stories are a staple of popular histories of the electronic 
computer, which generally privilege dramatic change — sudden, unantici-
pated, and inexorable — over continuity. 

 In reality, many of the predictions made by contemporaries about the 
revolutionary potential of the electronic computer were, if anything, 
wildly optimistic. Almost before there were any computers — functional, 
modern, electronic digital stored-program computers — enthusiasts 
for the new technology were confi dently anticipating its infl uence on 
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contemporary society. As early as 1948 the cybernetician Norbert Wiener 
was predicting a  “ second industrial revolution ”  enabled by the electronic 
computer.  2   A year later, the computer consultant Edmund Berkeley, in 
his popular book  Giant Brains; or, Machines That Think , described a 
near future in which computers radically transform a broad range of 
human cognitive and occupational activities, including business, law, 
education, and medicine.  3   Despite the fact that electronic computers were 
in this period little more than glorifi ed calculating machines, the provoca-
tive image of the computer as a  “ giant ”  or  “ mechanical brain ”  quickly 
became established in the popular imagination. Within just a few years 
of the introduction of the fi rst commercial electronic computers, even 
mass-market publications like  Time  and  Newsweek  were predicting the 
use of computers in wide variety of commercial and scientifi c applica-
tions. Indeed, as Stephen Schnaars and Sergio Carvalho have recently 
suggested, far from underestimating its potential, during the 1950s the 
press in the United States  “ fell in love ”  with computer technology.  4   

 In the business literature in particular, the coming computer revolu-
tion was declared boldly, widely, and repeatedly.  5   The expectation was 
that electronic computers would soon become an integral part of the 
already large and thriving business machines industry. As  Fortune  maga-
zine confi dently predicted in a 1952 survey of the computer industry, 
 “ offi ce robots ”  were poised to  “ eliminate the human element ”  in many 
clerical operations, enabling massive gains in productivity.  6   While these 
wild predictions might have been unsettling to U.S. offi ce workers, they 
did suggest a rapidly growing market for computer technology. At the 
very least, the computer manufacturers were convinced that computers 
were the wave of the future; in the early 1950s, dozens of fi rms — among 
them such major players as IBM, GE, Burroughs, RCA, and NCR —
 invested heavily in this potential new growth market. 

 And grow the market did. In 1950 there were only 2 electronic com-
puters in use in the United States. By 1955 there were 240. Five years 
later, there were 5,400. By 1965, the grand total had grown to almost 
25,000, and by 1970, 75,000.  7   By the end of the 1960s, electronic com-
puters and their associated peripherals formed the basis of a $20 billion 
industry — an industry growing at an average rate of more than 27 
percent annually. Within two decades of the development of the fi rst 
electronic digital computer, the computer industry in the United States 
had emerged from nothing to become one of the largest and fastest-
growing sectors of the U.S. economy — a position that it would hold for 
the next several decades.  8   
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 Coevolving with this fl ourishing new information industry was a 
novel species of technical professional: the computer programmer. In 
1945 there were no computer programmers, professional or otherwise; 
by 1967 industry observers were warning that although there were at 
least a hundred thousand programmers working in the United States, 
there was an immediate need for at least fi fty thousand more.  9   
 “ Competition for programmers, ”  declared a contemporary article in 
 Fortune  magazine,  “ has driven salaries up so fast that programming has 
become probably the country ’ s highest paid technological occupation. 
 . . . Even so, some companies can ’ t fi nd experienced programmers at any 
price. ”   10   

 Of all the unanticipated consequences of the invention of the elec-
tronic computer in the mid-1940s, the most surprising was the sudden 
rise to prominence of the computer programmer. While the computer 
revolution itself might not have been unforeseen, the role of the computer 
programmer in bringing about that revolution certainly was. In all of the 
pioneering computer projects of this period, for example, programming 
was considered, at best, an afterthought. It was generally assumed that 
coding the computer would be a relatively simple process of translation 
that could be assigned to low-level clerical personnel. It quickly became 
apparent that computer programming, as it came to be known, was 
anything but straightforward and simple. Skilled programmers devel-
oped a reputation for creativity and ingenuity, and programming was 
considered by many to be a uniquely intellectual activity, a black art that 
relied on individual ability and idiosyncratic style. By the beginning of 
the 1950s, however, programming had been identifi ed as a key compo-
nent of any successful computer installation. By the early 1960s, the 
 “ problem of programming ”  had eclipsed all other aspects of commercial 
computer development. As the electronic computer increasingly moved 
out of the laboratory and into the marketplace, the centrality of pro-
gramming — and programmers — became even more apparent. 

 Originally envisioned as little more than glorifi ed clerical workers, 
programmers quickly assumed a position of power within many organi-
zations that was vastly disproportionate to their offi cial position in the 
organizational hierarchy. Defi ned by their mastery of the highest of high 
technology, they were often derided for their adherence to artisanal 
practices. Although associated with the emerging academic discipline of 
computer science, they were never widely considered to be either scien-
tists or engineers. Neither laborers nor professionals, they defy tradi-
tional occupational categorizations. The ranks of the elite programmers 
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included both high school dropouts and ex-PhD physicists. Even to this 
day, their occupational expertise remains diffi cult to clearly defi ne or 
delineate. For example, the term programmer, which was widely used as 
a generic catchall description of a computing specialist in the 1960s, 
encompasses such a wide range of occupational categories — from the 
narrow and highly technical coder to the elite and infl uential  “ systems 
man ”  — that it is more useful as a rhetorical device than as an analytic 
category. 

 The questions of what programming was — as an intellectual and 
occupational activity — and where it fi t into traditional social, academic, 
and professional hierarchies, were actively negotiated during the decades 
of the 1950s and 1960s. Programmers were well aware of their tenuous 
professional position, and they struggled to prove that they possessed 
a unique set of skills and training that allowed them to lay claim to 
professional autonomy. This chapter traces the history of computer 
programming from its origins as low-status clerical work (often per-
formed by women) into one of the highest-paid technical occupations of 
the late 1950s and early 1960s. The focus is on the emergence of the 
computer programmer as a highly valued, well-compensated, and largely 
autonomous technical expert.   

 The Origins of Computer Programming 

 In the eyes of a computer scientist, all computers are created equal. That 
is to say, any true computing machine can, by defi nition, compute any-
thing that is computable. Or to state the case a little more clearly, any 
device worthy of the name computer can be programmed to perform 
any task that can be performed by any other computer. This means that 
in theory at least, all computers are functionally equivalent: any given 
computer is but a specifi c implementation of a more general abstraction 
known as a Universal Turing Machine. 

 It is the Platonic ideal of the Universal Turing Machine, and not the 
messy reality of actual physical computers, that is the true subject of 
modern theoretical computer science; it is only by treating the computer 
as an abstraction, a mathematical construct, that theoretical computer 
scientists lay claim to their fi eld being a legitimate  scientifi c , rather than 
merely a technical or engineering, discipline. The story of this remarkable 
self-construction and its consequences is the subject of chapter 5. 

 The idealized Universal Turing Machine is, of course, only a concep-
tual device, a convenient fi ction concocted by the mathematician Alan 
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Turing in the late 1930s as a means of exploring a long-standing puzzle 
in theoretical mathematics known as the  Entscheidungsproblem . In order 
to facilitate his exploration, Turing invented a new tool, an imaginary 
device capable of performing simple mechanical computations. Each 
Turing Machine, which consisted of only a long paper tape along with 
a mechanism for reading from and writing to that tape, contained a table 
of instructions that allowed it to perform a single computation. As a 
computing device, the Turing Machine is deceptively simple; as a con-
ceptual abstraction, it is extraordinarily powerful. As it turns out, the 
table of instructions for any Turing Machine can be rewritten to contain 
the instructions for building any other Turing Machine. The implication, 
as articulated in the Church-Turing thesis, is that every Turing Machine 
is a Universal Turing Machine, and by extension, every computing 
machine is essentially equivalent. 

 In the real world, the appealingly egalitarian abstractions of the 
Church-Turing thesis quickly break down in the face of the temporal 
and spatial constraints of the physical universe. To implement even the 
simplest computations on an archetypal paper tape – based Turing 
Machine, for example, would require an enormous and prohibitive 
amount of resources. In fact, the fi gures involved quickly become absurdly 
Saganesque: the number of miles of paper tape required would be more 
than the total number of atoms in the universe, and the amount of time 
required would be more than all of known cosmological history. To the 
emerging discipline of theoretical computer scientists, perhaps, none of 
these practical realities were particularly signifi cant. But to working 
computer engineers and programmers, such constraints were a daily 
reality, even in the era of electronic computing. Extracting acceptable 
performance and reliability out of the early electronic computers required 
an enormous degree of messy tinkering, local knowledge, and idiosyn-
cratic technique. The developing tension between the messy tinkering of 
real-world computing and the clean abstractions of academically minded 
computer scientists would come to defi ne one of the sharp divides within 
the ranks of the larger computing community. The struggle between 
theory and practice would become a major challenge for academics and 
practitioners alike, and would refl ect itself in the structure of program-
ming languages, professional societies, and academic curricula. 

 Conventional histories of computer programming tend to confl ate 
programming as a vocational activity with computer science as an aca-
demic discipline. In many of these accounts, programming is represented 
as a subdiscipline of formal logic and mathematics, and its origins are 
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identifi ed in the writings of early computer theorists Alan Turing and 
John von Neumann. The development of the discipline is evaluated in 
terms of advances in programming languages, formal methods, and 
generally applicable theoretical research. This purely intellectual approach 
to the history of programming, however, conceals the essentially craftlike 
nature of early programming practice. The fi rst computer programmers 
were not scientists or mathematicians; they were low-status, female 
clerical workers and desktop calculator operators. The origins of pro-
gramming as a profession lie in the commercial traditions of machine-
assisted, manual computation, not in the mainstream of theoretical 
mathematics. 

 The history of vocational computer programming begins, in the United 
States at least, with the construction of the ENIAC in summer 1945. 
Many historians have identifi ed the ENIAC as the fi rst true electronic 
computer. The question of  “ which was the fi rst computer ”  is surprisingly 
diffi cult to answer. As Michael Williams suggests in a recent volume 
edited by Raul Rojas and Ulf Hashagen called  The First Computers  (note 
the crucial use of the plural), any particular claim to the priority of 
invention must necessarily be heavily qualifi ed: if you add enough adjec-
tives you can always claim your own favorite.  11  And indeed, the ENIAC 
has a strong claim to this title: not only was it digital, electronic, and 
programmable (and therefore looked a lot like a modern computer) but 
the ENIAC designers — John Mauchly and J. Presper Eckert — went on to 
form the fi rst commercial computer company in the United States. The 
ENIAC and its commercial successor, the UNIVersal Automatic Computer 
(UNIVAC), were widely publicized as the fi rst of the  “ giant brains ”  that 
presaged the coming computer age. But even the ENIAC had its precur-
sors and competitors. For example, in the 1930s, a physicist at Iowa 
State University, John Atanasoff, had worked on an electronic computing 
device and had even described it to Mauchly. Others were working on 
similar devices. During the Second World War in particular, a number 
of government and military agencies, both in the United States and 
abroad, had developed electronic computing devices, many of which also 
have a plausible claim to being if not  the  fi rst computer, then at least  a  
fi rst computer. 

 There are two major innovations in computing that the ENIAC 
embodied. The fi rst was that it was electronic. Earlier computing devices, 
including tabulating machines, were either mechanical or electrome-
chanical, meaning that they contained numerous moving parts. These 
moving parts were complicated to manufacture, diffi cult to maintain, 
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and above all relatively slow. By replacing them with completely elec-
tronic components, Eckert and Mauchly were able to dramatically speed 
up the process of computation. Whereas the electromechanical Harvard 
Mark I (completed in 1943), which was of similar complexity to the 
ENIAC, could perform 2 or 3 additions per second, and a multiplication 
every six seconds, the ENIAC (completed just three years later) could 
perform 5,000 additions per second, or 333 multiplications. Although 
this extraordinary improvement in performance came at the price of 
increased cost and complexity — when completed the ENIAC weighed 
nearly thirty tons, occupied an entire room, and required more than 
eighteen thousand expensive and unreliable vacuum tubes — by the end 
of the 1940s it was clear that electronic computing was the wave of 
the future. 

 The second revolutionary feature of the ENIAC was its ability to be 
programmed. This meant that the machine could be reconfi gured to 
perform different types of computation. In the case of the ENIAC the 
machine had to be physically wired, or  “ set up, ”  as the process was 
called at the time, to compute specifi c functions — a complicated process 
that could take as long as two days.  12   Within a short time, however, the 
ENIAC was modifi ed to allow it to be  “ programmed ”  automatically 
using punch cards.  13   In the meantime, the physicist and mathematician 
von Neumann had published his now-infamous  First Draft of a Report 
on the EDVAC , which provided a description of the computer that was 
to be heir to the ENIAC.  14   This successor machine, which was called the 
Electronic Discrete Variable Automatic Computer (EDVAC), was the 
world ’ s fi rst stored-program computer. Unlike previous programmable 
machines, the EDVAC stored-program computer did not distinguish 
between data and instructions. This allowed it to modify its own instruc-
tions, which effectively allowed the computer to program itself. This not 
only allowed for greater fl exibility in programming but also paved the 
way for the development of assemblers, compilers, and other program-
ming tools. The concept of the stored-program computer was so signifi -
cant that it has come to defi ne the essence of the modern computer; today 
a device is only considered to be a true computer if it is a stored-program 
machine. 

 And this is what brings us back to the centrality of software to the 
history of computing: it was not so much the original invention of the 
electronic computer that launched the computer revolution but the later 
discovery that such computers could be made programmable. To be sure, 
prior to the electronic computer there were machines that could be 
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controlled automatically. A Jacquard loom, for instance, used a series of 
steel cards, as many as twenty thousand at a time, to control the weaving 
of patterns on fabric.  15   Tabulating machines could also be programmed 
to a certain degree by rewiring their components. But the combination 
of speed and fl exibility provided by the combination of an electronic 
digital computer and well-designed software was unprecedented. The 
electronic digital computer would eventually become a universal machine 
whose potential applications were limited only by the imagination of its 
programmers. 

 Therein lies the rub: the very aspect of electronic computing that made 
it so powerful and appealing was the aspect of least interest to its original 
designers. Computer programming began as little more than an after-
thought in most of the pioneering wartime electronic computing projects, 
an offhand postscript to what was universally regarded as the much more 
pressing challenge of hardware development. 

 There were certainly legitimate reasons for privileging hardware 
over software; simply managing to keep the early electronic computers 
running without failure for more than a few minutes was an engi-
neering challenge of heroic proportions. As was mentioned earlier, 
the core computational units of the ENIAC machine relied on more 
than eighteen thousand vacuum tubes, each of which had an average 
lifespan of just three thousand hours. This meant that statistically speak-
ing, six of these tubes would fail every hour; or in other words, at least 
one tube failed every ten minutes. Figuring out how to control the rate 
of failure of vacuum tubes was one of the great contributions of the 
ENIAC ’ s brilliant chief engineer, J. Presper Eckert. Similarly, the con-
struction of mercury delay lines, which were an early form of short-term 
memory used in the Cambridge University EDSAC, the world ’ s fi rst 
working stored-program computer, required the precise coordination of 
acoustical waves moving at 1,450 meters per second. There is no ques-
tion that overcoming the engineering challenges posed by the electronics 
of electronic computing was essential to the further development of 
computer technology. 

 But solving the programming hurdles was equally vital. Although in 
the decades after the ENIAC we have come to regard the electronic 
computer as an almost infi nitely protean and useful machine, this is 
largely a refl ection of the successes of software. In the immediate postwar 
period even programmable computers like the ENIAC were considered 
impressive but limited. It was not hard to imagine that the military and 
the government might have a need for a small number of such devices, 



The Black Art of Programming  35

yet few would have predicted how rapidly the commercial market for 
computers would expand over the course of the next decade. 

  “ Glorifi ed Clerical Workers ”  

 The low priority given to programming was refl ected in who was assigned 
to the task. Although the ENIAC was developed by academic researchers 
at the University of Pennsylvania ’ s Moore School of Electrical Engineering, 
it was commissioned and funded by the Ballistics Research Laboratory 
(BRL) of the U.S. Army. Located at the nearby Aberdeen Proving Grounds, 
the BRL was responsible for the development of the complex fi ring tables 
required to accurately target long-range ballistic weaponry. Hundreds of 
these tables were required to account for the infl uence of highly variable 
atmospheric conditions (air density, temperature, etc.) on the trajectory 
of shells and bombs. Prior to the arrival of electronic computers, these 
tables were calculated and compiled by teams of human  “ computers ”  
working eight-hour shifts, six days a week. From 1943 onward, essen-
tially all of these computers were women, as were their immediate super-
visors. The more senior women (those with college-level mathematical 
training) were responsible for developing the elaborate  “ plans of compu-
tation ”  that were carried out by their fellow computers. 

 In June 1945, six of the best human computers at Aberdeen were hired 
by the leaders of the top secret  “ Project X ”  — the U.S. Army ’ s code name 
for the ENIAC project — to set up the ENIAC machine to produce bal-
listics tables. Their names were Kathleen McNulty, Frances Bilas, Betty 
Jean Jennings, Elizabeth Snyder Holberton, Ruth Lichterman, and 
Marlyn Wescoff. Collectively they were known as  “ the ENIAC girls. ”   16   
Today the ENIAC girls are often considered the fi rst computer program-
mers. In the 1940s, they were simply called coders. 

 The use of the word coder in this context is signifi cant. At this point 
in time the concept of a program, or of a programmer, had not yet been 
introduced into computing. Since electronic computing was then envi-
sioned by the ENIAC developers as  “ nothing more than an automated 
form of hand computation, ”  it seemed natural to assume that the primary 
role of the women of the ENIAC would be to develop the plans of com-
putation that the electronic version of the human computer would 
follow.  17   In other words, they would code into machine language the 
higher-level mathematics developed by male scientists and engineers. 
Coding implied manual labor, and mechanical translation or rote tran-
scription; coders were obviously low on the intellectual and professional 
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status hierarchy. It was not until later that the now-commonplace title 
of programmer was widely adopted. The verb  “ to program, ”  with its 
military connotations of  “ to assemble ”  or  “ to organize, ”  suggested a 
more thoughtful and system-oriented activity.  18   Although by the mid-
1950s the word programmer had become the preferred designation, for 
the next several decades programmers would struggle to distance them-
selves from the status (and gender) connotations suggested by coder. 

 The fi rst clear articulation of what a programmer was and should be 
was provided in the late 1940s by Goldstine and von Neumann in a 
series of volumes titled  Planning and Coding of Problems for an Electronic 
Computing Instrument . These volumes, which served as the principal 
(and perhaps only) textbooks available on the programming process at 
least until the early 1950s, outlined a clear division of labor in the pro-
gramming process that seems to have been based on the practices used 
in programming the ENIAC. Goldstine and von Neumann spelled out a 
six-step programming process: (1) conceptualize the problem mathemati-
cally and physically, (2) select a numerical algorithm, (3) do a numerical 
analysis to determine the precision requirements and evaluate potential 
problems with approximation errors, (4) determine scale factors so that 
the mathematical expressions stay within the fi xed range of the computer 
throughout the computation, (5) do the dynamic analysis to understand 
how the machine will execute jumps and substitutions during the course 
of a computation, and (6) do the static coding. The fi rst fi ve of these 
tasks were to be done by the  “ planner, ”  who was typically the scientifi c 
user and overwhelmingly was frequently male; the sixth task was to be 
carried out by coders. Coding was regarded as a  “ static ”  process by 
Goldstine and von Neumann — one that involved writing out the steps 
of a computation in a form that could be read by the machine, such as 
punching cards, or in the case of the ENIAC, plugging in cables and 
setting up switches. Thus, there was a division of labor envisioned that 
gave the highest-skilled work to the high-status male scientists and the 
lowest-skilled work to the low-status female coders. 

 As the ENIAC managers and coders soon realized, however, control-
ling the operation of an automatic computer was nothing like the process 
of hand computation, and the Moore School women were therefore 
responsible for defi ning the fi rst state-of-the-art methods of program-
ming practice. Programming was an imperfectly understood activity in 
these early days, and much more of the work devolved on the coders 
than anticipated. To complete their coding, the coders would often have 
to revisit the underlying numerical analysis, and with their growing skills, 
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some scientifi c users left many or all six of the programming stages to 
the coders. In order to debug their programs and distinguish hardware 
glitches from software errors, they developed an intimate knowledge of 
the ENIAC machinery.  “ Since we knew both the application and the 
machine, ”  claimed ENIAC programmer Betty Jean Jennings,  “ as a result 
we could diagnose troubles almost down to the individual vacuum tube. 
Since we knew both the application and the machine, we learned to 
diagnose troubles as well as, if not better than, the engineers. ”   19   In a few 
cases, the local craft knowledge that these female programmers accumu-
lated signifi cantly affected the design of the ENIAC and subsequent 
computers. ENIAC programmer Betty Holberton recalled one particu-
larly signifi cant episode: 

 In the fall of  ‘ 46 when the new idea of wiring up the ENIAC with sort of semi-
permanent wiring with instruction codes [emerged] . . . a number of us worked 
with Dr. von Neumann in setting up this code. . . . We felt we wouldn ’ t need 
that many settings for all of the instructions. We sort of worked along for a 
while. But to my astonishment, he never mentioned a stop instruction. So I did 
coyly say,  “ Don ’ t we need a stop instruction in this machine? ”  He said,  “ No we 
don ’ t need a stop instruction. We have all these empty sockets here that just let 
it go to bed. ”  And I went back home and I was really alarmed. After all, we had 
debugged the machine day and night for months just trying to get jobs on it. 

 So the next week when I came up with some alterations in the code, I 
approached him again with the same question. He gave me the same answer. 
Well I really got red in the face. I was so excited and I really wanted to tell him 
off. And I said,  “ But Dr. von Neumann, we are programmers and we sometimes 
make mistakes. ”  He nodded his head and the stop order went in.  20   

 The deference with which Holberton proposes her tentative suggestion 
and von Neumann ’ s initial patronizing dismissal are indicative of the 
status of the programmers relative to that of their scientifi c and engineer-
ing colleagues. Von Neumann ’ s eventual acceptance refl ects his recogni-
tion of the importance of local craft knowledge and an increasing 
acceptance of the value of programming expertise. Given that the pro-
grammers  “ were often able to point out to a technician which individual 
vacuum tube needed to be changed, ”  they were able to interact much 
more with the computer engineers and technicians than was probably 
originally intended. This had the positive effect of convincing the ENIAC 
managers that programmers were essential to the success of the overall 
project and that well-informed, technically profi cient, high-quality pro-
grammers were especially indispensable. 

 Thus, what was supposed to have been a low-level skill, a static activ-
ity, prepared these women coders well for careers as programmers, and 
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indeed, those who did pursue professional careers in computing often 
became programmers and thrived at it. A few women, Grace Hopper 
and Betty Holberton of UNIVAC as well as Ida Rhodes and Gertrude 
Blanche of the National Bureau of Standards in particular, continued to 
serve as leaders in the programming profession. But despite the success 
of the ENIAC women in establishing a unique occupational niche for 
the programmer within the ENIAC community, programming continued 
to be perceived as marginal to the central business of computer develop-
ment. By nature of their gender (female) and education (nonscientifi c and 
nonengineering), the early programmers remained isolated from their 
engineering and scientifi c managers. If software was admitted to be 
important, hardware was considered to be essential. 

 The confl ation of programming and coding, and the association of 
both with low-status clerical labor, indicated the ways in which early 
software workers were gendered female. In the ENIAC project, of course, 
the programmers actually were women. In this respect programming 
inherited the gender identity of the human computing projects in which 
it originated. But the suggestion that coding was low-status clerical work 
also implied an additional association with female labor. As Margery 
Davies, Sharon Strom, and Elyce Rotella have described, clerical work 
had, by the second decade of the twentieth century, become largely 
feminized.  21   This was particularly true of clerical occupations that were 
characterized by the rigid division of labor and the introduction of new 
technologies. Some of these occupations carried over directly into the 
computer era: the job of keypunch operator, for example, had been 
thoroughly feminized long before it became associated with electronic 
data processing.  22   And although today we do not associate the work 
of keypunchers with the work of the computer programmer, in the 
1950s and 1960s the differentiation between keypunch operators and 
other forms of computer work was not always clear. In any case, the 
historical pattern of the nineteenth and twentieth centuries has been that 
low-status occupations, with the exception of those requiring certain 
forms of physical strength, have often become feminized. In terms of the 
ENIAC, for example, the telephone switchboardlike appearance of the 
ENIAC programming cable-and-plug panels reinforced the notion that 
programmers were mere machine operators, that programming was 
more handicraft than science, more feminine than masculine, more 
mechanical than intellectual. The programmer/coder continued to 
occupy an uncertain position within the nascent association of computer 
professionals. 
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 Throughout the next several decades programmers struggled to dis-
tance themselves from the status (and gender) connotations suggested by 
coder. An early manuscript version of the UNIVAC  Introduction to 
Programming  manual, for instance, highlighted the distinction between 
the managerial programmer and the technical coder:  “ In problem prepa-
ration, the detailed work may be accomplished by two individuals. The 
fi rst, who may be called the  ‘ programmer, ’  studies the problem, deter-
mines the appropriate method of solution, and prepares the fl ow chart. 
This person must be well versed in the particular fi eld in which the 
problem lies, and should also be able to fully exploit the fl exibility and 
versatility of the UNIVAC system. The second person, referred to as the 
 ‘ coder, ’  need only be familiar with the technique of reducing the fl ow 
chart to the specifi c instructions, or coding, required by the UNIVAC to 
solve the problem. ”   23   By differentiating between these two tasks, one 
clerical and the other analytic, the manual reinforced the Goldstine and 
von Neumann model of the programmer. In this model the real business 
of programming was analysis: the actual coding aspect of programming 
was trivial and mechanical.  “ Problems must be thoroughly analyzed to 
determine the many factors that must be taken into consideration, ”  sug-
gested the same preliminary UNIVAC manual, but once this analysis had 
been completed, the  “ pattern of the [programming] solution would be 
readily apparent. ”  Although this division of the programming process 
into two distinct and unequal phases did not survive into the published 
version of the UNIVAC documentation, its early inclusion highlighted 
the persistence of the programmer/coder distinction. 

 The Art of Programming 

 Although they continued to struggle with questions of status and iden-
tity, by the end of the 1950s computer programmers were generally 
considered to be anything but routine clerical workers. A Price Waterhouse 
report from 1959 titled  Business Experience with Electronic Computers  
argued that  “ high quality individuals are the key to top grade program-
ming. Why? Purely and simply because much of the work involved is 
exacting and diffi cult enough to require real intellectual ability and above 
average personal characteristics. ”   24   In fact, the study ’ s authors observed 
that  “ the term  ‘ programmer ’  is . . . unfortunate since it seems to indicate 
that the work is largely machine oriented when this is not at all the 
case. . . . [T]raining in systems analysis and design is as important to a 
programmer as training in machine coding techniques; it may well 
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become increasingly important as systems get more complex and coding 
becomes more automatic. ”   25   Although Goldstine and von Neumann had 
envisioned a clear division of labor between planners and coders, in 
reality this boundary became increasingly indistinct. The clear implica-
tion of recent experience, in both scientifi c computation and business 
data processing, was that programmers should be given more responsi-
bility for design and analysis, the idea that coding could be left to less-
experienced or lower-grade personnel was  “ erroneous, ”  and  “ the human 
element is crucial in programming. ”   26   Indeed, by the mid-1950s, a new 
model for programming had emerged that emphasized individual exper-
tise and creativity. During this period computers remained a primarily 
scientifi c and military technology, and computer programming as a dis-
cipline retained a close association with the practice of mathematics. The 
limitations of early hardware devices usually meant that a simple pro-
gramming problem could quickly turn into a research excursion into 
algorithm theory and numerical analysis. Computer programmers devel-
oped a reputation for creativity and ingenuity. Contemporary storage 
devices were so slow and had such little capacity that programmers had 
to develop great skill and craft knowledge to fi t their programs into the 
available memory space. As John Backus (the IBM researcher best known 
as the inventor of the FORTRAN programming language) would later 
describe the situation,  “ Programming in the 1950s was a black art, a 
private arcane matter. . . . [E]ach problem required a unique beginning 
at square one, and the success of a program depended primarily on the 
programmer ’ s private techniques and inventions. ”   27   

 The notion that programming was a black art pervades the literature 
from this period. There are several reasons why programming was so 
diffi cult. To begin with, the programmer had to develop an algorithm 
suitable to the problem at hand. Since the primary purpose of the 
earliest computers was to produce solutions to complex mathematical 
functions that could not be solved analytically, these programs necessar-
ily required skill in numerical analysis. Numerical analysis is the set of 
tools that mathematicians have developed to provide approximate solu-
tions to otherwise-insoluble equations. This process of analysis was itself 
something of an art form: numerical solutions always involved a 
compromise between speed and accuracy — even when using the fastest 
computers. Choosing the right approximation required the programmer 
to balance acceptable error against the specifi c limitations of a given 
machine. 
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 Figure 2.1 
 RCA advertisement, 1962. 
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   For problems that were not mathematical in nature, developing 
an appropriate algorithm could be even more challenging. This was a 
particular problem for the corporate users of computers. Even the sim-
plest business activities can be diffi cult, if not impossible, to describe in 
terms of the limited instruction set understood by a computer. 
Programmers fi rst had to thoroughly understand the activity in question, 
including all of its exceptional cases, imprecise terms, and potential 
errors. Not only was this process inherently diffi cult but it also frequently 
involved social and analytic skills foreign to the average programmer. 
 “ Because the background of the early programmers was acquired mainly 
in mathematics or other scientifi c fi elds, they were used to dealing with 
well-formulated problems and they delighted in a sophisticated approach 
to coding their solutions, ”  noted the Price Waterhouse report.  “ When 
they applied their talents to the more sprawling problems of business, 
they often tended to underestimate the complexities and many of their 
solutions turned out to be oversimplifi cations. Most people connected 
with electronic computers in the early days will remember the one- or 
two-page fl ow charts which were supposed to cover the intricacies of the 
accounting aspects of a company ’ s operations. ”   28   Most companies 
attempted to differentiate the more social and organizational processes 
essential to algorithm development, often referred to as system analysis, 
from the more technical procedures associated with programming. 
Inevitably the two would bleed into one another, however.  29   

 Even after a suitable algorithm had been selected, the process of 
transforming that algorithm into a form that could be understood by a 
computer was challenging. Most electronic computers represented 
numbers internally in binary form, and so conversion routines from 
decimal to binary (and back) had to be developed. If the machine was a 
fi xed-point machine, all of the numbers also scaled to stay within the 
bounds of the fi xed-point arithmetic units. Since in a stored-program 
computer both programs and data were stored in the same memory, it 
was possible to confuse the two and create strange errors that were 
almost impossible to trace. Most of these machines had limited debug-
ging capabilities (if any) and complicated mechanisms for accessing 
subroutine libraries. Programmers had to use obscure techniques to 
optimize for size rather than for legibility or ease of maintenance due 
to the limited amount of available memory. In order to coax every 
bit of speed out of a relatively slow storage device such as a rotating 
memory drum, programmers would carefully organize their coded 
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instructions in such a way as to assure that each instruction passed 
by the magnetic read head in just the right order and at just the right 
execution time.  30   Only the best programmers could hope to develop 
applications that worked at acceptable levels of usability and perfor-
mance. They had to cultivate a series of idiosyncratic and highly indi-
vidual craft techniques designed to overcome the limitations of primitive 
hardware.  31   

 In his memoir describing  “ Programming in America in the 1950s, ”  
John Backus offered an especially detailed example of the many ways in 
which a programmer project could run into problems: 

 Some idea of the machine diffi culties facing early programmers can be had by a 
brief survey of a few of the bizarre characteristics of the Selective Sequence 
Electronic Calculator (SSEC). 

 This vast machine (circa 1948 – 1952) had a store of 150 words; instructions, 
constants, and tables of data were read from punched tapes the width of a 
punched card; the ends of an instruction tape were glued together to form a 
paper loop, which was then placed on one of 66 tape-reading stations. The SSEC 
could also punch intermediate data into tapes that could subsequently be read 
by a tape-reading station. 

 One early problem strained the SSEC ’ s capacity to the limit. The computation 
was divided into three phases; in the fi rst phase a tape of many yards of inter-
mediate results was punched out; during the second phase this tape was glued 
into a loop and mounted on a tape-reading station so that in the third phase it 
could be read many times. 

 The problem ran successfully through many cycles of these three phases, but 
then a mysterious error began to appear and disappear regularly in the third 
phase. For a long time no one could account for it. 

 Finally, the large pile of intermediate data tape was pulled from the bin below 
its reading station and a careful inspection revealed that it had been glued to 
form a Mobius strip rather than a simple loop. The result was that on every 
second revolution of the tape each number would be read in reverse order.  32   

 As this anecdote suggests, writing programs under these constraints was 
a time-consuming and error-prone process. One the oldest-surviving 
computer programmers, a 126-line debugging tool developed for the 
Cambridge EDSAC machine (notable as being the fi rst working stored-
program computer in the world) was recently discovered to have con-
tained more than twenty errors.  33   Because the author of the program, 
the mathematical physicist Maurice Wilkes, literally wrote the book on 
computer programming in the early 1950s (his 1951  Preparation of 
Programs for an Electronic Digital Computer  is considered the fi rst 
widely available textbook on programming), we can assume that this 
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was not an unrepresentative example.  34   As Wilkes later recalled in his 
memoirs, early on in the life of the EDSAC, its programmers had  “ begun 
to realize that it was not so easy to get a program right as had at one 
time appeared. ”  It was with some shock and dismay that he himself 
realized that  “ a good part of the remainder of my life was going to be 
spent in fi nding errors in my own programs. ”   35   The tedious process of 
identifying and removing these errors, known as  “ debugging, ”  was time-
consuming, diffi cult, and intellectually unfulfi lling. As much as one-half 
of the budget of a large programming project could be spent on testing 
and debugging — activities that were perceived as being low-status and 
unpleasant.  36   

 As will be described in subsequent chapters, improvements in com-
puter hardware along with the development of compilers and other 
programming utilities would help alleviate some of the challenges associ-
ated with coding. But as many FORTRAN and COBOL programmers 
would soon realize, the dull and mechanical aspects of software develop-
ment did not disappear with the advent of compilers and automatic 
programming languages. Nor did the intellectual challenges associated 
with analysis and design. Mistakes were inevitable, even from the most 
profi cient of programmers. In one widely recited and tragic (and possibly 
apocryphal) example, a minor transcription error in control software for 
the Mariner I probe to Venus caused the spacecraft to veer off-course 
four minutes after takeoff, forcing NASA to destroy it remotely. The 
mistake that the programmer allegedly made was to replace the 
FORTRAN statement 

 DO 3 I = 1,3 

 with 

 DO 3 I = 1.3 

 Instead of looping through a series of statements, as the code in the fi rst 
version would have required, the latter form was interpreted by the 
FORTRAN compiler as the assignment of a variable. That the loss of 
the Mariner I could be caused by such a seemingly trivial error high-
lighted for many observers the central importance of employing only the 
most skilled programmers.  37   This perception holds true regardless of 
whether or not the Mariner I anecdote is factually accurate. During the 
late 1950s and 1960s such stories of software-related disaster were a 
staple of the popular press, and helped set the state for the emergence 
of a full-blown software crisis in the late 1960s. 
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 Building Castles in the Air 

 In describing his experiences as the project manager of the single-largest 
and most expensive software development effort ever undertaken in the 
history of the IBM Corporation, the noted computer scientist Frederick 
Brooks provided a curiously literary portrayal of the computer program-
mer:  “ The programmer, like the poet, works only slightly removed from 
pure-thought stuff. He builds his castles in the air, from air, creating by 
exertion of the imagination. ”   38   

 That a technical manager in a conservative corporation should use 
such lofty language in reference to such a seemingly prosaic occupation 
like programming is striking yet not unusual. But Brooks meant his liter-
ary metaphors to be taken seriously. Even more so than the poet, he 
argued, the programmer worked in the medium of the imagination, using 
words to bring to life grand conceptual structures. In fact, in the case of 
the programmers the relationship between words and reality was almost 
magical:  “ One types the correct incantation on a keyboard, and a display 
screen comes to life, showing things that never were nor could be. ”  And 
like the magical incantation, the computer program demanded perfec-
tion:  “ If one character, one pause, of the incantation is not strictly in 
proper form, the magic doesn ’ t work. ”  This is what made programming 
so diffi cult, he suggested:  “ Human beings are not accustomed to being 
perfect, and few areas of human activity demand it. Adjusting to the 
requirement for perfection is, I think, the most diffi cult part of learning 
to program. ”   39   

   Like many of his contemporaries, Brooks was struggling to under-
stand why software development projects seemed almost impossible 
to manage using conventional management techniques. In the late 
1960s, Brooks had been the manager of the IBM OS/360 development 
project. The OS/360 operating system was the cornerstone of IBM ’ s 
larger System/360 strategy, which consolidated IBM ’ s computer product 
lines into a single range of hardware- and software-compatible machines. 
Although the System/360 turned out to be a tremendous success for 
IBM, it had almost been derailed by problems with the development 
of OS/360. In the years between 1963 and 1966, over fi ve thousand 
staff years of effort went into the design, construction, and documenta-
tion of OS/360. When it was fi nally delivered in 1967, nine months 
late and riddled with errors, it had cost the IBM Corporation half a 
billion dollars — four times the original budget, and the single-largest 
expenditure in company history. And according to Brooks, the personal 
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 Figure 2.2 
 Service Bureau Corporation advertisement, 1964. 
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toll that OS/360 took on IBM ’ s software personnel was perhaps even 
more signifi cant. 

 The highly publicized failure of the OS/360 project served as a dra-
matic illustration of the shortcomings of the traditional management 
methods in software development. It was in  The Mythical Man-Month , 
his postmortem analysis of the OS/360 disaster, that Brooks fi rst com-
pared programming to poetry. His larger point was that computer pro-
gramming, as an inherently artistic activity, was resistant to most forms 
of industrial production. Take, for example, his own experience with 
OS/360: when faced with serious schedule slippages, quality problems, 
and unanticipated changes in scope, he and the other project leaders had 
done what traditional manufacturing managers were accustomed to 
doing, which was to add more resources. The only noticeable result was 
that the project fell more and more behind schedule. 

 After diagnosing the disease, Brooks proposed its cure. If skilled 
programmers were the sine qua non of quality software development, 
they must be elevated to the center of the production process. The 
remainder of  The Mythical Man-Month  is an attempt to fi gure out 
how to harness the power of highly artistic programmer/poets to the 
demands of industrial-strength software development. The development 
methodology that Brooks outlined was never widely adopted in industry, 
but his larger argument about the inherently creative nature of program-
ming was.  The Mythical Man-Month  quickly became one of the most 
widely read and oft-quoted references on the practice of software 
development.   

 There is no doubt that in the formative years of commercial computing, 
there was widespread dissension within the programming community 
over the goals and direction of the programming profession. Computer 
scientists, corporate employers, and vocational programmers disagreed 
about the proper relationship between formal and idiosyncratic tech-
nique, local knowledge and generally applicable theory. What was largely 
agreed on, however, was that in the early 1960s, programming was  “ not 
yet a science, but an art that lacks standards, defi nitions, agreement on 
theories and approaches. ”   40   This popular perception of computer pro-
gramming as a poorly understood, idiosyncratic, and creative process 
defi ned the discipline as it emerged in the 1950s, and continues to infl u-
ence the culture and practice of programming even today. The notion 
that programming was an art served as both a resource and a source of 
much anxiety and discomfort for programmers. 
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 For all of these reasons and more, programming in the 1950s acquired 
a reputation for being incomprehensible to all but a small set of extremely 
talented insiders. As John Backus would later describe it,  “ Each [pro-
gramming] problem required a unique beginning at square one, and the 
success of a program depended primarily on the programmer ’ s private 
techniques and invention. ”   41   Techniques developed for one application 
or installation could not be easily adapted for other purposes. There were 
few useful or widely applicable tools available to programmers, and 
certainly no science of programming. Programmers often worked in 
relative isolation, and had few opportunities for formal or even informal 
education. They generally perceived little value in the work going on 
at other fi rms or laboratories, as it was equally haphazard and 
idiosyncratic. They placed great emphasis on local knowledge and indi-
vidual ability. 

 The widespread perception that programming was a black art per-
vades the industry and technical literature of the 1950s and 1960s.  42   
Even today, more than a half century after the invention of the fi rst 
electronic computers, the notion that computer programming still retains 
an essentially artistic character is still widely accepted.  43   Whether or not 
this is desirable is an entirely different question — one that remains a 
subject of considerable and contentious debate. What is important for 
the purposes of this book is the various ways in which the language of 
art, aesthetics, and craft is used throughout the history of computing to 
elevate, denigrate, or castigate programmers and other software special-
ists. By characterizing the work that they did as artistic, programmers 
could lay claim to the autonomy and authority that came with being an 
artist. If it were true, as one industry observer suggested in the late 1960s, 
that  “ generating software is  ‘ brain business, ’  often an agonizingly diffi -
cult intellectual effort, ”  then talented programmers were effectively irre-
placeable, and should be treated and compensated accordingly.  44   

 On the other hand, being artistic might also imply that one was not 
scientifi c or professional. One common usage of the word art, of course, 
is in reference to the visual, literary, or performing arts. In this context, 
describing programmers as artists implied that they were might be non-
conformist, unreliable, or eccentric — not traits likely to endear them to 
straitlaced corporate managers. Although some programmers (and man-
agers) did apply this meaning of the word art to programming — Brooks 
used a  “ programmers as poets ”  metaphor — for the most part the word 
was used in its more traditional association with craft technique and 
preindustrial forms of production.  45   When participants at the NATO 
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Conference on Software Engineering in 1968 portrayed computer 
programming as being  “ too artistic, ”  they was using the word in this 
latter sense, as a rhetorical device for contrasting its  “ backward ”  craft 
sensibilities with  “ the types of theoretical foundations and practical 
disciplines ”  that they believed characterized  “ the established branches 
of engineering. ”   46   Note that the appeal here is to the tradition of the 
artisan or craftsperson, which is a masculine identity, rather than to the 
potentially effeminate artsy type. 

 For those computer programmers who also had academic aspirations, 
the word art was always used in opposition to science. For them the 
word suggested an undesirable lack of theoretical or mathematical rigor. 
They needed to distance the more artistic practices of programming from 
the more respectable discipline of computer science. This often brought 
these academically minded proto – computer scientists into confl ict with 
working programmers, who had different professional and occupational 
agendas. The differences between these agendas would come to light in 
subsequent debates about programmer recruitment practices, program-
ming language adoption, and academic curriculum. 
  



 

 3 

 In one inquiry it was found that a successful team of computer specialists 
included an ex-farmer, a former tabulating machine operator, an ex-key punch 
operator, a girl who had done secretarial work, a musician and a graduate in 
mathematics. The last was considered the least competent. 

  — Hans Albert Rhee,  Offi ce Automation in a Social Perspective , 1968 

 In Search of  “ Clever Fellows ”  

 The  “ Talk of the Town ”  column in the  New Yorker  magazine is not 
generally known for its coverage of science and technology. But in 
January 1957, the highbrow gossip column provided for its readers an 
unusual but remarkably prescient glimpse into the future of electronic 
computing. Already there were more than fi fteen hundred of the elec-
tronic  “ giants ”  scattered around the United States, noted the column 
editors, with many more expected to be installed in the near future. Each 
of these computers required between thirty and fi fty programmers, the 
 “ clever fellows ”  whose job it was to  “ fi gure out the proper form for 
stating whatever problem a machine is expected to solve. ”  And as there 
were currently only fi fteen thousand professional computer programmers 
available worldwide, many more would have to be trained or recruited 
immediately. After expressing  “ modest astonishment ”  over the size of 
this strange new  “ profession we ’ d never heard of, ”  the  “ Talk of the 
Town ”  went on, in its inimitable breezy style, to accurately describe a 
problem that industry observers were only just beginning to recognize: 
namely, that the looming shortage of computer programmers threatened 
to strangle in its cradle the nascent commercial computer industry.  1   

 The impetus for the  “ Talk of the Town ”  vignette was a series of 
advertisements that the IBM Corporation had recently placed in the  
New York Times . At fi rst glance the ads read as rather conventional 

 Chess Players, Music Lovers, and 
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help-wanted fare. Promising the usual  “ exciting new jobs ”  in a  “ new 
and dynamic fi eld, ”  they sought out candidates for a series of positions 
in programming research. That particularly promising candidates might 
be those who  “ enjoy algebra, geometry and other logical operations ”  
was also not remarkable, given the context. What caught the eye of the 
 “ Talk of the Town ”  columnists, however, was the curious addition of 
an appeal to candidates who enjoyed  “ musical composition and arrange-
ment, ”  liked  “ chess, bridge or anagrams, ”  or simply possessed  “ a lively 
imagination. ”   2   Struck by the incongruity between these seemingly differ-
ent pools of potential applicants, one technical and the other artistic, the 
columnists themselves  “ made bold to apply ”  to the IBM manager in 
charge of programmer recruitment.  “ Not that we wanted a programming 
job, we told him; we just wondered if anyone else did. ”   3     

 The IBM manager they spoke to was Robert W. Bemer, a  “ fast-
talking, sandy-haired man of about thirty-fi ve, ”  who by virtue of his 
eight-years experience was already considered, in the fast-paced world 
of electronic computing,  “ an old man with a long beard. ”  It was from 
Bemer that they learned of the fi fteen thousand existing computer pro-
grammers. An experienced programmer himself, Bemer nevertheless 
confessed astonishment at the unforeseen explosion into being of a 
programming profession, which even to him seemed to have  “ happened 
overnight. ”  And for the immediate future, at least, it appeared inevitable 

 Figure 3.1 
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that the demand for programmers would only increase. With obvious 
enthusiasm, Bemer described a near future in which computers 
were much more than just scientifi c instruments, where  “ every major 
city in the country will have its community computer, ”  and where 
citizens and businesspeople of all sorts —  “ grocers, doctors, lawyers ”  —
 would  “ all throw problems to the computer and will all have their 
problems solved. ”  The key to achieving such a vision, of course, was the 
availability of diverse and well-written computer programs. Therein lay 
the rub for recruiters like Bemer: in response to the calls for computer 
programmers he had circulated in the  New York Times ,  Scientifi c 
American , and the  Los Angeles Times , he had received exactly seven 
replies. That IBM considered this an excellent return on its invest-
ment highlights the peculiar nature of the emerging programming 
profession. 

 Of the seven respondents to IBM ’ s advertisements, fi ve were experi-
enced programmers lured away from competitors. This kind of poaching 
occurred regularly in the computer industry, and although this was no 
doubt a good thing from the point of view of these well-paid and highly 
mobile employees, it only exacerbated the recruitment and retention 
challenges faced by their employers. The other two were new trainees, 
only one of whom proved suitable in the long-term. The fi rst was a chess 
player who was really  “ interested only in playing chess, ”  and IBM soon 
 “ let him go back to his board. ”  The second  “ knew almost nothing about 
computing, ”  but allegedly had an IQ of 172, and according to Bemer, 
 “ he had the kind of mind we like. . . . [He] taught himself to play the 
piano when he was ten, working on the assumption that the note F was 
E. Claims he played that way for years. God knows what his neighbors 
went through, but you can see that it shows a nice independent talent 
for the systematic translation of values. ”   4   

 Eventually the ad campaign and subsequent  New Yorker  coverage did 
net IBM additional promising programmer trainees, including an Oxford-
trained crystallographer, an English PhD candidate from Columbia 
University, an ex-fashion model, a  “ proto-hippie, ”  and numerous chess 
players, including Arthur Bisguier, the U.S. Open Chess champion, 
Alex Bernstein, a U.S. Collegiate champion, and Sid Noble, the self-
proclaimed  “ chess champion of the French Riviera. ”   5   The only charac-
teristics that these aspiring programmers appeared to have in common 
were their top scores on a series of standard puzzle-based aptitude tests, 
the ability to impress Bemer as being clever, and the chutzpah to respond 
to vague but intriguing help-wanted ads. 
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 The haphazard manner in which IBM recruited its own top program-
mers, and the diverse character and backgrounds of them, reveals much 
about the state of computer programming at the end of its fi rst decade 
of existence. On the one hand, computer programming had successfully 
emerged from the obscurity of its origins as low-status, feminized clerical 
work to become the nation ’ s fastest-growing and highest-paid techno-
logical occupation.  6   The availability of strong programming talent was 
increasingly recognized as essential to the success of any corporate com-
puterization effort, and individual programmers were able to exert an 
inordinate amount of control over the course of such attempts. 

 But at the same time, the  “ long-haired programming priesthood ”  — the 
motley crew of chess players, music lovers, and mathematicians who 
comprised the programming profession in this period — fi t uncomfortably 
into the traditional power structures of the modern corporate organiza-
tion.  7   The same arcane and idiosyncratic abilities that made them well-
paid and highly sought-after individuals also made them slightly suspect. 
How could the artistic sensibilities and artisanal practices of program-
mers be reconciled with the rigid demands of corporate rationality? How 
could corporate managers predict and control the course of computeriza-
tion efforts when they were so dependent on specifi c individuals? If good 
programmers  “ were born, not made, ”  as was widely believed, then how 
could the industry ensure an adequate supply?  8   

 The tension between art and science inherent in contemporary pro-
gramming practices, unwittingly but ably captured by the  “ Talk of the 
Town ”  gossip columnists, would drive many of the most signifi cant 
organizational, technological, and professional developments in the 
history of computing over the course of the next few decades. This 
chapter will deal with early attempts to use aptitude tests and personality 
profi les to manage the growing  “ crisis ”  of programmer training and 
recruitment. 

 The Persistent Personnel Problem 

 The commercial computer industry came of age in the 1960s. At the 
beginning of that decade the electronic computer was still a scientifi c 
curiosity, its use largely confi ned to government agencies as well as a few 
adventurous and technically sophisticated corporations; by the decade ’ s 
end, the computer had been successfully reinvented as a mainstream 
business technology, and companies such as IBM, Remington Rand, and 
Honeywell were selling them by the thousands. 
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 But each of these new computers, if we are to take Bemer ’ s reckoning 
seriously, would require a support staff of at least thirty programmers. 
Since almost all computer programs in this period were effectively custom 
developed — the packaged software industry would only begin to emerge 
in the late 1960s — every purchase of a computer required the corre-
sponding hire of new programming personnel. Even if we were to halve 
Bemer ’ s estimates, the predicted industry demand for computer program-
mers in 1960 would top eighty thousand. 

 In truth, no one really knew for certain exactly how many program-
mers would be required. Contemporary estimates ranged from fi fty thou-
sand to fi ve hundred thousand.  9   What was abundantly clear, however, 
was that whatever the total demand for programmers might eventually 
turn out to be, it would be impossible to satisfy using existing training 
and hiring practices. By the mid-1960s the lack of availability of trained 
computer programmers threatened to stifl e the adoption of computer 
technology — a grave concern for manufacturers and employers alike. 
Warnings of a  “ gap in programming support ”  caused by the ever-wors-
ening  “ population problem ”  pervade the industry literature in this 
period.  10   In 1966, the personnel situation had degraded so badly that 
 Business Week  magazine declared it a  “ software crisis ”  — the fi rst appear-
ance of the crisis mentality that would soon come to dominate and defi ne 
the entire industry.  11   

 Wayne State Conference 

 It did not take long after the invention of the fi rst electronic computers 
for employers and manufacturers to become aware of the  “ many educa-
tional and manpower problems ”  associated with computerization. In 
1954, leaders in industry, government, and education gathered at Wayne 
State University for the Conference on Training Personnel for the 
Computing Machine Field. The goal was to discuss what Elbert Little, 
of the Wayne State Computational Laboratory, suggested was a  “ uni-
versal feeling ”  among industry leaders that there was  “ a defi nite short-
age ”  of technically trained people in the computer fi eld.  12   This shortage, 
variously described by an all-star cast of scientists and executives from 
General Motors, IBM, the RAND Corporation, Bell Telephone, Harvard 
University, MIT, the Census Bureau, and the Offi ce of Naval Research, 
as  “ acute, ”   “ unprecedented, ”   “ multiplying dramatically, ”  and  “ astound-
ing compared to the [available] facilities, ”  represented a grave threat to 
the future of electronic computing. Already it was serious enough to 
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demand a  “ cooperative effort ”  on the part of industry, government, and 
educational institutions to resolve.  13   

 The proceedings of the Conference on Training Personnel for the 
Computing Machine Field provide the best data available on the state 
of the labor market in the electronic computer industry during its fi rst 
decade. Representatives from almost every major computer user or man-
ufacturer were in attendance; those who could not be present were sur-
veyed in advance about their computational requirements and personnel 
practices. 

 The most obvious conclusion to be drawn from these data are that 
the computer industry in this period was growing rapidly, not just in 
size, but also in scope. The survey of the fi ve hundred largest manufac-
turing companies in United States, compiled by Milton Mengel of the 
Burroughs Corporation, revealed that almost one-fi fth were already 
using electronic computers by 1954, with another fi fth engaged in study-
ing their feasibility. The extent of this early and widespread adoption of 
the computer by large corporations is confi rmed by other sources, and 
is a refl ection of the increased availability of low(er)-cost and more reli-
able technology. By 1954, for example, IBM had already released its fi rst 
mass-produced computer, the IBM 650, which sold so many units that 
it became known as the  “ Model T ”  of electronic computing. The IBM 
650 and successors were in many ways evolutionary developments, 
designed specifi cally to integrate smoothly into already-existing systems 
and departments of computation. 

 This increase in the number of installed computers was, in and of 
itself, enough to cause a serious shortage of experienced computer per-
sonnel. Truman Hunter, of the IBM Applied Sciences Division (an entirely 
separate group from that headed by Bemer), anticipated doubling his 
programming staff (from fi fty to a hundred) by the end of the year.  14   
Similar rates of growth were reported in the aircraft, automobile, and 
petroleum industries, with one survey respondent expected to triple its 
number of programmers.  15   Charles Gregg, of the Air Force Materiel 
Command, declined to even estimate the demand for trained computer 
personnel in the U.S. government, suggesting only that  “ we sure need 
them badly, ”  and that as far as training was concerned,  “ we have a rough 
row to hoe. ”   16   If we include in our understanding of computer personnel 
not just programmers but also keypunch and machine operators, techni-
cians, and supervisory staff, the personnel shortage appears even more 
dramatic.   
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 In the face of this looming crisis, the existing methods for training 
programmers and other computer personnel were revealed as ludicrously 
insuffi cient. At this point, there were no formal academic programs in 
computer science in existence, and those few courses in computer pro-
gramming that were offered in universities were at the master ’ s or PhD 
level. Computer manufacturers, who had a clear stake in ensuring that 
their customers could actually use their new machines, provided some 
training services. But in the fi fteen months prior to the 1954 conference, 
confessed M. Paul Chinitz of Remington Rand UNIVAC (at that point 
the largest manufacturer of computers in the world), the company had 
only managed to train a total of 162 programmers.  17   He estimated that 
the total training capacity of all of the manufacturers combined at a mere 
260 programmers annually. And so the majority of computer users were 
left to train their own personnel.  18   This in-house training was expensive, 
time-consuming, and generally inadequate.  19   

 Part of the problem, of course, was that computer programming 
was inherently diffi cult. As was described in the previous chapter, 

 Figure 3.2 
 Cartoon from  Datamation  magazine, 1968. 
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programming in the 1950s — particularly in the early 1950s — was an 
inchoate discipline, a jumble of skills and techniques drawn from electri-
cal engineering, mathematics, and symbolic logic. It was also intrinsically 
local and idiosyncratic: each individual computer installation had its own 
unique software, practices, tools, and standards. There were no program-
ming languages, no operating systems, no best-practice guidelines, and 
no textbooks. The problem with the so-called electronic brains, as 
Truman Hunter of IBM noted, is that they were anything but: computers 
might be powerful tools, yet they were  “ completely dependent slaves ”  
to the human mind. The development of these machines was resulting 
in  “ even greater recognition of, and paying a greater premium for, ”  the 
skilled programmers who transformed their latent potential into real-
world applications.  20   

 It was one thing to identify, as Truman Hunter did, the increasing 
need for  “ men [programmers] . . . who were above average in training 
and ability ”  to accomplish this transformation, but what kind of train-
ing, and what kind of abilities?  21   Although government laboratories and 
engineering fi rms remained the primary consumers of computer technol-
ogy through the early 1950s, a growing number were being sold to 
insurance companies, accounting fi rms, and other, even less technically 
oriented customers. Not only were these users less technically profi cient 
and less likely to have their own in-house technical specialists but they 
also used their computers for different and in many ways more compli-
cated types of applications. The Burroughs study, for example, suggested 
an interesting shift in the way in which computers were being used in 
this period, and by whom. While the majority of computers (95 percent) 
currently in service were being used for engineering or scientifi c purposes, 
the data on anticipated future purchases indicated a shift toward business 
applications.  22   The next generation of computers, the survey suggested, 
would be used increasingly (16 percent) for business data processing 
rather than scientifi c computation.  23   

 These new business users saw the electronic computer as more than 
mere number crunchers; they saw them as payroll processing devices, 
data processing machines, and management information systems. This 
broader vision of an integrated  “ information machine ”  demanded of the 
computer new features and capabilities, many of them software rather 
than hardware oriented.  24   

 As the computer became more of a tool for business than a scientifi c 
instrument, the nature of its use — and its primary user, the computer 
programmer — changed dramatically. The projects that these business 
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programmers worked on tended to be larger, more highly structured 
(while at the same time less well defi ned), less mathematical, and more 
tightly coupled with other social and technological systems than were 
their scientifi c counterparts. Were the programmers who worked on 
heterogeneous business data processing systems technologists, managers, 
or accountants? As Charles Gregg of the Air Force Materiel Command 
jokingly suggested, the people who made the best programmers were 
 “ electronics engineers with an advanced degree in business administra-
tion. ”  Such multitalented individuals were obviously in short supply.  “ If 
anyone can energize an educational program to produce such people in 
quantity, ”  he quickly added,  “ we would certainly like to be put on their 
mailing list. ”  His fellow conference participants no doubt agreed with 
this assessment: the needs of business demanded a whole new breed of 
programmers, and plenty of them.  25   

 The 1954 Conference on Training Personnel for the Computing 
Machine Field was to be the fi rst of many. The  “ persistent personnel 
problem, ”  as it soon became known in the computing community, would 
only get worse over the course of the next decade.  26   It was clear that 
recruiting programmers a half dozen at the time with cute advertisements 
in the  New York Times  was not a sustainable strategy. But what was 
the alternative? If employers truly believed, as was argued in the previous 
chapter, that computer programmers formed a unique category of techni-
cal specialists — more creative than scientifi c, artisanal rather than indus-
trial, born and not made — then how could they possibly hope to ensure 
an adequate supply to meet a burgeoning demand? How did they rec-
oncile contemporary beliefs about the idiosyncratic nature of individual 
programming ability with the rigid demands of corporate management 
and control? 

 Aptitude Tests and Psychological Profi les 

 So how did companies deal with the need to train and recruit pro-
grammers on a large scale? Here the case of the System Development 
Corporation (SDC) is particularly instructive. 

 SDC was the RAND Corporation spin-off responsible for developing 
the software for the U.S. Air Force ’ s Semi-Automated Ground Environ-
ment (SAGE) air-defense system. SAGE was perhaps the most ambitious 
and expensive of early cold war technological boondoggles. Comprised 
of a series of computerized tracking and communications centers, SAGE 
cost approximately $8 billion to develop and operate, and required the 
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services of over two hundred thousand private contractors and military 
operators. 

 A major component of the SAGE project was the real-time computers 
required to coordinate its vast, geographically dispersed network of 
observation and response centers. IBM was hired to develop the comput-
ers themselves but considered programming them to be too diffi cult. In 
1955 the RAND Corporation took over software development. It was 
estimated that the software for the SAGE system would require more 
than one million lines of code to be written. At a time when the largest 
programming projects had involved at most fi fty thousand lines of code, 
this was a singularly ambitious undertaking.  27   

 Within a year, there were more programmers at RAND than all other 
employees combined. Overwhelmed, RAND spun-off SDC to take over 
the project. By 1956, SDC employed seven hundred programmers, which 
at the time represented three-fi fths of the available programmers in the 
entire United States.  28   Over the next fi ve years, SDC would hire and train 
seven thousand more.  29   In the space of a few short years the personnel 
department at SDC had effectively doubled the number of trained pro-
grammers in the country.  “ We trained the industry, ”  SDC executives 
were later fond of saying, and in many respects they were correct; for 
the next decade, at the very least, any programming department of any 
size was likely to contain at least two or three SDC alumni.  30   

 In order to effectively recruit, train, and manage an unprecedented 
number of programmers, SDC pursued three interrelated strategies. The 
fi rst involved the construction of an organizational and managerial struc-
ture that reduced its reliance on highly skilled,  experienced  programmers. 
The second focused on the development and use of aptitude tests and 
personality profi les to fi lter out the most promising potential program-
mers. And fi nally, SDC invested heavily in internal training and develop-
ment programs. In a period when the computer manufacturers combined 
could only provide twenty-fi ve hundred student weeks of instruction 
annually, SDC devoted more than ten thousand student weeks to instruct-
ing its own personnel to program.  31   

 The engineers who founded SDC explicitly rejected what they called 
the  “ nostalgic ”  notion, common in the industry at that time, that pro-
grammers were  “ different, ”  and  “ could not work and would not prosper ”  
under the rigid structures of engineering management.  32   They organized 
SDC along the lines of a  “ software factory ”  that relied less on skilled 
workers, and more on centralized planning and control. The principles 
behind this approach were essentially those that had proven so successful 
in traditional industrial manufacturing: replaceable parts, simple and 
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repetitive tasks, and a strict division of labor. The assumption was that 
a complex computer program like the SAGE control system could be 
neatly broken down into simple, modular components that could be 
easily understood by any programmer with the appropriate training and 
experience. Programmers in the software factory were mere machine 
operators; they had to be trained, but only in the basic mechanisms of 
implementing someone else ’ s design. In the SDC hierarchy, managers 
made all of the important decisions.  33   

 The hierarchical approach to software development was attractive to 
SDC executives for a number of reasons. To begin with, it was a familiar 
model for managing government and military subcontractors. Engineering 
management promised scientifi c control over the often-unpredictable 
processes of research and development. It allowed for the orderly pro-
duction of cutting-edge science and technology.  34   In the language used 
by the managers themselves, it was a solution that  “ scaled ”  well, meaning 
that it could accommodate the rapid and unanticipated growth typical 
of cold war – era military research. Scientifi c management techniques and 
production technologies could be substituted for human resources. It was 
not a system dependent on individual genius or chance insight. It replaced 
skilled personnel with superior process. For these and other reasons, it 
seemed the perfect solution to the problem posed by the mass production 
of computer programs. (Coincidentally, it was easier to justify billing the 
government for a large number of mediocre low-wage employees than a 
smaller number of excellent but expensive contractors.) 

 It is important to note that the SDC approach did not attempt to solve 
its programmer personnel problem by reducing the number of program-
mers it required. On the contrary, the SDC software factory strategy (or 
as detractors dismissively referred to it, the  “ Mongolian Horde ”  approach 
to software development) probably demanded more programmers than 
was otherwise necessary. But the programmers that SDC was interested 
in were not the idiosyncratic  “ black artists ”  that most employers were 
desperately in search of. SDC still expected to hire and train large 
numbers of programmers, yet it hoped that these programmers would 
be much easier to identify and recruit. Most of its trainees had little or 
no experience with computers; in fact, many managers at SDC preferred 
it that way.  35   

 The solution that SDC ultimately employed to identify and recruit 
potential programmers was to become standard practice in the industry. 
Building on techniques pioneered at RAND and MIT ’ s Lincoln Laboratory 
in the early 1950s, SDC developed a suite of aptitude tests and psycho-
logical profi les that were used to screen large numbers of potential 
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trainees.  36   Candidates who scored well on the tests were then inter-
viewed, tested a second time — this time for desirable psychological char-
acteristics — and then assuming that all went well, offered a position. The 
aptitude tests were meant to fi lter for traits thought essential to good 
programming, such as the ability to think logically and do abstract rea-
soning. The psychological profi les were meant to identify individuals 
with the appropriate personality for programming work.  37   

 The use of psychometric tools such as aptitude tests and psychological 
profi les was not unique to computing. Such tests had long been used by 
the U.S. military in the recruitment of soldiers. The SDC exams, for 
example, were based on the Thurstone Primary Mental Abilities Test and 
the Thurstone Temperament Schedule, which had both been in wide use 
since the 1930s.  38   In the period following the end of the Second World 
War, similar metrics had been enthusiastically adopted by the advocates 
of scientifi c personnel research.  39   SDC was able to choose from more 
than thirty available tests when it established its test battery in the late 
1950s.  40     

 Figure 3.3 
 Honeywell Corporation Aptitude Test, 1965. 
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 The central assumption of all such aptitude tests was that there was 
a particular innate characteristic, or set of characteristics, that could be 
positively correlated with occupational performance. These traits were 
necessarily innate — otherwise they could simply be taught, rather then 
only identifi ed — and tended to be cognitive, personality related, or some 
combination of both. The Thurstone Primary Mental Abilities Test, for 
example, claimed to evaluate specifi c skills, such as  “ verbal meaning ”  
and  “ reasoning, ”  as well as more general qualities such as  “ emotional 
stability. ”  The verbal meaning section presented a series of words for 
which the test taker would have to identify the closest synonym. The 
reasoning section involved the completion of number series using rules 
implicit in the given portion of the series. The emotional stability ques-
tions purported to measure an amalgam of desirable personality traits, 
including patience and a willingness to pay close attention to detail. 

 The scientifi c validity of aptitude testing was at best equivocal. At an 
Association for Computing Machinery conference in 1957, the com-
pany ’ s own psychometrician, Thomas Rowan, presented a paper con-
cluding that  “ in every case, ”  the correlation between test scores and 
subsequent performance reviews  “ was not signifi cantly different from 
zero. ”   41   The best he could say was that scores on the aptitude test did 
correlate somewhat with grades in the programming course. Nevertheless, 
SDC continued to use aptitude tests, including those tests that Rowan 
had identifi ed as unsatisfactory, as the primary basis for its selection 
procedures at least until the late 1960s. 

 Why persist in using aptitude testing when it was so obviously inade-
quate? The simple answer seems to be that SDC had no other option. 
Having accepted a $20 million contract from the Air Defense Command 
to develop the SAGE software, SDC necessarily had to expand rapidly. 
Even had SDC managed to hire away  all  of the computer programmers 
then working in the United States, it could still not have adequately 
staffed its growing programming division. The entire SDC development 
strategy had been constructed around the notion that complex software 
systems could be readily broken down into simpler modules that even 
relatively novice programmers — properly managed — could adequately 
develop. The SDC software factory was a deliberate attempt to industri-
alize the programming process, to impose on it the lessons learned from 
traditional industrial manufacturing. Like all industrial systems, the 
software factory required not only new organizational forms and pro-
duction technologies (in this case, automated development and testing 
utilities) but also new forms of workers. As with the replacement of 
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skilled machinists with unskilled machine operators in the automobile 
factories of the early twentieth century, these new software workers 
would require less experience and training than their predecessors, 
but the availability of large numbers of them was essential. The mass 
production of computer programs necessitated the mass production of 
programmers. 

 As will be discussed further below, it is questionable whether the SDC 
vision of the software factory was ever truly realized — by SDC itself or 
any of its many imitators. But for the time being it is enough to say that 
the aptitude testing methods that SDC originated and then disseminated 
throughout the industry assumed programming to be a well-defi ned, 
largely mechanical process. In the words of Thomas Rowan, the person 
primarily responsible for the SDC personnel selection process, program-
ming was only  “ that activity occurring after an explicit statement of the 
problem had been obtained. ”   42   Specifi cally excluded from programming 
were any of the creative activities of planning or design. In other words, 
SDC had redefi ned computer programming as exactly the type of skill 
that aptitude tests were meant to accurately identify: straightforward, 
mechanical, and easily isolated. The SDC aptitude tests were not so much 
an attempt to identify programmer skill and ability as to embody it. 

 IBM PAT 

 Despite the seeming inability of the SDC aptitude testing regime to accu-
rately capture the essence of programming ability, similar tests continued 
to be widely developed and adopted, not only by SDC, but also increas-
ingly by other large employers. Of these second-generation tests, the 
most signifi cant was the IBM Programmer Aptitude Test (PAT). In 1955, 
IBM contracted with two psychologists, Walter McNamara and John 
Hughes, to develop an aptitude test to identify programming talent. The 
programmer test was based on an earlier exam for card punch operators. 
Originally called the Aptitude Test for EDPM (Electronic Data Processing 
Machine) Programmers, it was renamed PAT in 1959.  43   

 Over the next few decades, IBM PAT would become the industry 
standard instrument for evaluating programming ability. By 1962 an 
estimated 80 percent of all businesses used some form of aptitude test 
when hiring programmers, and half of these used IBM PAT.  44   Most of 
the many vocational schools that emerged in this period to train 
programmers used PAT as a preliminary screening device. In 1967 
alone, PAT was administered to more than seven hundred thousand 
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individuals.  45   Well into the 1970s, IBM PAT served as the de facto 
gateway into the programming occupation. 

 Like the SDC exams, IBM PAT focused primarily on mathematical 
aptitude, with most of the questions dealing with number series, fi gure 
analogies, and arithmetic reasoning. Although several minor variations 
of PAT were introduced over the course of the next several decades, the 
overall structure of the exam remained surprisingly consistent. The fi rst 
section required examinees to identify the underlying rule defi ning the 
pattern of a series of numbers. The second section was similar to the 
fi rst, but involved geometric forms rather than number series. The third 
and fi nal section posed word problems that could be reduced to algebraic 
forms, such as  “ How many apples can you buy for sixty cents at the rate 
of three for ten cents? ”   46   Examinees had fi fty minutes to answer roughly 
one hundred questions, and so speed as well as accuracy was required. 

 Critics of PAT argued that its emphasis on mathematics made it 
increasingly irrelevant to contemporary programming practices. It might 
once have been the case, as Gerald Weinberg acknowledged in his acerbic 
critique of IBM PAT in 1971, that programmers would have to add two 
or three hexadecimal numbers in order to fi nd an address in a dump of 
a machine or assembly language program. But even then the arithmetic 
involved was relatively trivial, and the development of high-level pro-
gramming languages had largely eliminated the need for such mental 
mathematics. And as for an aptitude for understanding geometric rela-
tionships, Weinberg noted sarcastically,  “ I ’ ve never met a programmer 
who was asked to tell whether two programs were the same if one was 
rotated 90 degrees. ”   47   At best such measures of basic mathematical 
ability were a proxy for more general intelligence; more likely, however, 
they were worse than useless, a deliberate form of self-deception prac-
ticed by desperate employers and the  “ personnel experts ”  who preyed 
on them.  48   

 Weinberg was not alone in his critique of the mathematical focus of 
PAT and other exams. As early as the late 1950s, a Bureau of Labor 
report had identifi ed the growing sense of corporate disillusionment with 
the mathematical approach to computing, contending that  “ many 
employers no longer stress a strong background in mathematics for 
programming of business or other mass data if candidates can demon-
strate an aptitude for the work. ”   49   As more and more computers were 
used for business data processing rather than scientifi c computation, the 
types of problems that programmers were required to solve changed 
accordingly. The mathematical tricks that were so crucial in trimming 
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valuable processor cycles in scientifi c and engineering applications had 
no place in the corporate environment, which privileged legibility and 
ease of maintenance over performance.  50   Not surprisingly, scientifi c pro-
grammers scored better on PAT than business programmers.  51   

 The relevance of mathematical aptitude to programming ability 
remained, and still does, a perennial question in the industry. At least 
one study of programmers identifi ed no signifi cant difference in perfor-
mance between those with a background in science or engineering and 
those who studied humanities or the social sciences.  52   Even the authors 
of IBM PAT concluded that at best, mathematical ability was associated 
with particular applications and not programming ability in general.  53   

 Some observers went so far as to suggest that by privileging mathe-
matical aptitude, PAT was downright pathological, selecting for  “ a type 
of logical mind which . . . is not very often supported by maturity or 
reasoned thinking ability. ”   54   As a result, these selection processes tended 
to segregate individuals whose personality traits made it diffi cult to 
cooperate with management and fellow employees. At the very least, the 
mathematical mind-set frequently precluded the kinds of complex solu-
tions typical of business programming applications. 

 As will be described in more detail in chapter 5, the emerging disci-
pline of computer science, in its own quest for academic respectability, 
continued to emphasize mathematics, while industry leaders regularly 
dismissed it as irrelevant.  55   For the time being, it is enough to note 
that the continuing controversy over mathematics refl ected deeper dis-
agreement, or at least ambiguity, about the true nature of programming 
ability. 

 The larger question, of course, was whether or not scores on PAT 
corresponded with real-world programming performance. On this ques-
tion the data are ambiguous. Most employers did not even attempt to 
correlate test scores with objective measures of performance such as 
supervisor ratings.  56   The small percentage that did concluded that there 
was no relationship between PAT scores and programming performance 
at all, at least in the context of business programming.  57   At best, these 
studies identifi ed a small correlation between PAT scores and  academic 
success in training programs . Few argued that such correlations trans-
lated into accurate indicators of future success in the workplace.  58   Even 
IBM recommended that PAT be used only in the context of a larger 
personnel screening process. 

 Over the course of the next decade, there were several attempts to 
recalibrate the tests to make them more directly relevant to real-world 
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programming. IBM itself created several modifi cations to its original 
PAT, including the Revised Programmer Aptitude Test (1959) and the 
Data Processing Aptitude Test (1964), although neither successfully 
replaced the popular PAT.  59   The Computer Usage Company ’ s version of 
a programmer aptitude test required examinees to solve logical problems 
using the console lights on an IBM 1401 computer.  60   The Aptitude 
Assessment Battery: Programming, developed in 1967 by Jack Wolfe, a 
prominent critic of IBM PAT, eliminated mathematics and concentrated 
on an applicant ’ s ability to focus intensively on complex, multiple-step 
problems.  61   The Programmer Aptitude and Competence System required 
examinees to develop actual programs using a simplifi ed programming 
language.  62   The Basic Programmer Knowledge Test (1966) tested every-
thing from design and coding to testing and documentation.  63   

 Personality Profi les 

 Since even their most enthusiastic advocates recognized the limitations 
of aptitude testing, most particularly their narrow focus on mathematics 
and logic, many employers also developed personality profi les that they 
hoped would help isolate the less tangible characteristics that made for 
a good programmer trainee. Some of these characteristics, such as being 
task oriented or detail minded, overlapped with the skills measured by 
more conventional aptitude tests. Many simply reinforced the conven-
tional wisdom captured by the  “ Talk of the Town ”  column almost a 
decade earlier.  “ Creativity is a major attribute of technically oriented 
people, ”  suggested one representative profi le.  “ Look for those who like 
intellectual challenge rather than interpersonal relations or managerial 
decision-making. Look for the chess player, the solver of mathematical 
puzzles. ”   64   But other profi les emphasized different, less obvious personal-
ity traits such as imagination, ingenuity, strong verbal abilities, and a 
desire to express oneself.  65   Still others tested for even more elusive quali-
ties, such as emotional stability.  66   Such traits were obviously diffi cult to 
capture in a standard, skills-oriented aptitude test. Personality profi les 
relied instead on a combination of psychological testing, vocational inter-
est surveys, and personal histories to provide a richer, more nuanced set 
of criteria on which to evaluate programmers. 

 The idea that particular personality traits might be useful indicators 
of programming ability was clearly a legacy of the origins of program-
ming in the early 1950s. The central assumption was that programming 
ability was an innate rather than a learned ability, something to be 
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identifi ed rather than instilled. Good programming was believed to be 
dependent on uniquely qualifi ed individuals, and that what defi ned these 
people was some indescribable, impalpable quality — a  “ twinkle in the 
eye, ”  an  “ indefi nable enthusiasm, ”  or what one interviewer depicted as 
 “ the programming bug that meant . . . we ’ re going to take a chance on 
him despite his background. ”   67   The development of programmer person-
ality profi les seemed to offer empirical evidence for what anecdote had 
already determined: the best programmers appeared to have been born, 
not made. 

 The use of personality profi les to identify programmers began, as with 
other industry-standard recruiting practices, at SDC. Applicants at SDC 
were fi rst tested for aptitude, then interviewed in person, and only then 
profi led for desirable personality characteristics. Like other psychological 
profi les from this period, the SDC screens identifi ed as valuable only 
those skills and characteristics that would have been assets in any white-
collar occupation: the ability to think logically, work under pressure, 
and get along with people; a retentive memory and the desire to see a 
problem through to completion; and careful attention to detail. 

 By the start of the 1960s, however, SDC psychologists had developed 
more sophisticated models based on the extensive employment data that 
the company had collected over the previous decade as well as surveys 
of members of the Association for Computer Machinery and the Data 
Processing Management Association. In a series of papers published in 
serious academic journals such as the  Journal of Applied Psychology  and 
 Personnel Psychology , SDC psychologists Dallis Perry and William 
Cannon provided a detailed profi le of the  “ vocational interests of com-
puter programmers. ”   68   The scientifi c basis for their profi le was the Strong 
Vocational Interest Bank (SVIB), which had been widely used in voca-
tional testing since the late 1920s. 

 The basic SVIB in this period consisted of four hundred questions 
aimed at eliciting an emotional response ( “ like, ”   “ dislike, ”  or  “ indiffer-
ent ” ) to specifi c occupations, work and recreational activities, types of 
people, and personality types. By the 1960s, more than fi fty statistically 
signifi cant collections of preferences ( “ keys ” ) had been developed for 
such occupations as artist, mathematician, police offi cer, and airplane 
pilot. Perry and Cannon were attempting to develop a similar interest 
key for programmer. They hoped to use this key to correlate a unique 
programmer personality profi le with self-reported levels of job satisfac-
tion. In the absence of direct measures of job performance, such as 
supervisors ’  evaluations, it was assumed that satisfaction tracked closely 
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with performance. The larger assumption behind the use of the SVIB 
profi les was that candidates who had interests in common with those 
individuals who were successful in a given occupation were themselves 
also likely to achieve similar success. 

 Many of the traits that Perry and Cannon attributed to successful 
programmers were unremarkable: for the most part programmers enjoyed 
their work, disliked routine and regimentation, and were especially inter-
ested in problem and puzzle-solving activities.  69   The programmer key 
that they developed bore some resemblance to the existing keys for engi-
neering and chemistry, but not to those of physics or mathematics, which 
Perry and Cannon saw as contradicting the traditional focus on mathe-
matics training in programmer recruitment. A slight correlation with the 
musician key offered  “ some, but not very strong, ”  support for  “ the 
prevalent belief in a relationship between programming and musical 
ability. ”   70   Otherwise, programmers resembled other white-collar profes-
sionals in such diverse fi elds as optometry, public administration, 
accounting, and personnel management. 

 In fact, there was only one really  “ striking characteristic ”  about pro-
grammers that the Perry and Cannon study identifi ed. This was  “ their 
disinterest in people. ”  Compared with other professional men,  “ pro-
grammers dislike activities involving close personal interaction. They 
prefer to work with things rather than people. ”   71   In a subsequent study, 
Perry and Cannon demonstrated this to be true of female programmers 
as well.  72   

 The idea that computer programmers lacked people skills quickly 
became part of the lore of the computer industry. The infl uential industry 
analyst Richard Brandon suggested that this was in part a refl ection 
of the selection process itself, with its emphasis on mathematics and 
logic. The  “ Darwinian selection ”  mechanism of personnel profi ling, 
Brandon maintained, selected for personality traits that performed 
well in the artifi cial isolation of the testing environment, but that 
proved dysfunctional in the more complex social environment of a 
corporate development project. Programmers were  “ excessively 
independent, ”  argued Brandon, to the point of mild paranoia. The pro-
grammer type is  “ often egocentric, slightly neurotic, and he borders 
upon a limited schizophrenia. The incidence of beards, sandals, and 
other symptoms of rugged individualism or nonconformity are notably 
greater among this demographic group. Stories about programmers 
and their attitudes and peculiarities are legion, and do not bear repeat-
ing here. ”   73   
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 Although Brandon ’ s evidence was strictly anecdotal, his portrayal of 
the neurotic programmers was convincing enough that the psychologist 
Theodore Willoughby felt compelled to refute it on scientifi c grounds in 
his 1972 article  “ Are Programmers Paranoid. ”   74   But whether or not 
Brandon ’ s paranoia was, from a strictly medical perspective, an accurate 
diagnosis is irrelevant. The idea that  “ detached ”  individuals made good 
programmers was embodied, in the form of the psychological profi le, 
into the hiring practices of the industry.  75   Possibly this was a legacy of 
the murky origins of programming as a fringe discipline in the early 
1950s; perhaps it was self-fulfi lling prophecy. Nevertheless, the idea of 
the programmer as being particularly ill equipped for or uninterested in 
social interaction did become part of the conventional wisdom of the 
industry. Although the short-term effect of this particular occupational 
stereotype was negligible, it would later come back to haunt the pro-
gramming community as it attempted to professionalize later in the 
decade. As we will see in later chapters, the stereotype of the computer 
programmer as a machine obsessed and antisocial was used to great 
effect by those who wished to undermine the professional authority of 
the computer boys. 

 For the most part, however, the personality profi les that Perry and 
Cannon as well as others developed simply became one component of a 
larger set of tools used by employers to evaluate potential program-
mers.  76   According to one survey of Canadian employers, more than 
two-thirds used a combination of aptitude and general intelligence tests, 
personality profi les, and interest surveys in their selection processes.  77   

 The Situation Can Only Get Worse 

 Despite the massive amount of effort that went into developing the 
science of programmer personnel selection, the labor market in comput-
ing only seemed to deteriorate. Many of the technological and demo-
graphic trends identifi ed at the Wayne State Conference in 1954 continued 
to accelerate. By 1961, industry analysts were fretting publicly about a 
 “ gap in programming support ”  that  “ will get worse in the next several 
years before it gets better. ”   78   In 1962, the editors of the powerful indus-
try journal  Datamation  declared that  “ fi rst on anyone ’ s checklist of 
professional problems is the manpower shortage of both trained and 
even untrained programmers, operators, logical designers and engineers 
in a variety of fl avors. ”   79   At a conference held that year at the MIT 
School of Industrial Management, the  “ programming bottleneck ”  was 
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identifi ed as the central dilemma in computer management.  80   In 1966, 
the labor situation had gotten so bad that  Business Week  declared it a 
 “ software crisis. ”   81   An informal survey in 1967 of management informa-
tion systems (MIS) managers identifi ed as the primary hurdle  “ handicap-
ping the progress of MIS ”  to be  “ the shortage of good, experienced 
people. ”   82   By the late 1960s, the demand for programmers was increas-
ing by more than 50 percent annually, and it was predicted that 
 “ the software man will be in even greater demand in 1970 than he is 
today. ”   83   Indeed, estimates of the number of programmers that would 
be required by 1970 ranged as high as 650,000.  84   

 It would be diffi cult to overstate the degree to which concern about 
the software labor crisis dominated the industry in this period. The 
popular and professional literature during this time was obsessed with 
the possible effects of the personnel crisis on the future of the industry. 
 “ Competition for programmers has driven salaries up so fast, ”  warned 
a contemporary article in  Fortune  magazine,  “ that programming has 
become probably the country ’ s highest paid technological 
occupation. . . . Even so, some companies can ’ t fi nd experienced pro-
grammers at any price. ”   85   A study in 1965 by Automatic Data Processing, 
Inc., then one of the largest employers of programmers, predicted that 
average salaries in the industry would increase 40 to 50 percent over the 
next fi ve years.  86   The ongoing  “ shortage of capable programmers, ”  
argued  Datamation  in 1967,  “ had profound implications, not only for 
the computer industry as it is now, but for how it can be in the future. ”   87   
These potentially profound implications included everything from fi nan-
cial collapse to software-related injury or death to the emergence of a 
packaged software application industry. 

 Faced with a growing shortage of skilled programmers, employers 
were forced to expand their recruitment efforts and lower their hiring 
standards. Although by 1967 IBM alone was training ten thousand pro-
grammers annually (at a cost of $90 to $100 million), it was becoming 
increasingly clear that computer manufacturers alone could not produce 
trained programmers fast enough.  88   As a result, many companies reluc-
tantly assumed the costs of expensive internal training programs,  “ not 
because they want to do it, but because they have found it to be an 
absolute necessary adjunct to the operation of their business. ”   89   It is 
diffi cult to fi nd accurate data on the size of such programs, as many 
organizations refused to disclose details about them to outsiders,  “ on the 
theory that to do so would only invite raiding ”  from other employers.  90   
The job market was so competitive in this period that as many as half 
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of all programmer trainees would leave within a year to pursue more 
lucrative opportunities.  91   And since the cost of training or recruiting a 
new programmer was estimated at almost an entire year ’ s salary, such 
high levels of turnover were expensive.  92   Many employers were thus 
extremely secretive about their training and recruitment practices; some 
even refused to allow their computer personnel to attend professional 
conferences because of the rampant headhunting that occurred at such 
gatherings.  93   Because of the low salaries that it paid relative to the indus-
try, the U.S. government had a particular problem retaining skilled 
employees, and so in 1963, Congress passed the Vocational Education 
Act, which made permanent the provisions of Title VIII of the National 
Defense Education Act of 1959 for training highly skilled technicians. 
By 1966, the act had paid for the training of thirty-three thousand com-
puter personnel — requiring in exchange only that they work for a certain 
time in government agencies.  94     

 In numerous cases, the aptitude tests that many corporations hoped 
would alleviate their personnel problems had entirely the opposite effect. 
Whatever small amount of predictive validity the tests had was soon 
compromised by applicants who cheated or took them multiple times. 
Since many employers relied on the same basic suite of tests, would-be 
programmers simply applied for positions at less-desirable fi rms, mas-
tered the aptitude tests and application process, and then transferred 
their newfound testing skills to the companies they were truly interested 
in. Taking the same test repeatedly virtually assured top scores.  95   Copies 
of IBM PAT were also stolen and placed in fraternity fi les.  96   By the late 
1960s it appeared that all of the major aptitude tests had been thor-
oughly compromised. One widely circulated book contained versions of 
the IBM, UNIVAC, and NCR exams. Updated versions were published 
almost annually.  97   

 Paradoxically, even as the value of the aptitude tests diminished, their 
use began to increase. All of the major hardware vendors developed their 
own versions, such as the National Cash Register Programmer Aptitude 
Test and the Burroughs Corporation Computer Programmer Aptitude 
Battery.  98   Aptitude testing became the  “ Hail Mary pass ”  of the computer 
industry. Some companies tested all of their employees, including the 
secretaries, in the hope that hidden talent could be identifi ed.  99   A group 
called the Computer Personnel Development Association was formed to 
scour local community centers for promising programmer candidates.  100   
Local YMCAs offered the test for a nominal fee, as did local community 
colleges.  101   In 1968 computer service bureaus in New York City, desper-
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ate to fi ll the demand for more programmers, began testing inmates at 
the nearby Sing-Sing Prison, promising them permanent positions pending 
their release.  102   That same year,  Cosmopolitan Magazine  urged  “ Cosmo 
Girls ”  to go out and become  “ computer girls ”  making  “ $15,000 a year ”  
as programmers. Not only did the widespread personnel problem in 
computing make it possible for women to break into the industry but 
the fi eld was also currently  “ overrun with males, ”  making it easy to fi nd 
desirable dating prospects. Programming was  “ just like planning a 
dinner, ”  the article quoted software pioneer Admiral Grace Hopper as 
saying.  “ Women are  ‘ naturals ’  at computer programming. ”  And in true 
 Cosmopolitan  fashion, the article was also accompanied by a quiz: in 
this case, a mini programmer aptitude test adapted from an exam devel-
oped at NCR.  103   The infl ux of new programmer trainees and vocational 

 Figure 3.4 
 Cartoon from  Datamation  magazine, 1962. 
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school graduates into the software labor market only exacerbated an 
already-dire labor situation. The market was fl ooded with aspiring pro-
grammers with little training and no practical experience. As one study 
by the Association for Computing Machinery ’ s (ACM) SIGCPR warned, 
by 1968 there was a growing  oversupply  of a certain undesirable species 
of software specialist.  “ The ranks of the computer world are being 
swelled by growing hordes of programmers, systems analysts and related 
personnel, ”  the SIGCPR argued.  “ Educational, performance and profes-
sional standards are virtually nonexistent and confusion grows rampant 
in selecting, training, and assigning people to do jobs. ”   104   

 It was not just employers who were frustrated by the confused state 
of the labor market.  “ As long as I have been programming, I have heard 
about this  ‘ extreme shortage of programmers, ’  ”  wrote one  Datamation  
reader, whose husband had unsuccessfully tried to break into the com-
puter business.  “ How does a person . . . get into programming? ”   105   
 “ Could you answer for me the question as to what in the eyes of industry 
constitutes a  ‘ qualifi ed ’  programmer? ”  pleaded another aspiring job can-
didate.  “ What education, experience, etc. are considered to satisfy the 
 ‘ qualifi ed ’  status? ”   106   A background in mathematics seemed increasingly 
irrelevant to programming, particularly in the business world, and even 
the emerging discipline of computer science appeared to offer no practi-
cal solution to the problem of training programmers en masse. In the 
absence of clear educational standards or functional aptitude exams, 
would-be programmers and employers alike were preyed on by a growing 
number of vocational schools that promised to supply both programmer 
training and trained programmers. During the mid-1960s these schools 
sprang up all over the country, promising high salaries and dazzling 
career opportunities, and fl ooding the market with candidates who were 
prepared to pass programming aptitude tests but nothing more. 
Advertisements for these vocational schools, which appeared everywhere 
from the classifi ed section of newspapers to the back of paper match-
books, emphasized the desperate demand for programmers and the low 
barriers of entry to the discipline:  “ There ’ s room for everyone. The 
industry needs people. You ’ ve got what it takes. ”   107     

 The typical vocational school offered between three and nine months 
of training, and cost between $1,000 and $2,500. Students at these 
schools would receive four to fi ve hours a day of training in various 
aspects of electronic data processing, including programming but also 
more basic tasks such as keypunch and tabulating machine operation. 
What programming training they did receive focused on the memoriza-
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tion of syntax rather than hands-on problem solving. Because of the high 
costs associated with renting computer time, the curriculum was often 
padded with material only tangentially related to computing — such as 
several days ’  worth of review of basic arithmetic. A few schools did lease 
their own computers, but these were typically the low-end IBM/360 
Model 20, which did not possess its own disk or tape mechanism. At 
some schools students could expect to only receive as little as one hour 
total of machine time, which had to be shared among a class of up to 
fi fteen students.  108   

 These schools were generally profi t-oriented enterprises more inter-
ested in quantity than quality. The entrance examinations, curriculum, 
and fee structure of these programs were carefully constructed to comply 
with the requirements of the GI Bill. Aggressive salespeople promised 
guaranteed placement and starting salaries of up to $700 per week — at 
a time when the industry average weekly salary for junior programmers 
was closer to $400 to $500. Since these salespeople were paid on com-
mission, and could earn as much as $150 for every student who enrolled 
in a $1,000 course of study, they encouraged almost anyone to apply; 
for many of the vocational schools, the  “ only meaningful entrance 
requirements are a high school diploma, 18 years of age . . . and the 
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ability to pay. ”   109   Instructors were also compensated on a pay-as-you-go 
basis, which encouraged them to retain even the least competent of their 
students. Some of these instructors were working programmers moon-
lighting for additional cash, but given the overall shortage of experienced 
programmers in this period, most had little, if any, industry experience. 
Some had only the training that they had received as students in the very 
programs in which they were now serving as instructors.  

 Since these schools had an interest in recruiting as many students 
as possible, they made wide use of aptitude testing. Most included 
watered-down versions of IBM PAT in their marketing brochures, 
although a few offered coupons for independent testing bureaus. The 
version of PAT that many schools relied on was graded differently from 
the standardized test. A student could receive a passing grade after 
answering as few as 50 percent of the questions correctly, and a grade 
of A required only a score of 70 percent. The scores on these entrance 
examinations was basically irrelevant, with C and D students frequently 
receiving admission, but graduating students were required take the full 
version of PAT. Only the top-scoring students were passed on to employ-
ment agencies, thereby boosting the school ’ s claims about placement 
records.  110   

 There were some vocational training programs that were legitimate. 
The Chicago-based Automation Institute, for example — sponsored by 
the Council for Economic and Industrial Research (itself largely spon-
sored by the computer manufacturer Control Data Corporation) — main-
tained relatively strict standards in its nationwide chain of franchises. In 
1967, the Automation Institute became the fi rst EDP school to be accred-
ited by the Accrediting Commission for Business Schools. There were 
also programs offered by community colleges and junior colleges (and 
even some high schools) that at least attempted to provide substantial 
EDP training. The more legitimate schools oriented their curricula toward 
the requirements of industry. But the requirements of the industry were 
poorly understood or articulated, and vocational schools suffered from 
many of the same problems that plagued industry personnel managers: 
a shortage of experienced instructors, the lack of established standards 
and curricula, and general uncertainty about what skills and aptitudes 
made for a qualifi ed programmer. For the most part, the conditions at 
most vocational EDP schools was so scandalous that by the end of the 
decade many companies imposed strict  “ no EDP school graduate ”  poli-
cies.  111   A 1970 report by an ACM ad-hoc committee on private EDP 
schools confi rmed this reluctance on the part of employers and concluded 
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that fewer than 60 percent of EDP school graduates were able to land 
jobs in the EDP fi eld.  112     

 Making Programming Masculine  

 One unintended consequence of the uncertainty in the labor market 
for programming personnel refl ected in — and in part created by — the 
widespread use of aptitude tests and personality profi les by corporate 
employers and vocational schools was the continued masculinization of 
the computing professions. We have already seen how the successful 
(re)construction of programming in the 1950s as a black art depended, 
in part, on particularly male notions of mastery, creativity, and auton-
omy. The increasingly male subculture of computer hacking (an anach-
ronistic term in this period, but appropriately descriptive nevertheless) 
was reinforced and institutionalized by the hiring practices of the 
industry. 

 At fi rst glance, the representation of programming ability as innate, 
rather than an acquired skill or the product of a particular form of tech-
nical education, might be seen as gender neutral or even female friendly. 
The aptitude tests for programming ability were, after all, widely distrib-
uted among female employees, including clerical workers and secretaries. 
And according to one 1968 study, it was found that a successful team 
of computer specialists included an  “ ex-farmer, a former tabulating 
machine operator, an ex-key punch operator, a girl who had done sec-
retarial work, a musician and a graduate in mathematics. ”  The last, the 
mathematician,  “ was considered the least competent. ”   113   As hiring prac-
tices went, aptitude testing at least had the virtue of being impersonal 
and seemingly objective. Being a member of the old boys ’  club does not 
do much for one ’ s scores on a standardized exam (Except to the extent 
that fraternities and other male social organizations served as clearing-
houses for stolen copies of popular aptitude tests such as IBM PAT. Such 
theft and other forms of cheating were rampant in the industry, and 
taking the test more than once was almost certain to lead to a passing 
grade.) 

 Yet aptitude tests and personality profi les did embody and privilege 
masculine characteristics. For instance, despite the growing consensus 
within the industry (especially in business data processing) that mathe-
matical training was irrelevant to the performance of most commercial 
programming tasks, popular aptitude tests such as IBM PAT still empha-
sized mathematical ability.  114   Some of the mathematical questions tested 



78  Chapter 3

only logical thinking and pattern recognition, but others required formal 
training in mathematics — a fact that even  Cosmopolitan  recognized as 
discriminating against women. Still, the kinds of questions that could be 
easily tested using multiple-choice aptitude tests and mass-administered 
personality profi les necessarily focused on mathematical trivia, logic 
puzzles, and word games. The test format simply did not allow for any 
more nuanced, meaningful, or context-specifi c problem solving. And in 
the 1950s and 1960s at least, such questions did privilege the typical 
male educational experience.   

 Even more obviously gendered were the personality profi les that rein-
forced the ideal of the  “ detached ”  (read male) programmer. It is almost 
certainly the case that these profi les represented, at best, deeply fl awed 
scientifi c methodology. But they almost equally certainly created a 
gender-biased feedback cycle that ultimately selected for programmers 
with stereotypically masculine characteristics. The primary selection 
mechanism used by the industry selected for antisocial, mathematically 

 Figure 3.6 
 According to the original caption for this cartoon,  “ Programmers are crazy about 
puzzles, tend to like research applications and risk-taking, and don ’ t like people. ”  
William M. Cannon and Dallis K. Perry,  “ A Vocational Interest Scale for 
Computer Programmers, ”   Proceedings of the Fourth SIGCPR Conference on 
Computer Personnel Research  (Los Angeles: ACM, 1966), 61 – 82. 
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inclined males, and therefore antisocial, mathematically inclined males 
were overrepresented in the programmer population; this in turn rein-
forced the popular perception that programmers  ought  to be antisocial 
and mathematically inclined (and therefore male), and so on ad 
infi nitum. Combined with the often-explicit association of programming 
personnel with beards, sandals, and scruffi ness, it is no wonder that 
women felt increasingly excluded from the center of the computing 
community. 

 Finally, the explosion of unscrupulous vocational schools in this 
period may also have contributed to the marginalization of women in 
computing. Not only were these schools constructed deliberately on the 
model of the older — and female-oriented — typing academies and busi-
ness colleges, but they also preyed specifi cally on those aspirants to the 
programming professions who most lacked access to traditional occupa-
tional and fi nancial assets, such as those without technical educations, 
college degrees, personal connections, or business experience. It was 
frequently women who fell into this category. At the very least, by 
sowing confusion in the programmer labor market through encouraging 
false expectations, infl ating standards, and rigging aptitude tests, the 
schools made it even more diffi cult for women and other unconventional 
candidates to enter the profession. 

 This bias toward male programmers was not so much deliberate as it 
was convenient — a combination of laziness, ambiguity, and traditional 
male privilege. The fact that the use of lazy screening practices inadver-
tently excluded large numbers of potential  female  trainees was simply 
never considered. But the increasing assumption that the average pro-
grammer was also male did play a key role in the establishment of a 
highly masculine programming subculture. 

 The Search for Solutions 

 Given that aptitude tests were perceived by many within the industry to 
be inaccurate, irrelevant, and susceptible to widespread cheating, why 
did so many employers continue to make extensive use of them well into 
the 1980s? The most obvious reason is that they had few other options. 
The rapid expansion of the commercial computer industry in the early 
1960s demanded the recruitment of large armies of new professional 
programmers. At the same time, the increasing diversity and complexity 
of software systems in this period — driven in large part by the shift 
in focus from scientifi c to business computing — meant that traditional 
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measures of programming ability, most specifi cally formal training in 
mathematics or logic, were becoming ever less relevant to the quotidian 
practice of programming. The general lack of consensus about what 
constituted relevant knowledge or experience in the computer fi elds 
undermined attempts to systematize the production of programmers. 
Vocational EDP schools were seen as being too lax in their standards, 
and the emerging academic discipline of computer science was viewed 
as too stringent. Neither was believed to be a reliable short-term solution 
to the burgeoning labor shortage in programming. 

 In the face of such uncertainty and ambiguity, aptitude testing and 
personality profi ling promised at least the illusion of managerial control. 
While many of the methods used by employers at this time appear hope-
lessly naive to modern observers, they represented the cutting edge of 
personnel research. Since at least the 1920s, personnel managers had 
been attempting to professionalize along the lines of a scientifi c disci-
pline.  115   The large-scale use of psychometric technologies for personnel 
selection during the fi rst and second world wars had seemed to many to 
validate their claims to scientifi c legitimacy.  116   In the immediate postwar 
period, personnel researchers established new academic journals, profes-
sional societies, and academic programs. It is no coincidence that the 
heyday of aptitude testing in the software industry corresponded with 
this period of intense professionalization in the fi elds that would eventu-
ally come to be known collectively as human resources management. The 
programmer labor crisis of the 1950s provided the perfect opportunity 
for these emerging experts to practice their craft. 

 On an even more pragmatic level, however, aptitude testing offered a 
signifi cant advantage over the available alternatives. To borrow a phrase 
from contemporary computer industry parlance, aptitude testing was a 
solution that  scaled effi ciently . That is to say, the costs of aptitude testing 
grew only linearly (as opposed to exponentially) with the number of 
applicants. It was possible, in short, to administer aptitude tests quickly 
and inexpensively to thousands of aspiring programmers. Compared to 
such time-consuming and expensive alternatives such as individual inter-
views or formal educational requirements, aptitude testing was a cheap 
and easy solution. And since the contemporary emphasis on individual 
genius over experience or education meant that a star programmer 
was as likely to come from the secretarial pool as the engineering depart-
ment, the ability to screen large numbers of potential trainees was 
preeminent. 
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 Finally, in addition to its practical economic advantages, large-scale 
aptitude testing programs represented for many corporate employers a 
small but important step toward the eventual goal of mass-producing 
programmer trainees. Such tests were obviously not intended to evaluate 
the skills and abilities of experienced programmers; they were clearly 
tools for identifying the lowest common denominator among program-
mer talent. The explicit goal of testing programs at large employers like 
SDC was to reduce the overall level of skill among the programming 
workforce. By identifying the minimum level of aptitude required to be 
a competent programmer, SDC could reduce its dependence on individ-
ual programmers. It could construct a software factory out of the inter-
changeable parts produced by the impersonal and industrial processes of 
its aptitude test regimes. 

 It is this last consequence of aptitude testing that is the most interest-
ing and perplexing. Like all of the proposed solutions to the labor short-
age in programming, aptitude testing also embodied certain assumptions 
about the nature of the underlying problem. At fi rst glance, the continued 
emphasis that aptitude tests and personality profi les placed on innate 
ability and creativity appeared to have served the interests of program-
ming professionals. By reinforcing the contemporary belief that good 
programmers were born, not made, they provided individual program-
mers with substantial leverage in the job market. Experienced program-
mers made good money, had numerous opportunities for horizontal 
mobility within the industry, and were relatively immune from manage-
rial imperatives. On the other hand, aptitude tests and personality 
profi les also emphasized the negative perception of programmers as 
idiosyncratic, antisocial, and potentially unreliable. Many computer spe-
cialists were keenly aware of the crisis of labor and the tension it was 
producing in their industry and profession as well as in their own indi-
vidual careers. Although many appreciated the short-term benefi ts of the 
ongoing programmer shortage, many believed that the continued crisis 
threatened the long-term stability and reputation of their industry and 
profession. 

 As aptitude tests were increasingly used in a haphazard and irrespon-
sible fashion, their value to both employers and computer specialists 
degraded considerably. Over the course of the late 1960s, new approaches 
to solving the personnel crisis emerged, each of which embodied different 
attitudes toward the nature of programming expertise. Beginning in the 
early 1960s aspiring professional societies, such as the Data Processing 
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Management Association, developed certifi cation programs for specifi c 
fi elds in computer programming, systems analysis, and software design.  117   
These were really certifi cation exams, intended to validate the credentials 
of society members, not aptitude tests. But they suggested that a new 
approach to personnel management — the cultivation of professional 
norms and institutions — might be the solution to the personnel crisis. At 
the same time, academically minded researchers worked to elaborate a 
theory of computer science that would place the discipline of program-
ming on a fi rm scientifi c foundation. For the time being, however, the 
preferred solution was technological rather than professional or theoreti-
cal: drawing from traditional industrial approaches to increasing pro-
ductivity and eliminating human labor, computer manufacturers worked 
to automate the programming process. For managers and employers in 
the late 1950s and early 1960s, the development of  “ automatic program-
ming systems ”  seemed to offer the perfect solution to the labor crisis in 
programming. 
      



 

 4 

 Is a language really going to solve this problem? Do we really design languages 
for use by what we might call professional programmers or are we designing 
them for use by some sub-human species in order to get around training and 
having good programmers? Is a language ever going to get around the training 
and having good programmers? 

  — RAND Symposium on Programming Languages, 1962 

 Automatic Programmers 

 The fi rst commercial electronic digital computers became available in the 
early 1950s. For a short period, the focus of most manufacturers was on 
the development of innovative hardware. Most of the users of these early 
computers were large and technically sophisticated corporations and 
government agencies. In the middle of the decade, however, users and 
manufacturers alike became increasingly concerned with the rising cost 
of software development. By the beginning of the 1960s, the origins of 
 “ software turmoil ”  that would soon become a full-blown software crisis 
were readily apparent.  1   

 As larger and more ambitious software projects were attempted, and 
the shortage of experienced programmers became more pronounced, 
industry managers began to look for ways to reduce costs by simplifying 
the programming process. A number of potential solutions were pro-
posed: the use of aptitude tests and personnel profi les to identify the 
truly gifted superprogrammers; updated training standards and com-
puter science curricula; and new management methods that would 
allow for the use of less-skilled laborers. The most popular and widely 
adopted solution, however, was the development of automatic program-
ming technologies. These new tools promised to  “ eliminate the middle-
man ”  by allowing users to program their computers directly, without 
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the need for expensive programming talent.  2   The computer would 
program itself. 

 Despite their associations with deskilling and routinization, automatic 
programming systems could also work to the benefi t of occupational 
programmers and academic computer scientists. High-level program-
ming promised to reduce the tedium associated with machine coding, 
and allowed programmers to focus on more system-oriented — and high-
status — tasks such as analysis and design. Language design and develop-
ment served as a focus for productive theoretical research, and helped 
establish computer science as a legitimate academic discipline. And auto-
matic programming systems never did succeed in eliminating the need 
for skilled programmers. In many ways, they contributed to the elevation 
of the profession, rather than the reverse, as was originally intended by 
some and feared by others. 

 In order to understand why automatic programming languages were 
such an appealing solution to the software crisis as well as why they 
apparently had so little effect on the outcome or severity of the crisis, it 
is essential to consider these languages as parts of larger social and 
technological systems. This chapter will describe the emergence of pro-
gramming languages as a means of managing the complexity of the 
programming process. It will trace the development of several of the most 
prominent automatic programming languages, particularly FORTRAN 
and COBOL, and situate these technologies in their appropriate histori-
cal context. Finally, it will explore the signifi cance of these technologies 
as potential solutions to the ongoing software crisis of the late 1950s 
and early 1960s. 

 Assemblers, Compilers, and the Origins of the Subroutine 

 At the heart of every automatic programming system was the notion that 
a computer could be used, at least in certain limited situations, to gener-
ate the machine code required to run itself or other computers. This was 
an idea with great practical appeal: although programming was increas-
ingly seen as a legitimate and challenging intellectual activity, the actual 
coding of a program still involved tedious and painstaking clerical work. 
For example, the single instruction to  “ add the short number in memory 
location 25, ”  when written out in the machine code understood by most 
computers, was stored as a binary number such as 111000000000110010. 
This binary notation was obviously diffi cult for humans to remember 
and manipulate. As early as 1948, researchers at Cambridge University 
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began working on a system to represent the same instruction in a more 
comprehensible format. The same instruction to  “ add the short number 
in memory location 25 ”  could be written out as A 25 S, where A stood 
for  “ add, ”  25 was the decimal address of the memory location, and S 
indicated that a  “ short ”  number was to be used.  3   A Cambridge PhD 
student named David Wheeler wrote a small program called Initial 
Orders that automatically translated this symbolic notation into the 
binary machine code required by the computer. 

 The focus of early attempts to develop automatic programming utili-
ties was on eliminating the more unpleasant aspects of computer coding. 
Although in theory the actual process of programming was relatively 
straightforward, in practice it was quite diffi cult and time-consuming. A 
single error in any one of a thousand instructions could cause an entire 
program to fail. It often took hours or days of laborious effort simply 
to get a program to work properly. The lack of tools made fi nding errors 
next to impossible. As Maurice Wilkes, another Cambridge researcher, 
would later vividly recall,  “ It had not occurred to me that there was 
going to be any diffi culty about getting programs working. And it was 
with somewhat of a shock that I realized that for the rest of my life I 
was going to spend a good deal of my time fi nding mistakes that I had 
made in my programs. ”   4   

 These errors, or bugs as they soon came to be known, were often 
introduced in the process of transcribing or reusing code fragments. 
Wilkes and others quickly realized that there was a great deal of code 
that was common to different programs — a set of instructions to calcu-
late the sine function, for example. In addition to assigning his student 
Wheeler to the development of the Initial Orders program, Wilkes set 
him to the task of assembling a library of such common subroutines. 
This method of reusing previously existing code became one of the most 
powerful techniques available for increasing programmer effi ciency. The 
publication in 1951 of the fi rst textbook on the  Preparation of Programs 
for an Electronic Digital Computer  by Wilkes, Wheeler, and Cambridge 
colleague Stanley Gill helped disseminate these ideas throughout the 
nascent programming community.  5   

 While Wilkes, Wheeler, and Gill were refi ning their notions of a sub-
routine library, programmers in the United States were developing their 
own techniques for eliminating some of the tedium associated with 
coding. In 1949, John Mauchly of UNIVAC created his Short Order 
Code for the BINAC computer. The Short Order Code allowed Mauchly 
to directly enter equations into the BINAC using a fairly conventional 
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algebraic notation. The system did not actually produce program code, 
however: it was an interpretative system that merely called up predefi ned 
subroutines and displayed the result. Nevertheless, the Short Order Code 
represented a considerable improvement over the standard binary instruc-
tion set. 

 In 1951 Grace Hopper, another UNIVAC employee, wrote the fi rst 
automatic program compiler. Although Hopper, like many other pro-
grammers, had benefi ted from the development of a subroutine library, 
she also perceived the limitations connected with its use. In order to be 
widely applicable, subroutines had to be written as generically as possi-
ble. They all started at line 0 and were numbered sequentially from there. 
They also used a standard set of register addresses. In order to make use 
of a subroutine, a programmer had to both copy the routine code exactly 
and make the necessary adjustments to the register addresses by adding 
an offset appropriate to the particular program at hand. And as Hopper 
was later fond of asserting, programmers were both  “ lousy adders ”  
and  “ lousy copyists. ”   6   The process of utilizing the subroutine code 
almost inevitably added to the number of errors that eventually had to 
be debugged. 

 To avoid the problems associated with manually copying and manipu-
lating subroutine libraries, Hopper developed a system to automatically 
gather subroutine code and make the appropriate address adjustments. 
The system then compiled the subroutines into a complete machine 
program. Her A-0 compiler dramatically reduced the time required to 
put together a working application. In 1952 she extended the language 
to include a simpler mnemonic interface. For example, the mathematical 
statement X + Y = Z could be written as ADD 00X 00Y 00Z. Multiplying 
Z by T to give W was MUL 00Z 00T 00W. The combination of an 
algebraic-language interface and a subroutine compiler became the basis 
for almost all modern programming languages. By the end of 1953 the 
A-2 compiler, as it was then known, was in use at the Army Map Service, 
Lawrence Livermore Laboratories, New York University, the Bureau of 
Ships, and the David Taylor Model Basin. Although it would take some 
time before automatic programming systems were universally adopted, 
by the mid-1950s the technology was well on its way to becoming an 
essential element of programming practice. 

 Over the course of the next several decades, more than a thousand 
code assemblers, programming languages, and other automatic program-
ming systems were developed in the United States alone. Understanding 
how these systems were used, how and to whom they were marketed, 
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and why there were so many of them is a crucial aspect of the history 
of the programming professions. Automatic programming languages 
were the fi rst and perhaps the most popular response to the burgeoning 
software crisis of the late 1950s and early 1960s. In many ways the entire 
history of computer programming — both social and technical — has been 
defi ned by the search for a silver bullet capable of slaying what Frederick 
Brooks famously referred to as the werewolf of  “ missed schedules, blown 
budgets, and fl awed products. ”   7   The most obvious solution to what was 
often perceived to be a technical problem was, not surprisingly, the 
development of better technology.   

 Automatic programming languages were an appealing solution to the 
software crisis for a number of reasons. Computer manufacturers were 
interested in making software development as straightforward and inex-
pensive as possible. After all, as an early introduction to programming 
on the UNIVAC pointedly reminded its readers,  “ The sale and accep-
tance of these machines is, to some extent, related to the ease with which 
they can be programmed. As a result, a great deal of research has been 
done, or is being done, to make programming simpler and more under-
standable. ”   8   Advertisements for early automatic programming systems 
made outrageous and unsubstantiated claims about the ability of their 
systems to simplify the programming process.  9   In many cases, they were 
specifi cally marketed as a replacement for human programmers. Fred 
Gruenberger noted this tendency as early as 1962 in a widely dissemi-
nated transcript of a RAND Symposium on Programming Languages: 
 “ You know, I ’ ve never seen a hot dog language come out yet in the last 
14 years — beginning with Mrs. Hopper ’ s A-0 compiler . . . that didn ’ t 
have tied to it the claim in its brochure that this one will eliminate all 
programmers. The last one we got was just three days ago from General 
Electric (making the same claim for the G-WIZ compiler) that this one 
will eliminate programmers. Managers can now do their own program-
ming; engineers can do their own programming, etc. As always, the claim 
seems to be made that programmers are not needed anymore. ”   10   

 Advertisements for these new automatic programming technologies, 
which appeared in management-oriented publications such as  Business 
Week  and the  Wall Street Journal  rather than  Datamation  or the 
 Communications of the ACM , were clearly aimed at a pressing concern: 
the rising costs associated with fi nding and recruiting talented program-
ming personnel. This perceived shortage of programmers was an issue 
that loomed large in the minds of many industry observers.  “ First on 
anyone ’ s checklist of professional problems, ”  declared a  Datamation  
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 Figure 4.1 
  “ Susie Meyers Meets PL/1 ”  advertisement, IBM Corporation, 1968. 
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editorial in 1962,  “ is the manpower shortage of both trained and even 
untrained programmers, operators, logical designers and engineers in 
a variety of fl avors. ”   11   The so-called programmer problem became 
an increasingly important feature of contemporary crisis rhetoric.  “ The 
number of computers in use in the U.S. is expected to leap from the 
present 35,000 to 60,000 by 1970 and to 85,000 in 1975, ”   Fortune  
magazine ominously predicted in 1967;  “ The software man will be in 
even greater demand in 1970 than he is today. ”   12   Automatic program-
ming systems held an obvious appeal for managers concerned with the 
rising costs of software development. 

    Figure 4.1   shows one of a series of advertisements that presented an 
unambiguous appeal to gender associations: machines could not only 
replace their human female equivalents but also were an improvement 
on them. In its  “ Meet Susie Meyers ”  advertisements for its PL/1 pro-
gramming language, the IBM Corporation asked its users an obviously 
rhetorical question:  “ Can a young girl with no previous programming 
experience fi nd happiness handling both commercial and scientifi c appli-
cations, without resorting to an assembler language? ”  The answer, of 
course, was an enthusiastic  “ yes! ”  Although the advertisement promised 
a  “ brighter future for your programmers ”  (who would be free to  “ con-
centrate more on the job, less on the language ” ), it also implied a low-
cost solution to the labor crisis in software. The subtext of appeals like 
this was none too subtle: if pretty little Susie Meyers, with her spunky 
miniskirt and utter lack of programming experience, could develop soft-
ware effectively in PL/1, so could just about anyone. 

 It should be noted that use of women as proxies for low-cost or low-
skill labor was not confi ned to the computer industry. One of the time-
honored strategies for dealing with labor  “ problems ”  in the United States 
has been the use of female workers. There is a vast historical literature 
on this topic; from the origins of the U.S. industrial system, women have 
been seen as a source of cheap, compliant, and undemanding labor.  13   
The same dynamic was at work in computer programming. In a 1963 
 Datamation  article lauding the virtues of the female computer program-
mer, for example, Valerie Rockmael focused specifi cally on her stability, 
reliability, and relative docility:  “ Women are less aggressive and more 
content in one position. . . . Women consider fringe benefi ts of more 
importance than their male peers and are more prone to stay on the job 
if they are content, regardless of a lack of advancement. They also main-
tain their original geographic roots and are less willing to travel or 
change job locations, particularly if they are married or engaged. ”  In an 
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era in which turnover rates for programmers  averaged  20 percent annu-
ally, this was a compelling argument for employers, since their substan-
tial initial expenditures on training  “ pays a greater dividend ”  when 
invested in female employees. Note that this was something of a back-
handed compliment, aimed more at the needs of employers than female 
programmers. In fact, the  “ most undesirable category of programmers, ”  
Rockmael contended, was  “ the female about 21 years old and unmar-
ried, ”  because  “ when she would start thinking about her social commit-
ments for the weekend, her work suffered proportionately. ”   14   

 Whatever the motivation behind the development and adoption of 
any particular automatic programming system, by the mid-1950s, 
a number of these systems were being proposed by various manufac-
turers. Two of the most popular and signifi cant were FORTRAN and 
COBOL, each developed by different groups and intended for different 
purposes. 

 FORTRAN 

 Although Hopper ’ s A-2 compiler was arguably the fi rst modern auto-
matic programming system, the fi rst widely used and disseminated pro-
gramming language was FORTRAN, developed in 1954 – 1957 by a team 
of researchers at the IBM Corporation. As early as 1953, the mathemati-
cian and programmer John Backus had proposed to his IBM employers 
the development of a new, scientifi cally oriented programming language. 
This new system for mathematical FORmula TRANslation would be 
designed specifi cally for use with the soon-to-be-released IBM 704 sci-
entifi c computer. It would  “ enable the IBM 704 to accept a concise for-
mulation of a problem in terms of a mathematical notation and [would] 
produce automatically a high-speed 704 program for the solution of the 
problem. ”   15   The result would be faster, more reliable, and less expensive 
software development. FORTRAN would not only  “ virtually eliminate 
programming and debugging ”  but also reduce operation time, double 
machine output, and provide a means of feasibly investigating complex 
mathematical models. In January 1954 Backus was given the go-ahead 
by his IBM superiors, and a completed FORTRAN compiler was released 
to all 704 installations in April 1957. 

 From the beginning, development of the FORTRAN language was 
focused around a single overarching design objective: the creation of 
effi cient machine code. Project leader Backus was highly critical of exist-
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ing automatic programming systems, which he saw as little more than 
mnemonic code assemblers or collections of subroutines. He also felt 
little regard for most contemporary human programmers, who he often 
derisively insisted on referring to as coders. When asked about the trans-
formation of the coder into the programmer, for instance, Backus dismis-
sively suggested that  “ it ’ s the same reason that janitors are now called 
 ‘ custodians. ’   ‘ Programmer ’  was considered a higher class enterprise than 
 ‘ coder, ’  and things have a tendency to move in that direction. ”   16   

 A truly automatic programming language, believed Backus, would 
allow scientists and engineers to communicate directly with the com-
puter, thus eliminating the need for ineffi cient and unreliable program-
mers.  17   The only way that such a system would be widely adopted, 
however, was to ensure that the code it produced would be at least as 
effi cient, in terms of size and performance, as that produced by its human 
counterparts.  18   Indeed, one of the primary objections raised against 
automatic programming languages in this period was their relative inef-
fi ciency: one of the higher-level languages used by SAGE developers 
produced programs that ran an order of magnitude slower than those 
hand coded by a top-notch programmer.  19   In an era when programming 
skill was considered to be a uniquely creative and innate ability, and 
when the state of contemporary hardware made performance consider-
ations paramount, users were understandably skeptical of the value of 
automatically generated machine code.  20   

 The focus of the FORTRAN developers was therefore on the construc-
tion of an effi cient compiler, rather than on the design of the language. 

 In order to ensure that the object code produced by the FORTRAN 
compiler was as effi cient as possible, several design compromises had to 
be made. FORTRAN was originally intended primarily for use on the 
IBM 704, and contained several device-specifi c instructions. Little thought 
was given to making FORTRAN machine independent, and early imple-
mentations varied greatly from computer to computer, even those devel-
oped by the same manufacturer. The language was also designed solely 
for use in numerical computations, and was therefore diffi cult to use for 
applications requiring the manipulation of alphanumeric data. The fi rst 
FORTRAN manual made this focus on mathematical problem solving 
clear:  “ The FORTRAN language is intended to be capable of expressing 
any problem of numerical computation. In particular, it deals easily with 
problems containing large sets of formulae and many variables and it 
permits any variable to have up to three independent subscripts. ”  For 
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problems in which machine words have a logical rather than numerical 
meaning, however, FORTRAN is less satisfactory, and it may fail entirely 
to express some such problems. Nevertheless many logical operations 
not directly expressible in the FORTRAN language can be obtained by 
making use of provisions for incorporating library routines.  21   

 The power of the FORTRAN language for scientifi c computation can 
be clearly demonstrated by a simple real-world example. The mathemati-
cal expression described by the function  Z i A X BYi i i i( ) = +2   could be 
written in FORTRAN using the following syntax: 

 Z(I) = SQRTF(A(I)*X(I)**2 + B(I)*Y(I)) 

 Using such straightforward algorithmic expressions, a programmer could 
write extremely sophisticated programs with relatively little training and 
experience.  22   

 Although greeted initially with skepticism, the FORTRAN project was 
enormously successful in the long term. A report on FORTRAN usage 
written just one year after the fi rst release of the language indicated that 
 “ over half [of the 26 installations of the 704] used FORTRAN for more 
than half of their problems. ”   23   By the end of 1958, IBM produced 
FORTRAN systems for its 709 and 650 machines. As early as January 
1961 Remington Rand UNIVAC became the fi rst non-IBM manufacturer 
to provide FORTRAN, and by 1963 a version of the FORTRAN com-
piler was available for almost every computer then in existence.  24   The 
language was updated substantially in 1958 and again in 1962. In 1962, 
FORTRAN became the fi rst programming language to be standardized 
through the American Standards Association, which further established 
FORTRAN as an industrywide standard.  25   

 The academic community was an early and crucial supporter of 
FORTRAN, contributing directly to its growing popularity. The 
FORTRAN designers in general, and Backus in particular, were regular 
participants in academic forums and conferences. Backus himself had 
delivered a paper at the seminal Symposium on Automatic Programming 
for Digital Computers hosted by the Offi ce of Naval Research in 1954. 
One of his top priorities, after the compilation of the FORTRAN 
 Programmer ’ s Reference Manual  (itself a model of scholarly elegance 
and simplicity), was to publish an academically oriented article that 
would introduce the new language to the scientifi c community.  26   Backus 
would later become widely known throughout the academic community 
as the codeveloper of the Backus-Naur Form, the notational system used 
to describe most modern programming languages. 
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 FORTRAN was appealing to scientists and other academics for a 
number of reasons. First of all, it was designed and developed by one of 
their own. Backus spoke their language, published in their journals, and 
shared their disdain for coders and other  “ technicians. ”  Second, 
FORTRAN was designed specifi cally to solve the kinds of problems that 
interested academics. Its use of algebraic expressions greatly simplifi ed 
the process of defi ning mathematical problems in machine-readable 
syntax. Finally, and perhaps most signifi cantly, FORTRAN provided 
them more direct access to the computer. Its introduction  “ caused a 
partial revolution in the way in which computer installations were run 
because it became not only possible but quite practical to have engineers, 
scientists, and other people actually programming their own problems 
without the intermediary of a professional programmer. ”   27   The use of 
FORTRAN actually became the centerpiece of an ongoing debate about 
 “ open ”  versus  “ closed ”  programming  “ shops. ”  The closed shops allowed 
only professional programmers to have access to the computers; open 
shops made these machines directly available to their users. 

 The association of FORTRAN with scientifi c computing was a self-
replicating phenomenon. Academics preferred FORTRAN to other lan-
guages because they believed it allowed them to do their work more 
effectively and they therefore made FORTRAN the foundation of their 
computing curricula. Students learned the language in university courses 
and were thus more effective at getting their work done in FORTRAN. 
A positive feedback loop was established between FORTRAN and aca-
demia. A survey in 1973 of more than thirty-fi ve thousand students 
taking college-level computing courses revealed that 70 percent were 
learning to program using FORTRAN. The next most widely used alter-
native, BASIC, was used by only 13 percent, and less than 3 percent were 
exposed to business-oriented languages such as COBOL.  28   Throughout 
the 1960s and 1970s, FORTRAN was clearly the dominant language of 
scientifi c computation. 

 COBOL 

 On April 8, 1959, a group of computer manufacturers, users, and aca-
demics met at the University of Pennsylvania ’ s Computing Center to 
discuss a proposal to develop  “ the specifi cations for a common business 
language [CBL] for automatic digital computers. ”   29   The goal was to 
develop a programming language specifi cally aimed at the needs of the 
business data processing community. This new language would rely on 
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simple Englishlike commands, would be easier to use and understand 
than existing scientifi c languages, and would provide machine-indepen-
dent compatibility: that is, the same program could be run on a wide 
variety of hardware with little modifi cation. 

 Although this proposal originated in the ElectroData Division of the 
Burroughs Corporation, from the beginning it had broad industrial and 
governmental support. The director of data systems for the U.S. 
Department of Defense readily agreed to sponsor a formal meeting on 
the proposal, and his enthusiastic support indicates a widespread con-
temporary interest in business-oriented programming:  “ The Department 
of Defense was pleased to undertake this project: in fact, we were embar-
rassed that the idea for such a common language had not had its origin 
in Defense since we would benefi t so greatly from such a project. ”   30    

 The fi rst meeting to discuss a CBL was held at the Pentagon on May 
28 – 29, 1959. Attending the meeting were fi fteen offi cials from seven 
government organizations; fi fteen representatives of the major computer 
manufacturers (including Burroughs, GE, Honeywell, IBM, NCR, 
Phillips, RCA, Remington Rand UNIVAC, Sylvania, and ICT); and 
eleven users and consultants (signifi cantly, only one member of this last 
group was from a university). Despite the diversity of the participants, 
the meeting produced both consensus and a tangible plan of action. The 
group not only decided that CBL was necessary and desirable but also 
agreed on its basic characteristics: a problem-oriented, Englishlike syntax; 
a focus on the ease of use rather than power or performance; and a 
machine-independent design. Three committees were established, under 
the auspices of a single Executive Committee of the Conference on 
Data Systems Languages (CODASYL), to suggest short-term, intermedi-
ate, and long-range solutions, respectively. As it turned out, it was the 
short-term committee that produced the most lasting and infl uential 
proposals.   

 The original purpose of the Short-Range Committee was to evaluate 
the strengths and weaknesses of existing automatic compilers, and rec-
ommend a  “ short term composite approach (good for the next year or 
two) to a common business language for programming digital comput-
ers. ”   31   There were three existing compiler systems that the committee 
was particularly interested in considering: FLOW-MATIC, which had 
been developed for Remington Rand UNIVAC by Grace Hopper (as an 
outgrowth of her A-series algebraic and B-series business compilers), and 
which was actually in use by customers at the time; AIMACO, developed 
for the Air Force Air Materiel Command; and COMTRAN (soon to be 
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 Figure 4.2 
 NCR, Quickdraw programming language, 1968. 
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renamed the Commercial Translator), a proposed IBM product that 
existed only as a specifi cation document. Other manufacturers such as 
Sylvania and RCA were also working on the development of similar 
languages. Indeed, one of the primary goals of the Short-Range Committee 
was to  “ nip these projects in the bud ”  and provide incentives for manu-
facturers to standardize on the CBL rather than pursue their own inde-
pendent agendas. Other languages considered were Autocoder III, 
SURGE, FORTRAN, RCA 501 Assembler, Report Generator, and APG-
1.  32   At the fi rst meeting of one of the Short-Range Committee task 
groups, for example, most of the time was spent getting statements of 
commitment from the various manufacturers.  33    

 From the start, the process of designing the CBL was characterized 
by a spirit of pragmatism and compromise. The Short-Range Committee, 
referred to by insiders as the PDQ ( “ pretty darn quick ” ) Committee, 
took seriously its charge to work quickly to produce an interim solution. 
Remarkably enough, less than three months later the committee had 
produced a nearly complete draft of a proposed CBL specifi cation. In 
doing so, the CBL designers borrowed freely from models provided by 
Remington Rand UNIVAC ’ s FLOW-MATIC language and the IBM 
Commercial Translator. In a September report to the Executive Committee 
of CODASYL, the Short-Range Committee requested permission to con-
tinue development on the CBL specifi cation, to be completed by December 
1, 1959. The name COBOL (Common Business Oriented Language) was 
formally adopted shortly thereafter. Working around the clock for the 
next several months, the PDQ group was able to produce its fi nished 
report just in time for its December deadline. The report was approved 
by CODASYL, and in January 1960 the offi cial COBOL-60 specifi cation 
was released by the U.S. Government Printing Offi ce. 

 The structure of the COBOL-60 specifi cation reveals its mixed origins 
and commercial orientation. Although from the beginning the COBOL 
designers were concerned with  “ business data processing, ”  there was 
never any attempt to provide a real defi nition of that phrase.  34   It was 
clearly intended that the language could be used by novice programmers 
and read by managers. For example, an instruction to compute an 
employee ’ s overtime pay might be written as follows: 

 MULTIPLY NUMBER-OVTIME-HRS BY OVTIME-PAY-RATE 

 GIVING OVTIME-PAY-TOTAL 

 It was felt that this readability would result from the use of English-
language instructions, although no formal criteria or tests for readability 
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were provided. In many cases, compromises were made that allowed for 
confl icting interpretations of what made for  “ readable ”  computer code. 
Arithmetic formulas, for instance, could either be written using a com-
bination of arithmetic verbs — that is, ADD, SUBTRACT, MULTIPLY, 
or DIVIDE — or as symbolic formulas. The use of arithmetic verbs was 
adapted directly from the FLOW-MATIC language, and refl ected the 
belief that business data processing users could not — and should not — be 
forced to use formulas. The capability to write symbolic formulas was 
included (after much contentious debate) as a means of providing power 
and fl exibility to more mathematically sophisticated programmers. Such 
traditional mathematical functions such as SINE and COSINE, however, 
were deliberately excluded as being unnecessary to business data process-
ing applications. 

 Another concession to the objective of readability was the inclusion 
of extraneous  “ noise words. ”  These were words or phrases that were 
allowable but not necessary: for example, in the statement 

 READ  fi le1  RECORD INTO  variable1  AT END  goto procedure2  

 the words RECORD and AT are syntactically superfl uous. The statement 
would be equally valid written as 

 READ  fi le1  INTO  variable1  END  goto procedure2 . 

 The inclusion of the noise words RECORD and AT was perceived by 
the designers to enhance readability. Users had the option of including 
or excluding them according to individual preference or corporate 
policy. 

 In addition to designing COBOL to be Englishlike and readable, 
the committee was careful to make it as machine-independent as 
possible. Most contemporary programming systems were tied to a spe-
cifi c processor or product line. If the user wanted to replace or upgrade 
their computer, or switch to machines from a different manufacturer, 
they had to completely rewrite their software from scratch, typically an 
expensive, risky, and time-consuming operation. Users often became 
bound to outdated and ineffi cient hardware systems simply because 
of the enormous costs associated with upgrading their software 
applications. This was especially true for commercial data processing 
operations, where computers were generally embedded in large, complex 
systems of people, procedures, and technology. A truly machine-
independent language would allow corporations to reuse application 
code, thereby reducing the programming and maintenance costs. It would 
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also allow manufacturers to sell or lease more of their most recent (and 
profi table) computers. 

 The COBOL language was deliberately organized in such a way as to 
encourage portability from one machine to another. Every element of a 
COBOL application was assigned to one of four functional divisions: 
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. 
The IDENTIFICATION division offered a high-level description of 
the program, including its name, author, and creation date. The 
ENVIRONMENT division contained information about the specifi c 
hardware on which the program was to be compiled and run. The DATA 
division described the fi le and record layout of the data used or created 
by the rest of application. The PROCEDURE division included the algo-
rithms and procedures that the user wished the computer to follow. 
Ideally, this rigid separation of functional divisions would allow a user 
to take a deck of cards from one machine to another without making 
signifi cant alterations to anything but the ENVIRONMENT description. 
In reality, this degree of portability was almost impossible to achieve in 
real-world applications in which performance was a primary consider-
ation. For example, the most effi cient method of laying out a fi le for a 
twenty-four-bit computer was not necessarily optimal for a thirty-six-bit 
machine. Nevertheless, machine independence  “ was a major, if not  the  
major, ”  design objective of the Short-Range Committee.  35   Achieving this 
objective proved diffi cult both technically and politically, and greatly 
infl uenced both the design of the COBOL specifi cation and its subse-
quent reception within the computing community. 

 One of the greatest obstacles to achieving machine independence was 
the computer manufacturers themselves. Each manufacturer wanted to 
make sure that COBOL included only features that would run effi ciently 
on their devices. For instance, a number of users wanted the language 
to include the ability to read a fi le in reverse order. For those machines 
that had a basic machine command to read a tape backward this was an 
easy feature to implement. Even those computers without this explicit 
capability could achieve the same functionality by backing the tape up 
two records and then reading forward one. Although this potential 
READ REVERSE command could therefore be logically implemented 
by everyone, it signifi cantly penalized those devices without the 
basic machine capability. It was therefore not included in the fi nal 
specifi cation. 

 There were other compromises that were made for the sake of machine 
independence. In order to maintain compatibility among different 
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machines with different arithmetic capabilities, eighteen decimal digits 
were chosen as the maximum degree of precision supported. This par-
ticular degree of precision was chosen  “ for the simple reason that it was 
 dis advantageous to every computer thought to be a potential candidate 
for having a COBOL compiler. ”   36   No particular manufacturer would 
thus have an inherent advantage in terms of performance. In a similar 
manner, provisions were made for the use of binary computers, despite 
the fact that such machines were generally not considered appropriate 
for business data processing. The decision to allow only a limited char-
acter set in statement defi nitions — using only those characters that were 
physically available on almost all data-entry machines — was a self-
imposed constraint that had  “ an enormous infl uence on the syntax of 
the language, ”  but was nevertheless considered essential to widespread 
industry adoption. The use of such a minimal character set also pre-
vented the designers from using the sophisticated reference language 
techniques that had so enamored theoretical computer scientists of the 
ALGOL 58 specifi cation. 

 This dedication to the ideal of portability set the Short-Term 
Committee at odds with some of its fellow members of CODASYL. In 
October 1959, the Intermediate-Range Committee passed a motion 
declaring that the FACT programming language — recently released by 
the Honeywell Corporation — was a better language than that produced 
by the Short-Range Committee and hence should form the basis of the 
CBL.  37   Although many members of the Short-Range Committee agreed 
that FACT was indeed a technically advanced and superior language, 
they rejected any solution that was tied to any particular manufacturer. 
In order to ensure that the CBL would be a truly  common  business lan-
guage, elegance and effi ciency had to be compromised for the sake of 
readability and machine independence. Despite the opposition of the 
Intermediate-Range Committee (and the Honeywell representatives), the 
Executive Committee of CODASYL eventually agreed with the design 
priorities advocated by the PDQ group. 

 The fi rst COBOL compilers were developed in 1960 by Remington 
Rand UNIVAC and RCA. In December of that year, the two companies 
hosted a dramatic demonstration of the cross-platform compatibility of 
their individual compilers: the same COBOL program, with only the 
ENVIRONMENT division needing to be modifi ed, was run successfully 
on machines from both manufacturers. Although this was a compelling 
demonstration of COBOL ’ s potential, other manufacturers were slow to 
develop their own COBOL compilers. Honeywell and IBM, for example, 
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were loath to abandon their own independent business languages. 
Honeywell ’ s FACT had been widely praised for its technical excellence, 
and the IBM Commercial Translator already had an established cus-
tomer base.  38   By the end of 1960, however, the U.S. military had put the 
full weight of its prestige and purchasing power behind COBOL. The 
Department of Defense announced that it would not lease or purchase 
any new computer without a COBOL compiler unless its manufacturer 
could demonstrate that its performance would not be enhanced by the 
availability of COBOL.  39   No manufacturer ever attempted such a dem-
onstration, and within a year COBOL was well on its way toward 
becoming an industry standard. 

 It is diffi cult to establish empirically how widely COBOL was adopted, 
but anecdotal evidence suggests that it is by far the most popular and 
widely used computer language  ever .  40   A recent study undertaken 
in response to the perceived Y2K crisis suggests that there are 
seventy billion lines of COBOL code currently in operation in the 
United States alone. Despite its obvious popularity, though, from the 
beginning COBOL has faced severe criticism and opposition, especially 
from within the computer science community. One programming lan-
guage textbook from 1977 judged COBOL ’ s programming features as 
fair, its implementation dependent features as poor, and its overall 
writing as fair to poor. It also noted its  “ tortuously poor compactness 
and poor uniformity. ”   41   The noted computer scientist Edsger Dijkstra 
wrote that  “ COBOL cripples the mind, ”  and another of his colleagues 
called it  “ terrible ”  and  “ ugly. ”   42   Several notable textbooks on program-
ming languages from the 1980s did not even include COBOL in the 
index. 

 There are a number of reasons why computer scientists have been so 
harsh in their evaluation of COBOL. Some of these objections are techni-
cal in nature, but most are aesthetic, historical, or political. Most of the 
technical criticisms have to do with COBOL ’ s verbosity, its inclusion of 
superfl uous noise words, and its lack of certain features (such as pro-
tected module variables). Although many of these shortcomings were 
addressed in subsequent versions of the COBOL specifi cation, the aca-
demic world continued to vilify the language. In an article from 1985 
titled  “ The Relationship between COBOL and Computer Science, ”  the 
computer scientist Ben Schneiderman identifi ed several explanations 
for this continued hostility. First of all, no academics were asked to 
participate on the initial design team. In fact, the COBOL developers 
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apparently had little interest in the academic or scientifi c aspects of their 
work. All of the articles included in a May 1962  Communications of the 
ACM  issue devoted to COBOL were written by industry or government 
practitioners. Only four of the thirteen included even the most basic 
references to previous and related work; the lack of academic sensibilities 
was immediately apparent. Also noticeably lacking was any reference to 
the recently developed Backus-Naur Form notation that had already 
become popular as a metalanguage for describing other programming 
languages. No attempt was made to produce a textbook explaining the 
conceptual foundations of COBOL until 1963. Most signifi cant, however, 
was the sense that the problem domain addressed by the COBOL design-
ers — that is, business data processing — was not theoretically sophisti-
cated or interesting. One programming language textbook from 1974 
portrayed COBOL as having  “ an orientation toward business data pro-
cessing . . . in which the problems are . . . relatively simple algorithms 
coupled with high-volume input-output (e.g., computing the payroll for 
a large organization). ”  Although this dismissive account hardly captures 
the complexities of many large-scale business applications, it does appear 
to accurately represent a prevailing attitude among computer scientists. 
COBOL was considered a  “ trade-school ”  language rather than a serious 
intellectual accomplishment.  43   

 Despite these objections, COBOL has proven remarkably successful. 
Certainly the support of the U.S. government had a great deal to do with 
its initial widespread adoption. But COBOL was attractive to users —
 business corporations in particular — for other reasons as well. The belief 
that Englishlike COBOL code could be read and understood by nonpro-
grammers was appealing to traditional managers who were worried 
about the dangers of  “ letting the  ‘ computer boys ’  take over. ”   44   It was 
also hoped that COBOL would achieve true machine independence —
 arguably the holy grail of language designers — and of all its competitors, 
COBOL did perhaps come closest to achieving this ideal. Although critics 
have derided COBOL as the inelegant result of  “ design by committee, ”  
the broad inclusiveness of CODASYL helped ensure that no one manu-
facturer ’ s hardware would be favored. Committee control over the lan-
guage specifi cation also prevented splintering: whereas numerous 
competing dialects of FORTRAN and ALGOL were developed, COBOL 
implementations remained relatively homogeneous. The CODASYL 
structure also provided a mechanism for ongoing language maintenance 
with periodic  “ offi cial ”  updates and releases. 
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 ALGOL, Pascal, ADA, and Beyond 

 Although FORTRAN and COBOL were by far the most popular pro-
gramming languages developed in the United States during this period, 
they were by no means the only ones to appear. Jean Sammet, editor of 
one of the fi rst comprehensive treatments of the history of programming 
languages, has estimated that by 1981, there were a least one thousand 
programming languages in use nationwide. It would be impossible to 
even enumerate, much less describe, the history and development of each 
of these languages.    Figure 4.3   contains a  “ genealogical ”  listing of some 
of the more widely used programming languages developed prior to 
1970. This section will focus on a few of the more historically signifi cant 
alternatives to FORTRAN and COBOL.   

 More than a year before the Executive Committee of CODASYL 
convened to discuss the need for a common business-oriented program-
ming language, an ad hoc committee of users, academics, and federal 
offi cials met to study the possibility of creating a universal programming 
language. This committee, which was brought together under the 
auspices of the ACM, could not have been more different from the 
group organized by CODASYL. Whereas the fi fteen-member Executive 
Committee had contained only one university representative, the identi-
cally sized ACM-sponsored committee was dominated by academics. At 
itsr fi rst meeting, this committee decided to follow the model of 
FORTRAN in designing an algebraic language. FORTRAN itself was 
not acceptable because of its association with IBM. 

 The ACM  “ universal language ”  project soon expanded into an 
international initiative. Europeans in particular were deeply interested 
in a language that would both transcend political boundaries and 
help avoid the domination of Europe by the IBM Corporation. During 
an eight-day meeting in Zurich, a rough specifi cation for the new 
International Algebraic Language (IAL) was hashed out. Actually, three 
distinct versions of the IAL were created: reference, publication, and 
hardware. The reference language was the abstract representation of 
the language as envisioned by the Zurich committee. The publication 
and hardware languages would be isomorphic implementations of 
the abstract reference language. Since these specifi c implementations 
required careful attention to such messy details as character sets and 
delimiters (decimal points being standard in the United States and 
commas being standard in Europe), they were left for a later and unspeci-
fi ed date. The reference language was released in 1958 under the 
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more popular and less pretentious name ALGOL (from ALGOrithmic 
Language). 

 In many ways, ALGOL was a remarkable achievement in the nascent 
discipline of computer science. ALGOL 58 was something of a work in 
progress; ALGOL 60, which was released shortly thereafter, is widely 
considered to be a model of completeness and clarity. The ALGOL 60 
version of the language was described using an elegant metalanguage 
known as Backus Normal Form (BNF), developed specifi cally for that 
purpose. BNF, which resembles the notation used by linguists and logi-
cians to describe formal languages, has since become the standard tech-
nique for representing programming languages. The elegant sophistication 
of the ALGOL 60 report appealed particularly to computer scientists. In 
the words of one well-respected admirer,  “ The language proved to be an 
object of stunning beauty. . . . Nicely organized, tantalizingly incom-
plete, slightly ambiguous, diffi cult to read, consistent in format, and 
brief, it was a perfect canvas for a language that possessed those same 
properties. Like the Bible, it was meant not merely to be read, but inter-
preted. ”   45   ALGOL 60 soon became the standard by which all subsequent 
language developments were measured and evaluated. 

 Despite its intellectual appeal, and the enthusiasm with which it was 
greeted in academic and European circles, ALGOL was never widely 
adopted in the United States. Although many Americans recognized 
that ALGOL was an elegant synthesis, most saw language design as 
just one step in a lengthy process leading to language acceptance 
and use. In addition, in the United States there were already several 
strong competitors currently in development. IBM and its infl uential 
users group SHARE supported FORTRAN, and business data processors 
preferred COBOL. Even those installations that preferred ALGOL often 
used it only as a starting point for further development, more  “ as a rich 
set of guidelines for a language than a standard to be adhered to. ”   46   
Numerous dialects or spin-off languages emerged, most signifi cantly 
JOVIAL, MAD, and NELIAC, developed at the SDC, the University 
of Michigan, and the Naval Electronics Laboratory, respectively. 
Although these languages benefi ted from ALGOL, they only detracted 
from its efforts to emerge as a standard. With a few noticeable 
exceptions — the ACM continued to use it as the language of choice in 
its publications, for example — ALGOL was generally regarded in the 
United States as an intellectual curiosity rather than a functional pro-
gramming language. 
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 The real question of historical interest, of course, is not so much why 
specifi c individual programming languages were created but rather why 
 so many . In the late 1940s and early 1950s there was no real program-
ming community per se, only particular projects being developed at 
various institutions. Each project necessarily developed its own tech-
niques for facilitating programming. By the mid-1950s, however, there 
were established mechanisms for communicating new research and 
development, and there were deliberate attempts to promote industry-
wide programming standards. Nevertheless, there were literally hundreds 
of languages developed in the decades of the 1950s and 1960s. FORTRAN 
and COBOL have emerged as important standards in the scientifi c and 
business communities, respectively, and yet new languages continued —
 and still do — to be created.  47   What can explain this curious Cambrian 
explosion in the evolutionary history of programming languages? 

 Some of the many divergent species of programming languages can 
be understood by looking at their functional characteristics. Although 
general-purpose languages such as FORTRAN and COBOL were suit-
able for a wide variety of problem domains, certain applications required 
more specialized functions to perform most effi ciently. The General-
Purpose Simulation System was designed specifi cally for the simulation 
of system elements in discrete numerical analysis, for example. APT was 
commissioned by the Aircraft Industries Association and the U.S. Air 
Force to be used primarily to control automatic milling machines. Other 
languages were designed not so much for specialized problem domains 
as for particular pedagogical purposes — in the case of BASIC, for instance, 
the teaching of basic computer literacy. Some languages were known for 
their fast compilation times, and others for the effi ciency of their object 
code. Individual manufacturers produced languages that were optimized 
for their own hardware, or as part of a larger marketing strategy.   

 Different languages were also developed with different users in mind. 
In this sense, they embodied the organizational and professional politics 
of programming in this period. At the RAND Symposium on Programming 
Languages in 1962, for example, Jack Little, a RAND consultant, 
lamented the tendency of manufacturers to design languages  “ for use by 
some sub-human species in order to get around training and having good 
programmers. ”   48   Dick Talmadge and Barry Gordon of IBM admitted to 
thinking in terms of an imaginary  “ Joe Accountant ”  user; the problem 
that IBM faced, according to Bernard Galler, of the University of 
Michigan Computing Center, was that  “ if you can design a language 
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 Figure 4.4 
 This now-famous  “ Tower of Babel ”  cover appeared fi rst in the  Communications 
of the ACM , January 1961. Reproduced with permission of the ACM. 
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that Joe Accountant can learn easily, then you ’ re still going to have 
problems because you ’ re probably going to have a lousy language. ”   49   
Fred Gruenberger, a staff mathematician at RAND, later summed up the 
essence of the entire debate:  “ COBOL, in the hands of a master, is a 
beautiful tool — a very powerful tool. COBOL, as it ’ s going to be handled 
by a low grade clerk somewhere, will be a miserable mess. . . . Some guys 
are just not as smart as others. They can distort anything. ”   50   

 There were also less obviously utilitarian reasons for developing new 
programming languages, however. Many common objections raised 
against existing languages were more matters of style rather than sub-
stance. The rationale given for creating a new language often boiled 
down to a declaration that  “ this new language will be easier to use or 
better to read or write than any of its predecessors. ”  Since there were 
generally no standards for what was meant by  “ easier to use or better 
to read or write, ”  such declarations can only be considered statements 
of personal preference. As Jean Sammet has suggested, although lengthy 
arguments have been advanced on all sides of the major programming 
language controversies,  “ in the last analysis it almost always boils down 
to a question of personal style or taste. ”   51   

 For the more academically oriented programmers, designing a new 
language was a relatively easy way to attract grant money and publish 
articles. There have been numerous languages that have been rigorously 
described but never implemented. They served only to prove a theoretical 
point or advance an individual ’ s career. In addition, many in the aca-
demic community seemed to be affl icted with the NIH ( “ not invented 
here ” ) syndrome: any language or technology that was designed by 
someone else could not possibly be as good as one that you invented 
yourself, and so a new version needed to be created to fi ll some ostensible 
personal or functional need. As Herbert Grosch lamented in 1961, fi lling 
these needs was personally satisfying yet ultimately self-serving and 
divisive:  “ Pride shades easily into purism, the sin of the mathematicians. 
To be the leading authority, indeed the only authority, on ALGOL 61B 
mod 12, the version that permits black letter as well as Hebrew sub-
scripts, is a satisfying thing indeed, and many of us have constructed 
comfortable private universes to explore. ”   52   

 One fi nal and closely related reason for the proliferation of program-
ming languages is that designing programming languages was (and is) 
fun. The adoption of metalanguages and the BNF allowed for the rapid 
development and implementation of creative new languages and dialects. 
If programming was enjoyable, even more so was language design.  53   
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 No Silver Bullet 

 In 1987, Frederick Brooks published an essay describing the major devel-
opments in automatic programming technologies that had occurred over 
the past several decades. As an accomplished academic and experienced 
industry manager, Brooks was a respected fi gure within the program-
ming community. Using characteristically vivid language, his  “ No Silver 
Bullet: Essence and Accidents of Software Engineering, ”  refl ected on the 
inability of these technologies to bring an end to the ongoing software 
crisis: 

 Of all the monsters that fi ll the nightmares of our folklore, none terrify more 
than werewolves, because they transform unexpectedly from the familiar into 
horrors. For these, one seeks bullets of silver that can magically lay them to 
rest. 

 The familiar software project, at least as seen by the nontechnical manager, 
has something of this character; it is usually innocent and straightforward, but 
is capable of becoming a monster of missed schedules, blown budgets, and fl awed 
products. So we hear desperate cries for a — silver bullet — something to make 
software costs drop as rapidly as computer hardware costs do. 

 But, as we look to the horizon of a decade hence, we see no silver bullet. 
There is no single development, in either technology or in management tech-
nique, that by itself promises even one order-of-magnitude improvement in 
productivity, in reliability, in simplicity.  54   

 Brook ’ s article provoked an immediate reaction, both positive and 
negative. The object-oriented programming (OOP) advocate Brad Cox 
insisted, for example, in his aptly titled  “ There Is a Silver Bullet, ”  that 
new techniques in OOP promised to bring about  “ a software industrial 
revolution based on reusable and interchangeable parts that will alter 
the software universe as surely as the industrial revolution changed 
manufacturing. ”   55   Whatever they might have believed about the possibil-
ity of such a silver bullet being developed in the future, though, most 
programmers and managers agreed that none existed in the present. In 
the late 1980s, almost three decades after the fi rst high-level automatic 
programming systems were introduced, concern about the software crisis 
was greater than ever. The same year that Brooks published his  “ No 
Silver Bullet, ”  the Department of Defense warned against the real possi-
bility of  “ software-induced catastrophic failure ”  disrupting its strategic 
weapons systems.  56   Two years later, Congress released a report titled 
 “ Bugs in the Program: Problems in Federal Government Computer 
Software Development and Regulation, ”  initiating yet another full-blown 
attack on the fundamental causes of the software crisis.  57   Ironically, the 
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Department of Defense decided that what was needed to deal with this 
most recent outbreak of crisis was yet another new programming lan-
guage — in this case ADA, which was trumpeted as a means of  “ replacing 
the idiosyncratic  ‘ artistic ’  ethos that has long governed software writing 
with a more effi cient, cost-effective engineering mind-set. ”   58   

 Why have automatic programming languages and other technologies 
thus far failed to resolve — or apparently even mitigate — the seemingly 
perpetual software crisis? First of all, it is clear that many of these lan-
guages and systems were not able to live up to their marketing hype. 
Even those systems that were more than a  “ complex, exception-ridden 
performer of clerical tasks which was diffi cult to use and ineffi cient ”  (as 
John Backus characterized the programming tools of the early 1950s) 
could not eliminate the need for careful analysis and skilled program-
ming.  59   As Willis Ware portrayed the situation in 1965,  “ We lament the 
cost of programming; we regret the time it takes. What we really are 
unhappy with is the total programming process, not programming (i.e., 
writing routines) per se. Nonetheless, people generally smear the details 
into one big blur; and the consequence is, we tend to conclude errone-
ously that all our problems will vanish if we can improve the language 
which stands between the machine and the programmer. T ’ aint neces-
sarily so. ”  All the programming language improvement in the world will 
not shorten the intellectual activity, thinking, and analysis that is inher-
ent in the programming process. Another name for the programming 
process is  “ problem solving by machine; perhaps it suggests more point-
edly the inherent intellectual content of preparing large problems for 
machine handling. ”   60   

 Although programming languages could reduce the amount of clerical 
work associated with programming, and did help eliminate certain types 
of errors (mostly those associated with transcription errors or syntax 
mistakes), they also introduced new sources of error. In the late 1960s, 
a heated controversy broke out in the programming community over 
the use of the  “ GOTO statement. ”   61   At the heart of this debate was the 
question of professionalism: although high-level languages gave the 
impression that just about anyone could program, many programmers 
felt this was a misconception disastrous to both their profession and the 
industry in general. 

 The designers and advocates of various automatic programming 
systems never succeeded in addressing the larger issues posed by the dif-
fi culties inherent in the programming process. High-level languages were 
necessary but not suffi cient: that is, the use of these languages became 
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an essential component of software development, but could not in them-
selves ensure a successful development effort. Programming remained a 
highly skilled occupation, and programmers continued to defy tradi-
tional methods of job categorization and management. By the end of the 
1960s the search for a silver bullet solution to the software crisis had 
turned away from programming languages and toward more compre-
hensive techniques for managing the programming process. Many of 
these new techniques involved the creation of new automatic program-
ming technologies, but most revolved around more systemic solutions as 
well as new methods of programmer education, management, and pro-
fessional development. 
    



 

 5 

 At present there is a fl avor of  “ game-playing ”  about many courses in computer 
science. I hear repeatedly from friends who want to hire good software people 
that they have found the specialist in computer science is someone they do not 
want.  Their experience is that graduates in our programs seem to be mainly 
interested in playing games, making fancy programs that really do not work, 
writing trick programs, etc.  

  — Richard Hamming,  “ One Man ’ s View of Computer Science, ”  1968 

 The Humble Programmer 

 The fi rst computer programmers came from a wide variety of occupa-
tional and educational backgrounds. Some were recruited from the ranks 
of the female  “ human computers ”  who had participated in wartime 
manual computation projects. Others were former clerical workers or 
tabulating machine operators with experience in corporate data process-
ing. A few were erstwhile scientists and engineers drawn into computing 
in pursuit of intellectual or professional opportunities. 

 For this last group of well-educated  “ converts ”  to computing, it was 
not always clear where their adopted discipline stood in relation to 
more traditional intellectual activities. Although the electronic computers 
were increasingly used in this period as  instruments  of scientifi c produc-
tion, their status as legitimate  objects  of scientifi c and professional scru-
tiny had not yet been established. Scientists and engineers who drifted 
out of the  “ respectable ”  disciplines into the uncharted waters of elec-
tronic computing faced self-doubt, professional uncertainty, and even 
ridicule. 

 One such emigrant from the sciences was the physicist-turned-
programmer Edsger Dijkstra. In the early 1950s, as a result of  “ a long 
series of coincidences ”  associated with his doctoral research in theoreti-
cal physics, Dijkstra became the fi rst person in his native Holland to 

 The Rise of Computer Science 
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program a computer. The experience was life changing, and by 1955 he 
had decided to relinquish physics to take up computing full-time. His 
dissertation in 1959 on  “ communication with an automatic computer ”  
described his development of an assembly code for the mathematical 
computation center at the University of Amsterdam.  1   

 Like many of his fellow scientists, Dijkstra was not so much interested 
in the electronic computer as a technology as he was in computing as an 
intellectual activity. While the electronic computer itself would no doubt 
have an enormous impact on society, it would be  “ but a ripple on the 
surface of our culture ”  compared to the potential infl uence of the science 
of computing. The emergence of the computing sciences, Dijkstra 
declared, represented an intellectual opportunity  “ without precedent in 
the cultural history of mankind. ”  To program a computer effi ciently was 
to master complexity, and the mastery of complexity was the fundamen-
tal challenge of modern science and society.  2   

 Despite his enthusiasm for the challenge and potential of computing, 
however, Dijkstra ’ s decision to abandon physics for computing was 
fraught with doubt and uncertainty. As Dijkstra would later recall in 
his 1972 Turing Award Lecture (revealingly titled  “ The Humble 
Programmer ” ), 

 I had to make up my mind, either to stop programming and become a real, 
respectable theoretical physicist, or to carry my study of physics to formal com-
pletion only, with a minimum of effort, and to become . . . what? A programmer? 
But was that a respectable profession? After all what was programming? Where 
was the sound body of knowledge that could support it as an intellectually 
respectable discipline? I remember quite vividly how I envied my hardware 
colleagues, who, when asked about their professional competence, could at 
least point out that they knew everything about vacuum tubes, amplifi ers 
and the rest, whereas I felt that, when faced with that question, I would stand 
empty-handed. 

 The principal problem with programming in this early period, according 
to Dijkstra, was the persistence of a black art mentality among many of 
its practitioners. Programmers too often saw their work as temporary 
solutions to local problems, rather than as an opportunity to develop a 
more permanent body of knowledge and technique. They reveled in the 
popular notion that programmers were idiosyncratic geniuses, and that 
 “ a really competent programmer should be puzzle-minded and very 
fond of clever tricks. ”  To Dijkstra these were pernicious anachronisms 
that encouraged a provincial,  “ tinkering ”  approach to software develop-
ment. Such  “ clumsy and expensive ”  processes might have been tolerated 
when computer software, like computer hardware, was still relatively 
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primitive. But the increased power and reliability of contemporary com-
puters  “ made solutions feasible that programmers had not dared to 
dream about a few years ago. ”  What computing needed to realize its 
true revolutionary potential, Dijkstra argued, was a more rigorous 
approach to programming — one modeled after the science of applied 
mathematics.  3   

 Dijkstra ’ s lament about the deplorable lack of theoretical rigor in 
computing would have resonated with his audience. The ACM member-
ship, to whom Dijkstra addressed his reminiscences, was dominated by 
those in the computing community who advocated a more scientifi c 
approach to computing. The majority of ACM members had college 
degrees (often in science, engineering, or mathematics) and the ACM as 
an organization worked for decades to draw distinct boundaries between 
computer science as an academic discipline and computer programming 
as an occupational activity. It was an ACM journal that fi rst introduced 
the discipline of computer science, and an ACM committee that devel-
oped its fi rst standardized curriculum. The Turing Award itself was an 
ACM invention, intended to recognize — and stimulate — theoretical work 
in the emerging discipline of computer science. By the beginning of the 
early 1970s, when Dijkstra received his Turing Award, computer science 
seemed well on its way to becoming just the sort of  “ sound body of 
knowledge ”  whose absence Dijkstra had so regretted when fi rst he started 
to program.  4   

 There were many reasons for Dijkstra and his fellows to aspire to 
academic legitimacy. To begin with, there seemed a compelling intellec-
tual rationale for doing so. Beginning with John von Neumann ’ s work 
on numerical meteorology in the late 1940s, computational models were 
increasingly being used to provide solutions — approximate solutions in 
many cases, but solutions nonetheless — to scientifi c problems that had 
previously been thought intractable.  5   Over the course of the 1950s, in 
fi elds as diverse as economics, linguistics, physics, biology, ecology, psy-
chology, and cognitive science, techniques and concepts drawn from 
computing promised dramatic new insights and capabilities.  6   As was the 
case with Dijkstra, many of the most enthusiastic advocates of computer 
science had come from fi elds that had been transformed by the electronic 
computer. Computing was  “ as broad as our culture, as deep as inter-
planetary space, ”  declared Herbert Grosch, a former astronomer (and 
future president of the ACM).  7    “ Never before in the history of mankind ”  
had there been a phenomenon of equal importance to  “ the pervasion of 
computers and computing into every other science fi eld and discipline, ”  
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argued Paul Armer, the head of computing at the RAND Corporation 
(and another future ACM president).  “ We ’ ve always thought of mathe-
matics as the queen of the sciences pervading every other fi eld, but 
computing is going to go much farther than that. ”   8   For many of these 
pioneering computer scientists, not only was theirs a  “ real ”  scientifi c 
discipline, it was perhaps  the  scientifi c discipline. 

 Even for those computer specialists whose professional aspirations 
were more commercial than academic, there were powerful incentives to 
encourage the establishment of an independent discipline of theoretical 
computer science. The late 1950s and 1960s was a period in which many 
white-collar occupations were actively working to  “ professionalize ”  
their discipline.  9   And according to the growing body of sociological lit-
erature of this period, a necessary precondition to professional develop-
ment was the control over an organized body of knowledge. Without a 
fi rm basis in science and theory, computer programming and data pro-
cessing were doomed to remain low-status, technical occupations. 
The primary distinction between professionals and technicians, it was 
generally believed in this period, was that professionals underwent a 
 “ prolonged course of specialized, intellectual instruction and study, ”  
contended Malcolm Gotterer in letter to the editors of the industry 
journal  Datamation .  10   Establishing computer science as a legitimate 
 theoretical  discipline was therefore an essential component in the profes-
sionalization agenda of all of its practitioners, whether or not they 
intended to pursue careers as research scientists.  “ A profession is under 
an obligation to develop and base itself on a body of knowledge rather 
than upon a body of applications, ”  maintained C. M. Sidlo in a letter 
to the editors of the  Communications of the ACM  in 1961.  “ As a profes-
sion becomes mature it realizes that the science (not technology) needed 
by the profession must continually be extended to more basic content 
rather than restricted only to the obvious applied science. ”   11   Within the 
status hierarchy of the university, of course, theory ranked higher than 
practice, and was therefore desirable for its own sake. Outside of the 
academy, theoretical knowledge offered a potential key to professional 
advancement. It provided a means of distinguishing the competent pro-
fessional from the mere technician. 

 Computer manufacturers and corporate employers also had a stake 
in the development of computer science. One popular explanation for 
the seemingly perpetual  “ personnel crisis ”  in computer programming 
was the  “ virtual nonexistence ”  of educational standards in the indus-
try.  12   The establishment of formal academic programs and standardized 
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curriculum would allow manufacturers and employers to off-load the 
work of training and certifying programmers on the universities. Just 
what this training would look like, and how it would balance theory 
with practice, would become a subject of much contention, but the need 
for some form of academic discipline devoted to computing must have 
seemed evident to almost everyone in the industry. 

 In retrospect, the emergence of an academic discipline devoted to 
computer science seems almost overdetermined. How could the defi ning 
technology of our modern information age, the device most widely asso-
ciated in the popular mind with progress in contemporary science and 
technology, not have attracted the attention of a wide variety of aca-
demic scientists and engineers? One would imagine that any number of 
disciplines would be clamoring for control over the science of computing 
and information technology. And indeed, by all of the traditional mea-
sures of academic accomplishment, including papers published, students 
graduated, and funding controlled, computer science has proven itself a 
resounding success. Within a few years of the founding of the fi rst com-
puter science programs in the United States, thousands of computer sci-
entists were being graduated nationwide. For almost two decades 
afterward, the number of degrees granted in computer science would 
grow on average more than 20 percent annually. At the height of its 
popularity, more than 5 percent of all U.S. male college undergraduates 
would graduate with a degree in the computer and information sci-
ences.  13   The remarkable rise to dominance of computer science as an 
autonomous discipline represents one of the great success stories of aca-
demic entrepreneurship of the late twentieth century. 

 But the development of a new technology, no matter how powerful 
or infl uential, did not necessarily justify the creation of a new academic 
discipline. There are many examples of scientifi c or technological accom-
plishments that were interesting, useful, and productive, but that did not 
require or deserve the development of their own disciplines or depart-
ments.  “ The creation of computer science departments is analogous to 
creating new departments for the railroad, automobile, radio, airplane 
or television technologies, ”  argued one letter to the editors of the 
 Communications of the ACM .  14    “ These industrial developments were all 
tremendous innovations embodied in machinery, as is the development 
of computers, but this is not enough for a discipline or a major academic 
fi eld. ”   15   According to this line of reasoning, no matter how powerful or 
even revolutionary, in the end the electronic computer was simply another 
tool or instrument, similar to the microscope or telephone. No one 
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denied that such tools and instruments were essential to the practice of 
modern science and technology, but neither did they call for the creation 
of departments of microscopy or telephony. 

 There were, in fact, many objections raised against the establishment 
of an independent discipline of computer science. In his  “ Presidential 
Letter to the ACM Membership ”  in 1966, Anthony Oettinger outlined 
what he called these  “ numerous misconceptions ”  about computer 
science:  

 The computer is just a tool, and not [a] proper intellectual discipline. . . . It is 
not the business of universities to train computer center managers or systems 
experts. . . . The training of faculty and students in computer usage can better 
be done by people in the various disciplines who have acquired computer experi-
ence, rather than by a separate cadre of computer scientists. . . . The [future 
potential] of computers has been overrated, and when the current fad subsides, 
many universities will have . . . badly overextended themselves with respect to 
both equipment and teaching/research commitments in computer science per 
se. . . . Computer science is not a coherent intellectual discipline but rather a 
heterogeneous collection of bits and pieces from other disciplines.  16   

 Some of these objections must have seemed absurd even to contem-
poraries; the suggestion that the electronic computer was simply a passing 
 “ fad ”  was unreasonable even in the early 1960s. But other critiques, 
such as the characterization of computer science as a grab bag of theories 
and techniques drawn from other disciplines, were much more salient. 
Judging from the reaction that Oettinger ’ s list provoked from the ACM 
membership, there was a real fear within the nascent computer science 
community that its discipline was not being taken seriously, that it was 
considered by many little more than a  “ momentary aberration in the 
fi elds of mathematics and electrical engineering. ”   17   Oettinger himself 
later confessed to having doubts about whether or not computing, with 
its mix of the  “ purest mathematics ”  and the  “ dirtiest of engineering, ”  
would ever truly be considered a science.  18   

 In order to demonstrate that computer science was a real, respectable 
intellectual activity, computer scientists needed to clearly defi ne the body 
of theory that was at the center of their discipline. But what exactly was 
computer science the science of? Computers were, after all, human-made 
objects. Could there be such a thing, as Herbert Simon would later come 
to argue, as a  “ science of the artifi cial? ”   19   Or was the computer ulti-
mately incidental to computer science, which would turn out to be 
the study of some more basic entity, such as information or algorithms? 
Even among those who called themselves computer scientists, there were 
disagreements about what the science should look like or where it would 
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fi t into the established hierarchy of the university.  20   Some pushed for a 
theoretical approach akin to philosophy or mathematics, and others for 
engineering-oriented programs emphasizing practical techniques. A few 
departments continued to view hardware development as relevant, while 
others dismissed it entirely. How much to stress programming training 
was a perennial question, with industrial sponsors encouraging one 
approach and the academic hierarchy encouraging another. 

 Throughout the 1960s, aspiring computer scientists struggled to defi ne 
a compelling, coherent agenda for their discipline. The ultimate success 
that they achieved conceals the messy social and intellectual work that 
was required to carve out a niche for computer science in an already-
crowded university hierarchy. As William Aspray has suggested, the 
nascent discipline of computer science crossed virtually every academic 
boundary then established within the university, drawing content and 
people from mathematics, electrical engineering, psychology, and busi-
ness.  21   These are not boundaries to be transgressed casually; academic 
departments are notoriously fi erce about protecting their intellectual and 
curricular territory.  22   For example, at many research universities comput-
ing activity had been traditionally located within departments of mathe-
matics or electrical engineering. By the end of the 1950s, an even broader 
range of disciplines in the sciences, engineering, and business not only 
controlled their own computing resources but were also offering their 
own courses in practical computer programming. It was not clear at all 
to these established departments that specialists in computer science had 
anything to offer, intellectually or otherwise. Indeed, as computer science 
threatened to draw resources and students from these traditional disci-
plines, heated battles erupted over faculty slots, graduate admissions, and 
courses. 

 This chapter explores the rise to dominance of theoretical computer 
science as the representative science of modern computing. It suggests 
that this rise was anything but inevitable, and that the academic disci-
pline of computer science as it emerged in the period between 1955 and 
1975 refl ects a series of messy compromises about what the academic 
study of computing should look like, what subjects it should address, 
and how it should relate to other, more established disciplines — as well 
as to the rapidly growing commercial computer industry. It argues that 
the advocates of theoretical computer science pursued a strategy that 
served them well within the university, but that increasingly alienated 
them from their colleagues in industry. As the software crisis heated up 
in the late 1960s, university computer science programs served as a 
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resource for practitioners in their struggle for professional legitimacy, 
but they also represented a battleground in which various groups com-
peted for control over occupational and intellectual territory. 

 Comptologist, Turingeer, or Applied Epistomologist? 

 The fi rst rigorous description of the discipline that would eventually 
become known as computer science appeared in a September 1959 article 
in the newly founded  Communications of the ACM  journal. This new 
discipline, claimed its author, the physicist Louis Fein, would consolidate 
the many computing activities that were currently dispersed across the 
university in departments of mathematics, business and economics, 
library science, physics, and electrical engineering. It would serve as the 
conduit for basic research in computing, the link between computing and 
the larger scientifi c community, and the training ground for students and 
industrial programmers. It would rationalize the currently haphazard 
and dispersed efforts of industry, academia, and government. And by 
establishing a truly scientifi c approach to computing, it would unleash 
the  “ enormous potential ”  of the electronic computer to revolutionize 
society.  23   Fein proposed several possible names for this new discipline, 
including  “ information science, ”   “ intellitronics, ”   “ synnoetics ”  (the term 
that he himself would later come to prefer), and  “ computer science. ”   24   
Others would add  “ datalogy, ”   “ hypology ”  (derived from the Greek 
root  hypologi , meaning  “ to compute ” ),  “ applied epistemology, ”  and 
 “ Turingineering ”  to this list.  25   Computer science was the name that 
stuck. 

 The idea that the various fi elds associated with computing deserved 
their own unifying discipline was not entirely original to Fein — a year 
earlier, a researcher at IBM ’ s Applied Programming Division had sug-
gested the umbrella term  “ comptology ”  — but Fein was the fi rst to back 
up his proposal with specifi c recommendations for curriculum, depart-
ments, and research agendas.  26   Fein had been commissioned by Stanford 
University in 1957 to study computing education, and had emerged as 
an outspoken advocate of the formation of  autonomous  departments of 
computer science independent of existing programs in mathematics 
and electrical engineering.  27   In 1960 he was appointed the chair of the 
ACM Education Committee, and a year later published a fi ctionalized 
description (written from the perspective of a 1975 observer) of the 
program he had developed for Stanford. Interestingly enough, the name 
of his idealized department was synnoetics (from the Greek for the 
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 “ science of the mind ” ) rather than computer science. Synnoetics was 
Fein ’ s term for  “ the cooperative interaction, or symbiosis of people, 
mechanisms, plant or animal organisms, and automata into a system that 
results in a mental power (power of knowing) greater than that of its 
individual components. ”  In many ways, synnoetics was much more akin 
to the contemporary discipline of cybernetics that to the modern disci-
pline of computer science. 

 Computer Bureaus and Computing Laboratories 

 Computing in the universities did not begin with the electronic computer. 
Small-scale computing projects organized around mechanical calculators 
and human computers had existed for decades in departments of physics 
and astronomy.  28   For the most part, however, these human computing 
projects had no identity independent of that of their host department. 
They were funded and staffed locally, and regarded computing as impor-
tant only in the context of a larger scientifi c agenda. 

 By the 1930s a few research universities had established computing 
centers that did serve multiple faculties. Many of these were operated in 
collaboration with computing equipment manufacturers. IBM started 
donating tabulating equipment to Columbia University in the 1920s, for 
example, and in 1934 helped establish what would become the Thomas 
J. Watson Astronomical Computing Bureau, operated jointly by IBM, 
Columbia, and the American Astronomical Society. The bureau attracted 
researchers from mathematics and physics as well as astronomy, and in 
1945 was transformed into the Watson Scientifi c Computing Laboratory, 
which provided computing services to a broad range of scientists 
at Columbia and beyond. In 1946 the laboratory began offering an 
introductory course in scientifi c computing that over the next two 
decades enrolled more than sixteen hundred researchers from twenty 
countries.  29   

 At Harvard, a young graduate student in physics named Howard 
Aiken convinced the IBM Corporation to construct for him an electro-
mechanical computer intended to help fulfi ll the pressing need  “ for more 
powerful calculating methods in the mathematical and physical sci-
ences. ”   30   The Harvard Mark I, as it came to be known, was a truly 
massive machine: fi fty feet long, weighing more than fi ve tons, comprised 
of more than seven hundred thousand individual parts. During the war 
the Mark I served as the foundation for the Harvard Computational 
Laboratory (commanded by Aiken, who was a Naval Reserve offi cer). 
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After the war Aiken transformed the laboratory into a center for training 
and research in the emerging fi elds of computer science. By 1947, Harvard 
had established a one-year master ’ s degree program in applied mathe-
matics  “ with special reference to computing machinery. ”   31   The following 
year, with funding from the U.S. Air Force, the program began offering 
doctoral degrees. By 1954, it had graduated nineteen MA and eight PhD 
students. It was not until 1962 that an academic program in computer 
science was established outside the Computational Laboratory.  32   

 MIT had a similarly long tradition of scientifi c computing that began 
in the 1920s with Vannevar Bush and his colleagues in the electrical 
engineering department. By this time MIT was already known for its 
close ties to business and government, and its infl uential electrical engi-
neering department represented the cutting edge of scientifi c computing 
in this period. Bush ’ s differential analyzer, which solved differential 
equations by mechanical integration, was only the most well-known of 
the analog computing devices developed at MIT during the interwar 
period. In the late 1930s, funding from the Carnegie Corporation helped 
found the MIT Center for Analysis, in which differential analyzers, 
network analyzers, and IBM punch card calculators were harnessed to 
serve the computational needs of a wide variety of faculty, industry, and 
government users. Although the Center for Analysis collapsed, somewhat 
inexplicably, shortly after the end of the war, other computing activities 
helped propel MIT to the forefront of computing research.  33   The 
real-time computing Project Whirlwind was not only transformed, in 
1951, into the Digital Computing Laboratory but also spun off the 
infl uential Lincoln Laboratory (and ultimately, the System Development 
Corporation). Project MAC was an Advanced Research Project Agency –
 funded project that produced important innovations in time-sharing and 
networking, and in 1975 became the MIT Laboratory for Computer 
Science. Other projects and laboratories at MIT incorporated computing 
into programs in communications, library science, and operations 
research.  34   

 Despite the central role that MIT played in postwar computing 
research, it was not until 1969 that the university offered an undergradu-
ate major in computer science. Its graduate program in computer science 
would not be established for another decade. This is not to say that 
courses in computing were not offered at MIT prior to this period; 
indeed, as early as 1935 Samuel Caldwell was teaching a graduate 
seminar in machine computation. But prior to the late 1960s, instruction 
in computer science was distributed throughout various departments and 
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laboratories. When computing did enter the formal MIT undergraduate 
curriculum, it did so under the auspices of the powerful electrical engi-
neering department. The program that was established in 1969 was only 
an optional major within electrical engineering. And even then the cur-
riculum was at best a combination of basic computer science and com-
puter engineering.  35   Theory clearly took a backseat to practical circuit 
design and basic physics. It was not until 1975 that the students could 
receive a BS degree in computer science — rather than a BSE in electrical 
engineering — from the newly renamed Department of Electrical 
Engineering and Computer Science. 

 Other universities had similar arrangements. The Moore School of 
Electrical Engineering had long served as a computing center for both 
the University of Pennsylvania and the nearby Naval Ballistics Laboratory 
in Aberdeen, Maryland. In addition to its large staff of human comput-
ers, the Moore School had also acquired a copy of a Bush differential 
analyzer. In 1954, Princeton University acquired the computer that John 
von Neumann had built for the Princeton Institute for Advanced Study. 
The responsibility for operating the computer was given to the mathe-
matics department, which despite having a strong tradition in just the 
types of mathematical logic that were becoming central to theoretical 
computer science, was not much interested in making use of it. The 
statistician John Tukey did have an interest in practical computing, as 
did the electrical engineering department, and in the early 1960s it was 
agreed that the statistics department would take over responsibility for 
computing science, while electrical engineering would provide training 
in computer science.  36   In the end it was the electrical engineering depart-
ment, in part because of its control over the Princeton Computing Center, 
that incorporated both. It was not until 1984 that Princeton was to have 
a separate department of computer science. 

 Trading Zones 

 The adoption of the new technology of electronic computing seems to 
have followed, at most universities, the pattern established by the pre-
existing computing centers: the cost of expensive equipment was justifi ed 
by its ability to serve the needs of researchers in established disciplines 
such as physics, astronomy, mathematics, and electrical engineering. 

 In many ways this arrangement was advantageous for the emerging 
computer sciences. As Atsushi Akera has described in his study of 
early scientifi c computing activities, many of the pioneering academic 
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computing scientists learned their trade in the centralized computing 
facilities that provided computational services to other researchers.  37   
Akera compares such centers to the  “ trading zones ”  examined by the 
historian of physics Peter Galison in his work on bubble chambers. Like 
the bubble chamber, the electronic computer created around it an inter-
disciplinary space in which researchers from a variety of backgrounds 
could productively interact. In such trading zones, researchers did not 
have to agree on the universal meaning or signifi cance of the instrument 
but only on local protocols and practices. And so a physicist using the 
computer to perform Monte Carlo simulations could regard the com-
puter as a simply another experimental apparatus, while the computer 
programmer that he or she was working with might imagine it as an 
object of study in and of itself.  38   In the computer that the theorists con-
sidered only in terms of its logical architecture, the electrical engineers 
saw circuits and wiring diagrams. Both could be interested in the same 
machine for different reasons, and still have interactions in the trading 
zone that were productive and signifi cant. 

 The trading zone did have its limits. For those who saw the computer 
as a tool of more universal interest and applicability, the confi nes of the 
computing centers could be limiting. The isolation of computing in com-
puting centers was at once physical, professional, and intellectual. Early 
computers were large, power hungry, and because of the extensive 
cooling required to dissipate the heat they produced, noisy. They required 
constant maintenance. They generally never left the engineering labs in 
which they were constructed, reinforcing their status as experimental and 
highly specialized instruments. Each machine was unique, and the tech-
nology was changing so rapidly that every new machine was essentially 
a prototype. It is hardly surprising that computing appeared to be a 
subset of electrical engineering. 

 Compared to the massive machinery of the computer engineers, the 
contributions of the computer theorists seemed intangible and insignifi -
cant. This was a particular problem for programmers, whose work 
lacked even the subdued glamour of mathematical equations or the claim 
to fundamental scientifi c knowledge. Demonstrating a new machine to 
visitors was  “ orders of magnitude more spectacular ”  than showing them 
a few handwritten sheets of code.  39   The image of the blinking  “ giant 
electronic brain ”  captured both the public and scientifi c imagination in 
a way that mere concepts or procedures never could.  40   And of course at 
this point the word software, or even the concept it would come to 
embody, simply did not exist. Where the hardware engineers were able 
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to demonstrate constant progress toward machines that were smaller, 
faster, and more reliable, their colleagues in software only seemed to 
discover new and more perplexing challenges and diffi culties. 

 That computing itself was a curious amalgam of disciplinary tech-
niques and traditions drawn from mathematics and engineering was both 
an asset and a liability. There is no question that nascent computer pro-
fessionals benefi ted immensely from their ability to make themselves 
useful to a broad range of academic researchers. But having interdisci-
plinary appeal was not the same as owning your own discipline. Computer 
center personnel had diffi culty shedding their image as service providers 
rather than legitimate researchers. In a report to the ACM Curriculum 
Committee in 1966, the noted computer scientist David Parnas warned 
that computer science was  “ viewed by other disciplines as a rather easily 
mastered tool. ”   “ It is easy, in any fi eld, to confuse the work of a techni-
cian with the work of a professional, ”  suggested Parnas,  “ but this is 
easier in computer science because a worker in another discipline will 
consider himself an  ‘ expert ’  after learning to use a computer to process 
his data. ”   41   

 The development of high-level programming languages exacerbated 
this situation. For example, by 1958 the majority of users of IBM ’ s line 
of scientifi c computers were using FORTRAN to develop their software. 
FORTRAN had been developed specifi cally for scientists, with its syntax 
deliberately mirroring conventional arithmetic notation.  42   There was no 
reason why a department of mathematics or physics could not offer a 
FORTRAN programming course suffi cient for the needs of its faculty 
and graduate students. 

 In fact, this is just what happened. Departments of mathematics, 
engineering, and business were able to develop what they saw as perfectly 
serviceable courses of instruction in computer programming. Anticipating 
a debate that would soon develop in the commercial computing industry, 
they considered disciplinary-specifi c training as being  more  relevant than 
that provided by computer specialists. It was not computing per se that 
was important or interesting; what mattered was the application of 
computing to a particular problem domain, and who was better qualifi ed 
to teach scientifi c programming than a specialist in that domain. A good 
physicist could easily pick up enough programming to get by on, but 
even the best programmers could never learn enough physics to become 
truly useful. If the physicist ’ s code was not quite as optimal as the pro-
fessional programmer ’ s, it was always possible to buy a more powerful 
computer. 
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 As we have seen in the case of all the early academic centers of elec-
tronic computing — Columbia, Harvard, MIT, and the University of 
Pennsylvania — computing activity itself was confi ned to the computing 
laboratories, while theoretical work and practical instruction in comput-
ing tended to be distributed throughout the university, with departments 
of mathematics and electrical engineering serving as de facto administra-
tors of computer-related education. This was certainly the situation as 
Fein described it in his 1959 report. It was not inevitable, at least through 
the end of the 1960s, that computer science would be able to distance 
itself from its origins in other disciplines. As long as courses in computing 
theory or at least practical programming were being offered by individual 
departments, it was not obvious that it needed to. Some of the traditional 
disciplines clearly felt threatened by the newcomer. At Harvard and 
Princeton, for example, undergraduate enrollments grew rapidly in com-
puter science while they stagnated in other areas of applied science and 
engineering. At Penn and MIT, an increasing number of electrical engi-
neering students chose to focus on computer-related subjects rather than 
on other areas of electrical engineering. As computer-related subfi elds 
began drawing resources and students from traditional disciplines, heated 
battles erupted over faculty slots, graduate admissions, and courses. Its 
early success at attracting students and resources notwithstanding, com-
puter science was repeatedly forced to defend its academic legitimacy. 
And so the real historical question seems to be not why it took so long 
for an autonomous discipline of computer science to be established but 
why it ever got established in the fi rst place. 

 Is Computer Science Science? 

 The most obvious answer is that computer science exists because the 
computer scientists wanted it to. The community of computing research-
ers that emerged out of the digital computing laboratories of the 1950s 
represented a defi nitive break from the earlier tradition of the scientifi c 
computing bureau. These were not the female human computers or tabu-
lating machine operators of the previous generation; they were men with 
MAs or PhDs in fi elds like physics, mathematics, and astronomy. They 
had been attracted to computing because they found the work challeng-
ing and rewarding, not because they had no other options. A few already 
had positions as university faculty; most had academic aspirations; 
all believed computing, as a generalized phenomenon, was a subject 
worthy of sustained and concentrated scientifi c attention. It seemed both 
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essential and inevitable that their professional identity as computer sci-
entists would be constructed around a solid foundation of theoretical 
knowledge. 

 Such academically minded individuals were naturally drawn to the 
ACM. The ACM had been founded in 1947 by MIT professor Samuel 
Caldwell. Although as its name implies the ACM had been established 
with computing machinery in mind, by the early 1950s it had distanced 
itself from the more engineering-oriented aspects of computing in favor 
of the  “ other phases ”  of computing, including numerical analysis, logical 
design, and programming.  43   As will be discussed further in chapter 7, 
the ACM deliberately styled itself an as academic organization; its annual 
meetings resembled academic conferences, with published proceedings, 
and the articles in its journals, the fi rst of which appeared in 1953, were 
peer reviewed, highly technical, and generally theoretically oriented. 
Many of the original members either were or had been associated with 
a major university computation project, and most were university edu-
cated. The ACM was the fi rst computing association to impose educa-
tional standards on its members, develop standardized computer science 
curricula, and join national scientifi c organizations such as the American 
Association for the Advancement of Science and the National Academy 
of Sciences. Almost half of the institutional members of the ACM were 
educational organizations, and after 1962 a thriving student membership 
program was developed. In 1966, the ACM established the prestigious 
Turing Award, which remains to this day the highest academic honor 
awarded in computer science. The ACM clearly attracted those comput-
ing specialists most invested in a particular vision of computer science 
in which the  “ sole abstract purpose of advancing truth and knowledge ”  
remained primary.  44   

 Of course, it was not enough for computer scientists to call themselves 
scientists. Although by the early 1960s the term computer science was 
being used widely within both academia and industry to describe the 
formal study of computing, the broader recognition of computer science 
as a legitimate science had yet to be established.  45   The elevation of uni-
versity computing centers to departments of computer science did not 
necessarily change the widespread perception that computing was still 
essentially a service activity.  “ Any fi eld that has the word science in its 
name, ”  argued the mathematician Frank Harary,  “ is guaranteed thereby 
not to be a science. ”   46   The historical association of computing with low-
skilled, feminized labor did nothing to improve this perception, nor did 
the more recent dominance by the technology of the electronic computer. 
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In order to gain real academic respectability, computer scientists had 
to convince others not only that having such a discipline was desirable 
and necessary but also that it addressed some fundamental scientifi c 
objective. 

 On this fi rst point computer scientists were greatly assisted by the 
contemporary boom in commercial electronic computing. As has been 
discussed previously, this was more than just a function of the increasing 
availability of fast, reliable, and (relatively) low-cost computing power. 
The growing realization that software could be used to transform the 
general-purpose electronic computer into a broad range of information- 
and decision-related devices greatly expanded the range of applications 
to which this computing power could be productively applied. By the 
early 1960s, the electronic computer had become a signifi cant presence 
not only in the research laboratory and the military but in the corporate 
and government sectors as well. It was no great rhetorical leap to argue, 
as did the computer scientist Peter Wegner in a 1966 essay, that society 
was on the verge  “ of a computer revolution that will be as profound in 
its effects as the industrial revolution of the eighteenth and nineteenth 
centuries. ”   47   Similar assertions were being made by numerous business 
leaders and government offi cials in this period. The real question was 
not whether or not, as Wegner went on to contend, there was  “ a growing 
organized body of knowledge and theory relating to computers, ”  but 
whether  “ this body of knowledge and theory is called computer 
science. ”   48   

 The general excitement generated by the rapid expansion of the com-
mercial computer industry lent support to the claims of computer scien-
tists that their discipline was of central economic and social signifi cance. 
The burgeoning personnel crisis in the computing fi elds described in 
previous chapters was just one sign of a larger interest in computer-
related training and education. But although computer scientists clearly 
benefi ted from the growing demand for practical training in computer 
programming, their relationship with commercial computing was from 
the beginning ambivalent. On the one hand, the practical and commer-
cial potential of the electronic computer is what attracted attention and 
funding from industry as well as the government. On the other hand, in 
order to differentiate themselves from mathematics or electrical engineer-
ing, and establish computing as more than just a service industry, they 
had to distance themselves from the more technical activities associated 
with computing. 
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 There were attempts in this period to defi ne computer science in terms 
of computer technology. In a letter to the editors of  Science  in 1967, the 
noted computer scientists Herbert Simon, Allen Newell, and Alan Perlis 
maintained that the answer to the perennial question of  “ Is there such a 
thing as computer science, and if there is, what is it? ”  was really quite 
simple: just as biology was the study of life, and astronomy the study of 
stars, computer science was the study of computers. That the former 
were natural phenomenon and the latter was artifi cial was irrelevant (an 
argument that the Nobel Prize – winning Simon would make more thor-
oughly in 1967 in his  The Sciences of the Artifi cial ).  49   Yes, computers 
involved technology as well as science. Yes, computing represented a 
dirty mix of mathematics, electronics, psychology, and many other already-
established disciplines. But computers produced interesting, novel, and 
complex phenomenon, and that was justifi cation enough for a science of 
computing. 

 For most aspiring computer scientists, however, this was not a satis-
factory defi nition. It smacked too much of the physicality of engineering. 
 “ Computer science is no more about the computer than astronomy is 
about telescopes, ”  Edsger Dijkstra famously declared.  50    “ We were 
blinded by the huge success of computers as practical tools, ”  Louis Fein 
argued, and therefore  “ overemphasized the importance of computer 
design and programming. ”   51   A fi rst-rate program in the computer sci-
ences  “ should be possible without any computing equipment at all, just 
as a fi rst-rate program in certain areas of physics can exist without a 
cyclotron. ”   52   It was a  “ widespread misconception ”  that computer science 
was  “ simply concerned with the design of computing devices, ”  echoed 
a report by the ACM Curriculum Committee in 1965.  53   Even the choice 
to include machinery in the title of their association seemed increasingly 
improvident to many ACM members. Over the course of the next several 
decades, regular attempts would be made to change the name of the 
ACM to something more science oriented.  54   

 For a growing number of computer scientists, the computer itself was 
increasingly just an abstraction, a  “ universal machine ”  that could be 
transformed into whatever particular solution happened to be required. 
It was the process of transformation, and its possibilities and constraints, 
that was of central theoretical importance; the physical characteristics of 
the underlying object of that transformation were immaterial. 

 The fi rst important step toward the establishment of a science of 
computing independent of the computer had originated with John von 
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Neumann, the peripatetic physicist, mathematician, and economist who, 
during the Second World War and its immediate aftermath, was inti-
mately involved with the development of both the electronic computer 
and the hydrogen bomb. In the course of his work at Los Alamos on the 
modeling of thermonuclear reactions, von Neumann became aware of 
the ENIAC project at the University of Pennsylvania. There he began 
working with the ENIAC designers on a successor machine called the 
EDVAC, which was in concept the fi rst modern, stored-program elec-
tronic computer. In 1945 – 1946, von Neumann circulated an informal 
 “ First Draft of a Report on the EDVAC, ”  which described the EDVAC 
in terms of its logical structure, using notation borrowed from neuro-
physiology. Ignoring most of the physical details of the EDVAC design, 
such as its vacuum tube circuitry, von Neumann focused instead on the 
main functional units of the computer: its arithmetic unit, memory, and 
input and output. The  “ von Neumann architecture, ”  as it came to be 
known, served as the logical basis for almost all computers designed in 
subsequent decades. 

 By abstracting the logical design of the digital computer from any 
particular physical implementation, von Neumann took a crucial fi rst 
step in the development of a modern theory of computation.  55   His was 
not the only contribution; in 1937, for example, Turing had described, 
for the purposes of demonstrating the  limits  of computation, what would 
become known as the Universal Turing Machine. Eventually, the 
Universal Turing Machine would become an even more fundamental 
construct of modern computer science. According to the Church-Turing 
thesis, fi rst articulated in 1943 by the mathematician Stephen Kleene, 
any function that can be physically computed can be computed by a 
Universal Turing Machine. 

 The abstraction of the technology of computing in the theoretical 
construct of the Turing Machine mirrored the shift toward software that 
was occurring in the larger commercial computing industry. Independent 
of the work of theoretical computer scientists, working programmers —
 and their corporate employers — were discovering to their chagrin that 
computer software was even more complicated and expensive to develop 
than computer hardware. It was the growing number of data processing 
departments and commercial programming houses that provided the 
majority of employment opportunities for the graduates of fl edgling 
programs in computer science. Establishing computer science as a disci-
pline substantially different from computer engineering had been rela-
tively easy given the growing (and visible) distinction between software 
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and hardware. Clearly defi ning the relationship between computer science 
and computer programming was much more diffi cult and problematic. 

 On the surface, the relationship between the two seems obvious: 
computer science was the theoretical basis underlying the practical occu-
pation of computer programming. Dijkstra had implied as much in his 
 “ Humble Programmer ”  lecture, and most of his contemporaries would 
have agreed that there was at least some relationship between the two. 
But what exactly was the nature of this relationship? As we have seen, 
computer programming in the 1950s was generally regarded as an inher-
ently undisciplined and unscientifi c activity. Computer programmers 
prided themselves on their clever and idiosyncratic solutions to problems. 
Most working programmers in this period had no formal education in 
computing, and many did not even possess a college degree. By the end 
of the 1950s, as discussed earlier, many employers had started question-
ing the value of mathematics to most commercial programming. Indeed, 
the only fi rm conclusion one review of the literature on the selection of 
computer programmers at this time identifi ed was that  “ majoring in 
mathematics was not found to be signifi cantly related to performance as 
a programmer! ”   56   Computer scientists expressed disdain for professional 
programmers, and professional programmers responded by accusing 
computer science of being overly abstract or irrelevant.  57   Much more will 
be said about this confl ict between theory and practice in this and sub-
sequent chapters. For the time being, it is important only to note that 
the professionalization strategies pursued by academic computer scien-
tists were distinct from those of professional business programmers. The 
skills and abilities that were rewarded within the university hierarchy 
were not necessarily valued within the corporate environment. 

 The struggle to defi ne a unique intellectual identity for computer 
science played itself out over the course of the 1960s in the development 
of specifi c programs, departments, and curriculum. The fi rst of these 
refl ected the origins of computing research in computing centers and 
mathematics departments. They included a mix of courses in numerical 
analysis, Boolean algebra, and statistics, combined with more practical 
training in programming.  58   Over the next decade, the more research-
oriented programs expanded to include offerings in artifi cial intelligence, 
automata theory, and computational complexity. As the historian 
Michael Mahoney has argued, this conglomeration of concepts and 
techniques did represent a convergence on a shared intellectual agenda 
for theoretical computer science.  59   But to a certain degree, computer 
science in the early 1960s did also appear, at least from the outside, 
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as just the kind of conceptual grab bag that its opponents accused it 
of being. 

 In 1965, the ACM Curriculum Committee attempted to bring unity 
to computer science by defi ning it in terms of a single fundamental unit 
of analysis: computer science  “ is concerned with  information  in much 
the same sense that physics is concerned with energy; it is devoted to the 
 representation, storage, manipulation , and  presentation  of informa-
tion. ”   60   This redefi nition of computer science around the study of infor-
mation offered several immediate benefi ts. Not only did it lay claim to 
the valuable intellectual territory suggested by the commonsense under-
standing of information as knowledge or data but it also linked the dis-
cipline to the specifi c formulation of information developed in the late 
1940s by the mathematician Claude Shannon. In his seminal book with 
Warren Weaver from 1949,  A Mathematical Theory of Communication , 
Shannon had defi ned information in terms of the physical concept of 
negative entropy.  61   His information theory appealed to scientists in a 
wide variety of disciplines, and for a time it appeared as if information 
might serve as a broadly unifying concept in the sciences.  62   But despite 
its intellectual appeal, Shannon ’ s mathematical defi nition of information 
was never widely applicable outside of communications engineering. And 
as for more commonsense notions of information, there already seemed 
to be claimants to that problem domain. Librarians were already experts 
at classifi cation, storage, and data retrieval. Statisticians specialized in 
numerical data. Most academic disciplines, to a certain degree, were 
devoted to the management and analysis of information. In Europe, 
various versions of the German word  informatik  (including the French 
 informatique , the Spanish  informatica , and the English informatics) had 
been successfully mobilized to organize the emerging  “ computing sci-
ences ”  (a minor but signifi cant difference in terminology) around the 
study of information, rather than computers per se, but in the United 
States such efforts achieved much traction.  63   

 In the end, though, it would not be information that emerged as 
the foundational concept of modern computer science but rather the 
algorithm. 

 Fundamental Algorithms 

 A revolution in science can only be considered complete, according to 
the infl uential philosopher of science Thomas Kuhn, when it has written 
its own textbook history. Textbook histories are the short, celebratory 
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narratives that accompany most textbook introductions to a scientifi c 
discipline. Their purpose is to provide aspiring practitioners with a sense 
of participation in a heroic and coherent disciplinary tradition. They do 
so not by celebrating revolutionary developments but instead by conceal-
ing them. By emphasizing only those details of past discoveries that 
contribute directly to present-day understandings, highly selective histo-
ries situate contemporary theories and practices in a larger tradition of 
continuity and cumulative discovery. In doing so, they allow practitio-
ners to locate themselves within a disciplinary tradition more mythical 
than realistic. The construction of such inherently selective histories is 
an essential move toward the development of what Kuhn called  “ normal 
science. ”  The practice of normal science is what defi nes and perpetuates 
a discipline. Without normal science, there is no discipline.  64   

 Computer science became normal science in the late 1960s. In the 
same year that the ACM defi ned the fi rst standard curriculum in com-
puter science, one of its most noted practitioners published its fi rst offi -
cial history. In 1968, the Stanford University computer scientist Donald 
Knuth opened the fi rst volume of his canonical  The Art of Computer 
Programming  with a survey overview of the history of computing. As 
Kuhn would have anticipated, Knuth ’ s history closely mirrored his 
theory. It located the origins of the discipline in a treatise by the ninth-
century Persian mathematician Muhammad ibn M ū s ā  al-Khw ā rizm ī . It 
is from al-Khw ā rizm ī  that we derive the modern word algorithm, and 
for Knuth it was the study of the algorithm that defi ned the modern 
discipline of computer science. A history of computing in which the 
algorithm was fundamental was the ideal companion to a volume subti-
tled  Fundamental Algorithms .  65   

 As Paul Ceruzzi has convincingly demonstrated, by the beginning of 
the 1970s Knuth and his colleagues had successfully established the 
algorithm as the fundamental unit of analysis of computer science.  66   In 
his compelling interweaving of history and mathematics, Knuth not only 
defi ned for computer science an intellectual lineage worthy of the most 
basic and fundamental of sciences but also skillfully distanced electronic 
computing from its origins in mechanical computation and electrical 
engineering. One of the most common objections raised against com-
puter science was that it was a technical rather than a scientifi c enter-
prise, the study of local particularities rather than fundamental entities. 
Despite what Herbert Simon might suggest about the legitimacy of the 
sciences of the artifi cial, computing still seemed to many to be the domain 
of the engineer and accountant rather than the theoretician or scientist. 
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But the algorithm was by defi nition an abstraction, that aspect of com-
puting that most lent itself to isolation and formalization. Algorithms 
were the mechanical procedures followed by a computer, but they were 
not limited to the computer itself. In theory, algorithms lay at the heart 
of all self-directed activity, whether mechanical, electrical, or biological. 
Algorithms were the essence of intelligence, isolated and refi ned into a 
precisely defi ned series of instructions for completing a task. One did not 
even need a computer to study algorithms; in fact, actual computers were 
more often than not simply a distraction. Where computers were clearly 
human-made and particular, algorithms were conceptual and therefore 
universal.  “ The notion of a mechanical process and of an algorithm, ”  
Peter Wegner would declare,  “ are as fundamental and general as the 
concepts that underlie the empirical and mathematical sciences. ”   67   By 
suggesting that the algorithm was as fundamental to the technical activity 
of computing as Sir Isaac Newton ’ s laws of motion were to physics, 
Knuth and his fellow computer scientists could claim full fellowship with 
the larger community of scientists. 

 In addition to its claims to fundamental metaphysical signifi cance, the 
algorithm provided aspiring computer scientists with a practical agenda 
for advancing their discipline. Algorithms were amenable to mathemati-
cal analysis, which encouraged formalization and abstraction, but not 
so much that they could be subsumed under applied mathematics, which 
allowed the computer scientists to claim disciplinary autonomy. The 
development of effi cient algorithms provided clear and well-defi ned 
problems (along with some exemplary solutions) for students of the dis-
cipline to study and pursue. To borrow once again from Kuhn, algo-
rithms represent the ideal  “ puzzles ”  for normal scientists to solve: 
challenging but not insoluble, intellectually interesting and yet still 
technically familiar. As a disciplinary agenda, the study of the algorithm 
has proved enormously productive. Knuth ’ s  The Art of Computer 
Programming  alone now spans three volumes and more than twenty-
one hundred pages — with four more volumes anticipated before it is 
completed. 

 But while textbook histories are essential for the articulation of disci-
plinary identity, it is in the establishment of specifi c educational curricula 
that such identities become tangible. It was the publication of the ACM ’ s 
 “ Curriculum  ‘ 68 ”  recommendations that fi rmly embedded the study of 
the algorithm in the fabric of computer science education and research. 
Curriculum  ‘ 68 provided detailed guidelines for computer science pro-
grams at both the undergraduate and graduate levels. The curriculum it 
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proposed was unabashedly theoretical: although it recognized that prac-
tical training in programming was  “ an important by-product ”  of an 
education in computer science, the development of programming skill 
was  “ by no means its main purpose. ”  Numerical analysis fi gured heavily, 
as did computability theory, formal languages, and automata theory. 

 As Goshal Gupta has suggested, although Curriculum  ‘ 68 did not end 
all debate about what computer science should look like or where it 
should fi t into the university, it did represent a landmark moment in the 
history of the discipline.  68   Curriculum  ‘ 68  “ established computer science 
as an academic fi eld of study and specifi ed to a great extent its content, ”  
concluded a follow-up report from the late 1970s. Within two years of 
their publication the Curriculum  ‘ 68 guidelines had been implemented 
in at least twenty-six universities.  69   The special committee assembled by 
the ACM to produce the Curriculum  ‘ 68 report, the Curriculum 
Committee on Computer Science (C 3 S), followed up with a series of 
articles in the  Communications of the ACM  highlighting specifi c topics 
from the recommendations, including computational linguistics, formal 
languages, automata, and abstract switching and computability. In col-
laboration with the National Science Foundation, the C 3 S also hosted 
a series of conferences aimed at enabling smaller universities and 
teaching colleges to implement Curriculum  ‘ 68.  70   Over the course of 
the next decade, the C 3 S would continue to refi ne and monitor its 
recommendations. 

  “ Cute Programming Tricks ”  

 Not everyone agreed with the theoretical turn that computer science took 
in the late 1960s. For many occupational computer programmers, most 
of what was happening in theoretical computer science seemed irrelevant 
or even counterproductive, a  “ sort of holier than thou academic intel-
lectual sort of enterprise ”  divorced from practical concerns of commer-
cial computing.  71   Even as computer science succeeded in its quest to 
establish itself as an academic discipline, industry observers were noting 
that academic success did not necessarily translate into real-world accom-
plishments. In the keynote address at the Conference on Personnel 
Research in 1968, IBM researcher Hal Sackman acknowledged the need 
for  “ proper education ”  for programmers, yet then asked,  “ But who can 
we look to for such education? Not the new departments of computer 
science in the universities. . . . [T]hey are too busy teaching simon-pure 
courses in their struggle for academic recognition to pay serious time and 
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attention to the applied work necessary to educate programmers and 
systems analysts for the real world. ”   72   Later that same year, in his Turing 
Award lecture titled  “ One Man ’ s View of Computer Science, ”  Bell 
Laboratories research scientist Richard Hamming criticized the ACM ’ s 
recently released Curriculum  ‘ 68 report for its overemphasis on theory: 

 At present there is a fl avor of  “ game-playing ”  about many courses in computer 
science. I hear repeatedly from friends who want to hire good software people 
that they have found the specialist in computer science is someone they do not 
want. Their experience is that graduates in our programs seem to be mainly 
interested in playing games, making fancy programs that really do not work, 
writing trick programs, etc., and are unable to discipline their own efforts so 
that what they say they will do gets done on time and in practical form. 

 Although Hamming was a fi rm believer in the inclusion of advanced 
mathematics in the computer science curriculum, he held that if the dis-
cipline were going to turn out  “ responsible, effective people who meet 
the real needs of our society, ”  it would need to abandon its love affair 
with pure mathematics and embrace a hands-on engineering approach 
to computer science education.  73   

 Industrial employers in particular were becoming increasingly dis-
gruntled with the products of the academic computer science depart-
ments.  “ Possibly the most blatant failure of our industry has been its 
ineffective efforts at communicating with the academic community, ”  
argued one article in 1970 on the so-called people problem:  “ Ours is the 
fi rst major industry in modern history to develop with only limited 
support from colleges and universities. . . . [M]ost colleges and universi-
ties still have not initiated degree programs leading to data processing 
careers. Those who do offer computer training frequently give the cur-
riculum a scientifi c orientation, thus ignoring the additional skills needed 
by our industry. ”   74   Abraham Kandel noted the  “ vicious circle ”  of intel-
lectual introspection that followed the minimization of practical pro-
gramming training in the Curriculum  ‘ 68 guidelines.  “ Some computer 
science departments have done such a magnifi cent job of de-emphasizing 
the importance of the experimental laboratory in their program that their 
graduates emerge thoroughly unprepared to tackle the intricacies associ-
ated with design work in the real-life world. ”   75   

 Given the perceived incompatibility between the needs of business and 
the output of the universities, the rise of computer science as an academic 
discipline contributed little to the professionalization of data processing. 
Corporate employers began turning to other sources of educated practi-
tioners. A  Datamation  survey in 1972 of corporate data processing 
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managers noticed  “ another attitude common to most of  Datamation  ’ s 
wise men: the relative uselessness of departments of computer sciences  
. . . and the people they are capable of turning out. ”  For those people 
thinking about entering the fi eld, the article recommended,  “ the consen-
sus advice seems to be: stay out of computer sciences. Take a bachelor ’ s 
degree in a technical subject, add a master ’ s in business administra-
tion. ”   76   Fred Gruenberger, himself a computer science educator, sug-
gested that  “ most programming managers in large corporations tell the 
same story repeatedly (although regrettably few people listen). Please, 
they say, give us well-educated MBAs, not Computer Science graduates. ”  
Why business training and not computer science?  “ It has been repeatedly 
proven in both scientifi c and commercial data processing that program-
ming can be taught to bright, well-motivated and well-educated people, 
but that company identifi cation and a general feeling for  ‘ business ’  
can almost never be taught. ”   77   Employers also began to look at mecha-
nisms other than education for ensuring the quality of their workforce, 
especially professional certifi cation exams. This will be the subject of 
chapter 7. 

 Science as Professional Identity 

 In his pathbreaking work on the intellectual history of theoretical com-
puter science, Michael Mahoney has described the emergence of that 
discipline in terms of the setting of intellectual agendas. An agenda, in 
Mahoney ’ s formulation, is  “ what practitioners of the discipline agree 
ought to be done, a consensus concerning the problems of the fi eld, their 
order of importance or priority, the means of solving them, and perhaps 
most importantly, what constitute solutions. ”   78   It is the ability to set 
agendas and make progress toward achieving them that determines the 
intellectual standing of a discipline. In the years between 1955 and 1975, 
Mahoney argues, theoretical computer science did manage to converge 
on a set of agendas — automata theory, formal languages, computational 
complexity, and formal semantics — that provided it with a coherent 
disciplinary identity. By the end of this period, computer science had 
unquestionably established itself as a mathematically oriented discipline 
with real scientifi c credibility. 

 The desire to set an academic agenda was itself a form of agenda, or 
at least a strategy for pursuing a larger agenda. In this case the larger 
agenda was the professionalization of the computer industry. As will be 
argued more completely in the following chapter, the accomplishment 
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of professional status for  “ computer people ”  was a goal shared by almost 
everyone in the computer industry: occupational programmers, aspiring 
computer scientists, computer manufacturers, software development 
fi rms, human resources departments, corporate managers, and regula-
tory agencies.  79   The real question was not whether the industry should 
professionalize but instead what form this professionalization should 
follow. The model of the research scientist or the scientifi cally informed 
software engineer were both powerful paradigms of professional devel-
opment, but as we shall see, they were by no means the only models 
available; the certifi ed public accountant was, for many data processing 
personnel, an even more compelling example of autonomous profes-
sional expertise. The point is that the emergence of computer science as 
an academic discipline can only be understood in terms of the larger 
pursuit of professional status. 



 

 6 

 We are at once the most unmanageable and the most poorly managed specialism 
in our society. Actors and artists pale by comparison. Only pure mathematicians 
are as cantankerous, and it ’ s a calamity that so many of them get recruited by 
simplistic personnel men. 

  — Herbert Grosch,  “ Programmers: The Industry ’ s Cosa Nostra, ”  1966 

 Unsettling the Desk Set 

 The 1957 fi lm  Desk Set  is best known to movie buffs as a lightweight 
but enjoyable romantic comedy, the eighth of nine pictures in which 
Spencer Tracy and Katherine Hepburn acted together, and the fi rst to be 
fi lmed in color. The fi lm is generally considered frivolous yet enjoyable, 
not one of the famous pair ’ s best, though still popular and durable. The 
plot is fairly straightforward: Tracy, as Richard Sumner, is an effi ciency 
expert charged with introducing computer technology into the reference 
library at the fi ctional Federal Broadcasting Network. There he encoun-
ters Bunny Watson, the Hepburn character, and her spirited troop of 
female reference librarians. Watson and her fellow librarians, who spend 
their days researching the answers to such profound questions as  “ What 
kind of car does the king of the Watusis drive? ”  and  “ How much damage 
is caused annually to American forests by the spruce budworm? ”  imme-
diately suspect Sumner of trying to put them all out of a job. After the 
usual course of conventional romantic comedy fare — mutual mistrust, 
false assumptions, sublimated sexual tension, and humorous misunder-
standings — Watson comes to see Sumner as he truly is: a stand-up guy 
who was only seeking to make her work as a librarian easier and more 
enjoyable. 

 What is less widely remembered about  Desk Set  is that it was spon-
sored in part by the IBM Corporation. The fi lm opens with a wide-angle 
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view of an IBM showroom, which then closes to a tight shot of a single 
machine bearing the IBM logo. The equipment on the set was provided 
by IBM, and the credits at the end of the fi lm — in which an acknowledg-
ment of IBM ’ s involvement and assistance features prominently — appear 
as if printed on an IBM machine. IBM also supplied equipment operators 
and training. 

 The IBM Corporation ’ s involvement with  Desk Set  was more than an 
early example of opportunistic product placement. Underneath the trap-
pings of a lighthearted comedy,  Desk Set  was the fi rst fi lm of its era to 
deal seriously with the organizational and professional implications of 
the electronic computer. In the midst of the general enthusiasm that 
characterized popular coverage of the computer in this period crept hints 
of unease about the possibility of electronic brains displacing humans in 
domains previously thought to have been free from the threat of mecha-
nization. In 1949 the computer consultant Edmund Berkeley, in the fi rst 
popular book devoted to the electronic computer, had dubbed them 
 “ Giant Brains; or, Machines That Think. ”  The giant brain metaphor 
suggested a potential confl ict between human and machine — a confl ict 
that was picked up by the popular press.  “ Can Man Build a Superman? ”  
 Time  magazine asked in a cover story in 1950 on the Harvard Mark III 
computer.  1   More pressingly, asked  Colliers  magazine a few years later, 
 “ Can a Mechanical Brain Replace You? ”   2   Probably it could, concluded 
 Fortune  magazine, at least if you worked in an offi ce, where  “ offi ce 
robots ”  were poised to  “ eliminate the human element. ”   3   IBM ’ s participa-
tion in production of  Desk Set  can only be understood in terms of its 
ongoing efforts, which started in the early 1950s, to reassure the public 
that despite rumors to the contrary, computers were not poised  “ to take 
over the world ’ s affairs from the human inhabitants. ”   4   

 Seen as a maneuver in this larger public relations campaign,  Desk Set  
was an unalloyed triumph for IBM.  5   The fi lm is unambiguously positive 
about the electronic computer. The idea that human beings might ever 
be replaced by machines is represented as amusingly naive. Sumner ’ s 
Electronic-Magnetic Memory and Research Arithmetic Calculator 
(EMERAC) is clearly no threat to Watson ’ s commanding personality and 
effi ciency. In fact,  “ Emmy ”  turns out to be charmingly simpleminded. 
When a technician mistakenly asks the computer for information on the 
Island  “ Curfew ”  (as opposed to Corfu), Emmy goes amusingly haywire. 
Fortunately, she could easily be put right using only a bobby pin, judi-
ciously applied. The reassuring message was that computers were useful 
but dimwitted servants, and unlikely masters. As one reviewer described 
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the situation,  “ It simply does not seem very ominous when they threaten 
to put a mechanical brain in a broadcasting company ’ s reference library, 
over which the effi cient Miss Hepburn has sway. . . . The prospect of 
automation is plainly no menace to Kate. ”   6   

 But if the computer held no dangers for Hepburn, it did for many of 
the real-life offi ce workers watching the fi lm. Like Watson and her librar-
ians, most would have greeted the arrival of a computer-toting effi ciency 
expert with fear and trepidation. Although Tracy imbued the character 
of Sumner with his trademark gruff-but-likable persona, such experts 
were generally seen as the harbingers of reorganization, mechanization, 
and what the economist Thorstein Veblen described as the  “ degradation 
of labor. ”   7   And as Thomas Haigh has suggested, it was no coincidence 
that Sumner was both an effi ciency expert and a computer designer; 
many of the  “ systems men ”  of the early electronic computer era were 
effi ciency experts turned computer consultants. In any case, the specter 
of computer-driven unemployment looms large over  Desk Set , if only as 
the source of initial confl ict between Sumner and Watson. But even the 
most casual viewers of  Desk Set  might have suspected that absent the 
feisty Hepburn, the librarians at the Federal Broadcasting Network might 
not have gotten off so easily. Although the fi lm alluded to a second 
EMERAC that had been installed in the payroll department, no mention 
was made of the payroll workers having a Watson of their own. Even if 
the skilled reference librarians and accountants were immune from com-
puterization, though, what about other, less specialized workers? Did 
anyone really expect the two Emmies to remain confi ned to the library 
and payroll departments? It seemed inevitable that at least some Federal 
Broadcasting Network employees would be reduced to the status of mere 
machine operators, or perhaps replaced altogether. 

 Insofar as the  Desk Set  has been interpreted critically, it is in the 
context of these larger concerns about the replacement of human beings 
with computers. The struggle of human versus machine (or more precise, 
woman versus machine) depicted in the fi lm is often seen as a metaphor 
for worker resistance to computerization. Although the possibility that 
computers might supersede humans was much discussed in the popular 
press during the 1950s and early 1960s, with the exception of a small 
number of occupational categories the adoption of computer technology 
generally  did not  involve large-scale worker displacement. For the most 
part, what resistance to corporate computerization efforts did emerge 
came not from ordinary workers but rather from their managers. It was 
these managers who frequently saw their work most directly affected by 
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the applications developed by computer programmers and systems ana-
lysts. Over the course of the 1950s corporations had discovered that the 
electronic computer was more than just an improved version of the 
mechanical calculator or Hollerith machine. What was originally envi-
sioned as a  “ chromium-plated tabulator, ”  as Haigh has portrayed it, was 
increasingly seen as a tool for managerial control and communication.  8   
As the electronic computer was gradually reinterpreted in larger organi-
zational terms, fi rst as an  “ electronic data processing ”  device and then 
again as a  “ management information system, ”  it was increasingly seen 
as a source of institutional and professional power. 

 Computers Can ’ t Solve Everything 

 The 1960s were something of a golden age for the computer industry. 
The industry grew at an average annual rate of 27 percent during this 
period.  9   At the beginning of the decade there were roughly fi fty-four 
hundred computers installed in the United States; by 1970 this number 
had grown to more than seventy-four thousand.  10   In 1969 alone U.S. 
fi rms purchased $7 billion worth of electronic computers and related 
equipment. An additional $14 billion was spent on computer personnel 
and materials. The corporate world ’ s total investment in computing that 
year represented 10 percent of the nation ’ s total annual expenditure on 
capital equipment.  11   These corporate investors were also getting increas-
ingly more for their money. In the fi rst half of the decade, innovations 
in transistor and integrated circuit technology had increased the memory 
size and processor speed of computers by a factor of ten, providing an 
effective performance improvement of almost a hundred. By the end of 
the decade, the inexorable march toward smaller, faster, and cheaper 
computing predicted by Gordon Moore in 1965 was clearly in 
evidence.  12   

 It was during this period that the IBM Corporation rose to worldwide 
dominance, establishing in the process a series of institutional structures 
and technological standards that shaped developments in the industry 
for the next several decades. Under IBM ’ s substantial umbrella a broad 
and diverse set of subsidiary industries fl ourished, including not just 
manufacturers of complementary (or even competing) hardware prod-
ucts but also programming services companies, time-sharing  “ computer 
utilities, ”  and independent data processing service providers. When we 
consider such subsidiary industries, our estimate of the total size of the 
computer industry almost doubles.  13   
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 And yet by the late 1960s there were signs of trouble in paradise. 
Foreshadowing the  “ productivity paradox ”  debate of later decades, hints 
began to appear in the literature that a growing number of corporations 
were questioning the value of their investment in computing. As an 
article in 1969 in  Fortune  magazine entitled  “ Computers Can ’ t Solve 
Everything ”  described the situation,  “ After buying or leasing some 
60,000 computers during the past fi fteen years, businessmen are less and 
less able to state with assurance that it ’ s all worth it. ”  The article recited 
a litany of overambitious and ultimately unsuccessful attempts to com-
puterize planning and management processes at such fi rms as Pillsbury, 
Westinghouse, and the International Minerals and Chemical Corporation. 
The success that many companies experienced in computerizing their 
clerical operations in the 1950s, argued industry reporter Thomas 
Alexander, had generated unrealistic expectations about their ability to 
apply computing power to more sophisticated applications, such as con-
trolling manufacturing operations, optimizing inventory and transporta-
tion fl ows, and improving the quality of managerial decision making. 
But perhaps one in ten businesses was  “ showing expertise in the manage-
ment of the computer ”  to higher-order activities. The rest were slowly 
and uncomfortably  “ waking up to the fact that they were oversold ”  on 
computer technology — not just by self-interested manufacturers and 
computer consultants, but by their own data processing personnel.  14   

  Fortune  was not alone in its assessment of the apparent unprofi tability 
of many corporate computerization efforts. Beginning in the mid-1960s, 
the noted Harvard Business School professor John Dearden published 
a series of articles in the  Harvard Business Review  dismissing as  
“ myths ”  and  “ mirages ”  the alleged benefi ts of computerized corporate 
information systems.  15   Prominent industry analyst John Diebold com-
plained, also in the pages of the  Harvard Business Review , about the 
 “ naive standards ”  that many businesses used to evaluate the costs and 
benefi ts of computer technology.  “ Nowhere is this lack of [business] 
sophistication more apparent than in the way in which computers are 
applied in American industry today. ”   16   Management consultant David 
Hertz argued that computers were  “ oversold and underemployed. ”   17   A 
survey in 1968 by the Research Institute for America had determined 
that only half of all corporate computer users were convinced that their 
investment in computing had paid off. The inability of computerization 
projects to justify their own existence signaled  “ the fi zzle in the  ‘ com-
puter revolution, ’  ”  suggested the accounting fi rm Touche Ross and 
Company.  18   
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 Perhaps the most devastating critique of corporate computing came 
from the venerable consulting fi rm McKinsey and Company. In 1968 
McKinsey released a report titled  “ Unlocking the Computer ’ s Profi t 
Potential, ”  in which it claimed that  “ computer efforts, in all but a few 
exceptional companies, are in real, if often unacknowledged, trouble. ”  
Despite years of investment in  “ sophisticated hardware, ”   “ larger and 
increasingly costly computer staffs, ”  and  “ complex and ingenious appli-
cations, ”  most of these companies were nowhere near realizing their 
anticipated returns on the investment in electronic computing. Instead, 
they were increasingly characterized by rising costs, lost opportunities, 
and diminishing returns. Although the computer had transformed the 
administrative and accounting operations of many U.S. businesses,  “ the 
computer has had little impact on most companies ’  key operating and 
management problems. ”   19   

 The McKinsey report was widely cited within the business and techni-
cal literature. The editors of  Datamation  endorsed it almost immediately, 
declaring that it  “ lays waste to the cherished dream that computers create 
profi ts. ”   20    Computers and Automation  reprinted it in its entirety several 
months later. References to the report appear in a diverse range of jour-
nals for at least two decades after its initial publication.  21   

 The dissatisfaction with corporate computerization efforts expressed 
in the McKinsey report and elsewhere must be interpreted within the 
context of a larger critique of software that was percolating in this 
period. As mentioned earlier, the  “ gap in programming support ”  that 
emerged in 1950s had worsened to  “ software turmoil ”  in the early 
1960s, and by the end of the decade was being referred to as a full-blown 
 “ software crisis. ”   22   And in 1968, the fi rst NATO Conference on Software 
Engineering fi rmly established the language of the software crisis in the 
vernacular of the computer community. Large software development 
projects had acquired a reputation for being behind schedule, over 
budget, and bug ridden. Software had become  “ a scare item for man-
agement . . . an unprofi table morass, costly and unending. ”   23   

 It is important to note that the use of the word software in this period 
was somewhat inconsistent. As Thomas Haigh has suggested, the meaning 
of the word software was changing rapidly during the 1960s, and could 
refer alternatively to something specifi c — the systems software and utili-
ties that today we would describe as an operating system — or more 
generally to the applications, personnel, and processes associated with 
computing. He argues that the software crisis as it was understood by 
the NATO conference organizers referred only to the former defi nition.  24   
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Substantial evidence shows that as early as 1962 the term  “ software ”  
was being used much more broadly to refer to a broad range of com-
puter-based applications.  25   But even if one were to insist on a narrow 
systems-oriented defi nition of the word  “ software, ”  however, then the 
predicament described by the McKinsey report might simply be rechar-
acterized as an  “ applications crisis. ”   26   From a more modern understand-
ing of software as the heterogeneous collection of tools, applications, 
personnel, and procedures that together comprise the system of comput-
ing in action, the distinction is immaterial. 

 Whether we call them a software crisis or an applications crisis, the 
concerns of corporate managers were clearly about the  “ softer ”  elements 
of computer-based systems. The crucial distinction to be made between 
the applications crisis discussed in the business literature and the more 
technical literature on the software crisis lies not in its identifi cation of 
symptoms but rather in its diagnosis of the underlying disease. Both 
communities were concerned with the apparent inability of existing 
software development methods to produce cost-effective and reliable 
commercial applications. But where the technical experts identifi ed the 
root causes of the crisis in terms of production — in other words, as a 
function of the diffi culties inherent in  building software right  — many 
corporate managers believed that the real challenge was in determining 
the  right software to build . Faced with exponentially rising software 
costs, and threatened by the unprecedented degree of autonomy that 
top-level executives seemed to grant to computer people, many corporate 
managers began to reevaluate their largely hands-off policies toward 
programmer management. Whereas in the previous decade computer 
programming had been widely considered to be a uniquely creative 
activity — and therefore almost impossible to manage using conventional 
methods — by the end of the 1960s new perspectives on these problems 
began to appear in the industry literature. The real reason that most data 
processing installations were unprofi table, according to the McKinsey 
report, was that  “ many otherwise effective top managements . . . have 
abdicated control to staff specialists. ”  These specialists might be  “ good 
technicians, ”  but they had  “ neither the operation experience to know 
the jobs that need doing nor the authority to get them done right. ”   27   Or 
as another contemporary report summarized the situation,  “ many man-
agers sat back and let the computer boys monkey around with systems 
that were doomed to failure or mediocrity. ”   28   

 The dramatic shift in tone of the management literature during this 
time is striking. Prior to the late 1960s the conventional wisdom was 
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that computer programming was a uniquely creative activity — genuine 
 “  ‘ brain business, ’  often an agonizingly diffi cult intellectual effort ”  — and 
therefore almost impossible to manage using conventional methods.  29   
But by the end of the decade, the same journals that had previously 
considered programming unmanageable were fi lled with exhortations 
toward better software development management:  “ Controlling 
Computer Programming ” ;  New Power for Management;   “ Managing the 
Programming Effort ” ; and  The Management of Computer Programming 
Efforts .  30   The same qualities that had previously been seen as essential 
indicators of programming ability, such as creativity and a mild degree 
of personal eccentricity, now began to be perceived as merely unprofes-
sional. As part of their rhetorical construction of the applications crisis 
as a crisis of programmer management, corporate managers accused 
programmers of lacking professional standards and loyalties:  “ too fre-
quently these people [programmers], while exhibiting excellent technical 
skills, are non-professional in every other aspect of their work. ”   31   A 
widely quoted psychological study that identifi ed as a  “ striking charac-
teristic of programmers . . . their disinterest in people, ”  reinforced the 
managers ’  contention that programmers were insuffi ciently concerned 
with the larger interests of the company.  32   Computer specialists were 
increasingly cast as self-interested peddlers of whizbang technologies.  “ In 
all too many cases the data processing technician does not really under-
stand the problems of management and is merely looking for the applica-
tion of his specialty, ”  wrote William Walker in a letter to the editor in 
the management-oriented journal  Business Automation .  33   Calling pro-
grammers the  “ Cosa Nostra ”  of the industry, the colorful former-
programmer-turned-technology-management-consultant Herbert Grosch 
declared that computer specialists  “ are at once the most unmanageable 
and the most poorly managed specialism in our society. Actors and 
artists pale by comparison. Only pure mathematicians are as cantanker-
ous, and it ’ s a calamity that so many of them get recruited by simplistic 
personnel men. ”  He warned managers to  “ refuse to embark on grandiose 
or unworthy schemes, and refuse to let their recalcitrant charges waste 
skill, time and money on the fashionable idiocies of our [computer] 
racket. ”   34   

 The most obvious explanation for the sudden reversal in management 
attitudes toward computer people is that just as corporate investment in 
computing assets escalated rapidly in this period, so did its economic 
interest in managing these assets effectively. And since the costs of 
computer software, broadly defi ned to include people, planning, and 



The Cosa Nostra of the Data Processing Industry  145

processes, were growing rapidly in relation to hardware — for every dollar 
spent on computer hardware, claimed the McKinsey report, two dollars 
were spent on staff and operations — it should be no surprise that person-
nel issues were the focus of particular attention. Computer programmers 
alone required at least 35 percent of the total operational budget. The 
size of the average computer department had doubled in the years 
between 1962 and 1968, and was expected to double again by 1975. A 
report in 1966 by the American Federation of Information Processing 
Societies (AFIPS) estimated that in 1960, there were already 60,000 
systems analysts and as many as 120,000 computer programmers working 
in the industry. AFIPS expected this number to more than double by the 
end of the decade.  35   

 There is no question that the rising costs of software development 
caused tension between computer personnel and their corporate manag-
ers. The continuous gap between the demand and supply of qualifi ed 
computer personnel had in recent years pushed up their salary levels far 
faster (and in many cases higher) than those of other professionals and 
managers. In 1965 the ADP (Automatic Data Processing, Inc.) newsletter 
predicted average salary increases in data processing in the range of 40 
to 50 percent over the next fi ve years.  36   Programming professionals had 
a  “ personal monopoly ”  that  “ manifests itself in the market place, ”  which 
provided them with considerable opportunities for horizontal mobility, 
either in pursuit of higher salaries or more challenging positions.  37   Simply 
maintaining existing programming staff levels proved a real trial for 
personnel managers.  38   One large employer experienced a sustained 
turnover rate of 10 percent  per month .  39   For entry-level programmers 
whose marketability increased rapidly the turnover rate was a high as 
100 percent, one personnel manager estimated, which further exacer-
bated the problem of training and recruitment.  40   Who was willing to 
train programmers only to see them leverage that investment into a 
higher salary elsewhere? The problem of  “ body snatching ”  of computer 
personnel by search fi rms and other personnel consultants became so bad 
that AFIPS banned recruiters from the annual Joint Computer 
Conferences.  41   This simply shifted the action to nearby bars and hotel 
rooms, where headhunters would slip blanket job offers under every 
door. 

 But although the rising cost of software and software personnel was 
certainly a factor in the perceived applications crisis of the late 1960s, 
this was more than simply a recapitulation of the personnel problems of 
the previous decade. Then it had been largely accepted that the work 
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that the computer specialists did was valuable enough to deserve special 
consideration. It might be a problem for the industry that good computer 
programmers and systems analysts were hard to fi nd and develop, but 
this was because software development was inherently diffi cult. The 
solutions proposed to this problem generally involved elevating the com-
puter personnel: developing better tools for screening potential program-
mer trainees, establishing programs for computer science education and 
fundamental research, and encouraging programmers to professionalize. 
Even the development of new automatic programming systems such as 
FORTRAN and COBOL, although originally intended to eliminate the 
need for skilled programmers altogether, had the unintended effect of 
elevating their status. For those interested in advancing the academic 
status of computer science, the design of programming languages pro-
vided an ideal forum for exploring the theoretical aspects of their disci-
pline. More practical-minded programmers saw programming languages 
as a means of eliminating the more onerous and error-prone aspects of 
software development. By eliminating much of the tedium associated 
with low-level machine coding, they allowed programmers to focus less 
on technical minutia and more on high-status activities such as design 
and analysis. In any case, the organizational confl icts that defi ne the 
applications crisis of the late 1960s were rarely mentioned in the fi rst 
decade or so of commercial computing. As late as 1963 a survey of pro-
grammers found that the majority (59 percent) reported that the general 
attitude toward them and their work was positive.  42   

 What is novel and signifi cant about the applications crisis of the late 
1960s is that it marked a fundamental change in attitude toward com-
puter personnel. This change was refl ected in both the increasingly dis-
missive language used by corporate managers to refer to their computer 
personnel — not only did the formerly affectionate computer boys acquire 
a new, patronizing edge but even less fl attering titles appeared, such as 
 “ the new theocracy, ”   “ prima donnas, ”  and  “ industrial carpetbaggers ”  —
 and also the solutions that were proposed to the now seemingly perpetual 
crisis in software development.  43   It was in this period that the rhetoric 
of crisis became fi rmly established in the industry literature. But more 
important, it was during this time that the emerging crisis became defi ned 
as fundamentally managerial in nature. Many of the technological, man-
agerial, and economic woes of the software industry became wrapped 
up in the problem of programmer management. Indeed, as will be 
described in a subsequent chapter, many of the most signifi cant innova-
tions in software engineering to be developed in the immediate NATO 
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conference era were as much managerial innovations as they were tech-
nological or professional ones. 

 By reconstructing the emerging software crisis as a problem of man-
agement technique rather than technological innovation, advocates of 
these new management-oriented approaches also relocated the focus of 
its solution, removing it from the domain of the computer specialist and 
placing it fi rmly in the hands of traditional managers. Programmers and 
systems analysts, it was argued,  “ may be superbly equipped, technically 
speaking, to respond to management ’ s expectations, ”  but they are 
 “ seldom strategically placed (or managerially trained) — to fully assess 
the economics of operations or to judge operational feasibility. ”   44   By 
representing programmers as shortsighted, self-serving technicians, man-
agers reinforced the notion that they were ill equipped to handle the big 
picture, mission-critical responsibilities. After all, according to the 
McKinsey report,  “ only managers can manage the computer in the best 
interests of the business. ”   45   And not just any managers would do: only 
those managers who had traditional business training and experience 
were acceptable, since  “ managers promoted from the programming and 
analysis ranks are singularly ill-adapted for management. ”   46   It would be 
this struggle for organizational authority and managerial control that 
would come to dominate later discussions about the nature and causes 
of the software crisis. 

 Seat-of-the-Pants Management 

 Computer specialists had always posed something of a conundrum for 
managers. The expectation that they would quietly occupy the same 
position in the organizational hierarchy as the earlier generation of data 
processing personnel was quickly proven unrealistic. Unlike a tabulating 
machine, the electronic computer was a large, expensive technology that 
required a high level of technical competence to operate effectively. The 
decision to purchase a computer had to be made at the highest levels of 
the organization. But although the high-tech character of electronic 
computing appealed to upper management, few executives had any idea 
how to integrate this novel technology effectively into their existing 
social, political, and technological networks. Many of them granted their 
computer specialists an unprecedented degree of independence and 
authority. 

 Even the lowest ranking of these specialists possessed an unusual 
degree of autonomy. To be sure, the occupations of machine technician 
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and keypunch operators remained relatively unskilled and, to a certain 
degree, feminized. Yet the largest and fastest-growing segment of this 
population, the computer programmers, were increasingly being recog-
nized as being valuable — perhaps even irreplaceable — corporate employ-
ees. This was certainly true of the fi rst generation of programmers, whose 
idiosyncratic techniques for coaxing maximum performance out of prim-
itive equipment were absolutely indispensable. The fact that the tech-
nology of computing was changing so rapidly in this period further 
complicated the ability of even data processing managers — who generally 
lacked practical programming experience — to understand and supervise 
the activities of programmers. The  “ best practice ”  guidelines that applied 
to one particular generation of equipment were quickly superseded by a 
different set of techniques and methodologies.  47   Even as the technology 
of computing stabilized over the course of the early 1950s, though, pro-
grammers maintained their position of central importance. Perhaps even 
more crucial, programming acquired a reputation for being a uniquely 
creative endeavor, one relatively immune from traditional managerial 
controls. The discovery (allegedly) of great disparities between program-
mers reinforced the conventional wisdom that good programmers were 
born, not made. One widely cited IBM study determined that code pro-
duced by a truly excellent programmer was twenty-six times more effi -
cient than that produced by their merely average colleagues.  48   Despite 
the serious methodological fl aws that compromised this particular study 
(including a sample population of only twelve individuals), the twenty-
six to one performance ratio quickly became part of the standard lore 
of the industry. The implication was that talented programmers were 
effectively irreplaceable.  “ The vast range of programmer performance 
indicated earlier may mean that it is diffi cult to obtain better size-
performance software using machine code written by an army of pro-
grammers of lesser than average caliber, ”  argued Dr. Edward E. David 
of Bell Telephone Laboratories.  49   All of this suggested that  “ the major 
managerial task ”  was fi nding — and keeping —  “ the right people ” :  “ with 
the right people, all problems vanish. ”   50   

 The idea that computer programmers possessed an innate and inar-
ticulable skill was soon embodied in the hiring practices of the industry, 
which selected programmers on the basis of aptitude tests and personal-
ity profi les that emphasized mathematical ability and logical thinking 
over business knowledge or managerial savvy. In fact, many of these 
early selection mechanisms seemed to pick traits that were entirely 
opposed to traditional corporate virtues.  “ Look for those who like 
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intellectual challenge rather than interpersonal relations or managerial 
decision-making.  …  Do not consider the impulsive, the glad hander, or 
the  ‘ operator. ’  ”   51   The one personality characteristic of programmers that 
appeared to be universally recognized was their  “ disinterest in people. ”  
According to an infl uential study by the SDC personnel psychologists 
Dallis Perry and William Cannon, compared with other corporate 
employees,  “ programmers dislike activities involving close personal 
interaction. They prefer to work with things rather than people. ”   52   
Whether this lack of sociability was an inherent trait of talented pro-
grammers, a refl ection of self-selection within the profession, or an 
undeserved stereotype is largely irrelevant: the point is that the percep-
tion that programmers were  “ diffi cult ”  was widespread in the industry. 
As the management consultant Richard Brandon described it, the average 
programmer was  “ often egocentric, slightly neurotic, and he borders 
upon a limited schizophrenia. ”  As a group, programmers could be singled 
out in any corporation by their higher incidence of  “ beards, sandals, 
and other symptoms of rugged individualism or nonconformity. ”   53   
Programmers were hardly a group that seemed destined to get along well 
with traditional managers.   

 There is some truth to the perception that the  “ longest-haired com-
puter theorists ”  were seen as corporate outsiders.  54   Leaving aside the fact 
that apparently enough working programmers took their artistic persona 
seriously enough to fl aunt corporate conventions of dress and appear-
ance, the need to keep expensive computers running as continuously as 
possible meant that many programmers worked nonstandard hours. 
During the day the machine operators had privileged access to the 
machines, so programmers frequently worked at night and were there-
fore not always available during traditional business hours. The need to 
work nights appeared to have a particular problem for female program-
mers, who were frequently barred by company policy from being on the 
premises during the off-hours.  55   Combined with their sometimes slovenly 
appearance, this practice of keeping odd hours suggested to more con-
ventional employees that programmers considered themselves superior. 
The direct supervisors of computer personnel might have understood the 
underlying reasons for these apparent eccentricities, but the majority of 
managers did not. The fact that data processing was seen as a service 
department within the larger organization also did nothing to help ingra-
tiate programmers to their colleagues. Whereas most other employees 
saw themselves as part of a collective endeavor to make things or provide 
services, service staffs were seen as a necessary though nonproductive 
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second-class citizens. They were essentially just an overhead cost, like 
heat or electricity. 

 But despite this latent, low-level corporate resentment of computer 
specialists, there were few overt expressions of outright hostility. The 
general consensus through the mid-1960s seemed to be that computer 
programming was somehow an  “ exceptional ”  activity, unconstrained by 
the standard organizational hierarchy and controls.  “ Generating soft-
ware is  ‘ brain business, ’  often an agonizingly diffi cult intellectual effort, ”  
argued one article in  Fortune  magazine in 1967.  “ It is not yet a science, 
but an art that lacks standards, defi nitions, agreement on theories and 
approaches. ”   56   The anecdotal evidence seemed to indicate that  “ the past 
management techniques so successful in other disciplines do not work in 
programming development. . . . Nothing works except a fl ying-by-the-

 Figure 6.1 
  Datamation  cartoon, 1963. 
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seat-of-the-pants approach. ”   57   The general consensus was that computer 
programming was  “ the kind of work that is called creative [and] creative 
work just cannot be managed. ”   58   

 The word creative and its various analogs have frequently been used 
to describe the work of computer specialists — and computer program-
mers in particular — most often in the context of discussions about their 
alleged unmanageability. But what did it mean to do creative work in 
the corporate context? Surely computer programming is not the only 
white-collar occupation that requires skill, ingenuity, and imagination? 
And why did the supposed creativity of programmers suddenly, in a 
relatively short period in the late 1960s, become a major professional 
liability rather than the asset it had been just a few years earlier? 

 The earliest and most obvious references to programmer creativity 
appear in discussions of the black art of programming in the 1950s. For 
the most part these references are disparaging, referring to the arcane and 
idiosyncratic techniques as well as mysterious — and quite possibly chime-
rical — genius of individual programmers. John Backus, for example, had 
no use for such expressions of programmer creativity.  59   Yet for many 
others the idea of the programmer as artist was compelling and captured 
useful truths. When Frederick Brooks described the programmer as a 
poet, building  “ castles in the air, from air, creating by exertion of the 
imagination, ”  he meant the metaphor to be taken seriously.  60   The noted 
computer scientist Donald Knuth also frequently portrayed programming 
as a legitimate literary genre, and went so far as to suggest that it  “ is best 
regarded as the process of creating literature, which are meant to be 
read. ”   61   Although references to programming as an creative activity in 
this artistic sense pervade the technical and popular literature on comput-
ing, and play an important role in defi ning the programming community ’ s 
self-identity from the 1950s to the present, this is not the sense in which 
programming was considered creative by most corporate managers.  62   

 The meaning of creativity most often mobilized in the corporate 
context was intended to differentiate the mechanical tasks associated 
with programming — the coding of machine instructions, for example —
 from the more intellectual activities associated with design and analysis. 
As was described in chapter 2, early attempts to defi ne programming in 
terms of coding did not long survive their infancy. Translating even the 
simplest and most well-defi ned algorithm into the limited set of instruc-
tions understood by a computer turned out to require a great deal of 
human ingenuity. This is one expression of programmer creativity. But 
more important, the process of constructing the algorithm in the fi rst 
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place turned out to be even more challenging. Even the most basic human 
cognitive processes are surprisingly diffi cult to reduce to a series of dis-
crete and unambiguous activities. The skills required to do so were not 
just technical but also social and organizational. In order to computerize 
a payroll system, for instance, an applications developer had to interview 
everyone currently involved in the payroll process, comprehend and 
document their contributions to the process in explicit detail — not failing 
to account for exceptional cases and infrequent variations to normal 
procedures — and then translate these complex activities fi rst into a form 
that other programmers could understand and eventually into the precise 
commands required by the computer. Since the payroll department did 
not operate in isolation, it had to work with other departments to coor-
dinate activities, standardize the required inputs and outputs to the pro-
cedures, and negotiate points of confl ict and contention. It also had to 
produce documentation, train users, arrange testing and verifi cation 
procedures, and manage the logistics of implementation and rollout. All 
of this had to happen without a major interruption of service, since 
missing a payroll cycle would make everyone in the company extremely 
unhappy. These were all of the activities associated with the broad term 
software development. It is not hard to see why such development 
required creativity, or also why such expressions of creativity could be 
perceived as threatening. As Carl Reynolds of the Computer Usage 
Corporation described the situation,  “ There ’ s a tremendous gap between 
what the programmers do and what the managers want, and they can ’ t 
express these things to each other. ”   63   

 In many companies, the various activities associated with software 
development were split among several categories of computer personnel. 
The primary division was between programmers and systems analysts. 
The systems analysts were charged with the more organizational and 
design-related activities, and programmers with the more technical 
elements. But although many companies maintained seemingly rigid 
hierarchies of occupational categories — junior programmer, senior pro-
grammer, systems analyst, and senior systems analyst — in practice these 
neat divisions of labor quickly broke down.  64   In any case, to the rest of 
the corporation, both groups were generally referred to as programmers. 
Computer programming, broadly defi ned to include the entire range of 
activities associated with designing, producing, and maintaining hetero-
geneous software systems, remained an activity with ambiguous bound-
aries, a combination of technical, intellectual, and organizational 
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expertise that increasingly brought programmers into confl ict with other 
white-collar employees. 

 The fi rst glimpse of this potential can be seen in a Price Waterhouse 
report from 1959 called  Business Experience with Electronic Computers . 
The report was the fi rst book-length, comprehensive, publicly available 
study of corporate computing efforts, and appears to have been made 
widely available. In it, a group of Price Waterhouse consultants con-
cludes that the secret to success in computing was the availability of 
high-quality programming, and confi rmed the conventional wisdom that 
 “ high quality individuals ”  were the  “ key to top grade programming. ”  
Why? Because  “ to  ‘ teach ’  the equipment, as is amply evident from expe-
rience to date, requires considerable skill, ingenuity, perseverance, orga-
nizing ability, etc. The human element is crucial in programming. ”  In 
emphasizing the  “ considerable skill, ingenuity, perseverance, [and] orga-
nizing ability ”  required of programmers, the study deliberately confl ated 
the roles of programmer and analyst. In fact, its authors suggested,  “ the 
term  ‘ programmer ’  . . . is unfortunate since it seems to indicate that the 
work is largely machine oriented when this is not at all the case. 
. . . [T]raining in systems analysis and design is as important to a pro-
grammer as training in machine coding techniques; it may well become 
increasingly important as systems get more complex and coding becomes 
more automatic. ”  Perhaps even more signifi cantly, the study blurred the 
boundary between business experience and technical expertise. If any-
thing, it privileged the technical, since  “ a knowledge of business opera-
tions can usually be obtained by an adequate expenditure of time and 
effort, ”  whereas  “ innate ability . . . seems to have a great deal to do with 
a man ’ s capacity to perform effectively in . . . systems design. ”   65   

 Management, Information, and Systems 

 As software projects expanded in scope to encompass not only tradi-
tional data processing applications (payroll, for example) but also man-
agement and control, computer personnel began to encroach on the 
domains of operational managers. The changing role of the computer in 
corporate management and the rising power of EDP professionals did 
not go unnoticed by other midlevel managers. As early as 1959, observ-
ers were noting a sense of  “ disenchantment ”  on the part of many manag-
ers. Overambitious computerization efforts had  “ placed stresses on 
established organizational relationships, ”  and demanded skills  “ not 
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provided by the previous experience of people assigned to the task. ”   66   
The increasing inclusion of computer personnel as active participants in 
all phases of software development, from design to implementation, 
brought them into increasing contact — and confl ict — with other corpo-
rate employees. 

 The situation was complicated by the publication in 1958 of an article 
in the  Harvard Business Review  titled  “ Management in the 1980s, ”  in 
which Howard Leavitt and Thomas Whisler predicted a coming revolu-
tion in U.S. business management. Driven by the emergence of what they 
called  “ information technology, ”  this revolution would radically reshape 
the landscape of the modern corporation, completely reversing the recent 
trend toward participative management, recentralizing power in the 
hands of a few top executives, and utterly decimating the ranks of middle 
management. And although  “ major resistance ”  could be expected during 
the process of transforming  “ relatively autonomous and unprogrammed 
middle-management jobs ”  into  “ highly routinized programs, ”  the bene-
fi ts offered to top-level executives meant that an information technology 
revolution would be inevitable.  67   

 The central premise of Leavitt and Whisler ’ s vision was that informa-
tion technology — which they described as a heterogeneous system com-
prised of the electronic computer, operations research techniques, and 
sophisticated decision-support software — would largely eliminate the 
need for autonomous middle managers. Jobs that had previously required 
the discernment and experience of skilled managers would be replaced 
by scientifi cally  “ programmed ”  systems and procedures.  “ Just as plan-
ning was taken from the hourly worker and given to the industrial engi-
neer, ”  so too would it be taken from the operational managers. 
Information technology allowed  “ the top to control the middle just as 
Taylorism allowed the middle to control the bottom. ”  The top would 
increasingly include what Leavitt and Whisler called a  “ programmer 
elite. ”  And although the  programmer  being referred to here was obvi-
ously a logistical or mathematical planner rather than a computer pro-
grammer, it was also clear that this new elite would be intimately familiar 
with computer technology and software design.  68   

 Although  “ Management in the 1980s ”  is most generally cited for its 
role in introducing the term information technology, it is best understood 
in the context of a more general shift in management practices in the 
decades after the Second World War. The war had produced a series of 
 “ managerial sciences ”  — including operations research, game theory, and 
systems analysis — all of which promised a more mathematical and tech-
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nologically oriented approach to business management. As Philip 
Mirowski and others have suggested, these nascent  “ cyborg ”  sciences 
were deeply connected to the emerging technology of electronic comput-
ing.  69   Not only did many of these new techniques require a signifi cant 
amount of computing power in and of themselves but they relied on the 
electronic computer as a central metaphor for understanding the nature 
of the modern bureaucratic organization.  70   Many of the most visionary 
proposals for the use of the electronic computer in management fre-
quently rode into the corporation on the back of this new breed of expert 
consultants. 

 Foremost among these new computer radicals was Herbert Simon, 
who in 1949 helped found the Carnegie-Mellon University ’ s Graduate 
School of Industrial Administration (and who in 1978 was awarded a 
Nobel Prize for his work on the economics of rational decision making). 
In his book  The New Science of Management  in 1960, Simon outlined 
his version of a machine-aided system of organizational management. 
An early pioneer in the fi eld of artifi cial intelligence, Simon had no 
doubts about the ability of the electronic computer to transform organi-
zations; as a result of advances in decision-support software, Simon 
argued, technologically sophisticated fi rms were  “ acquiring the technical 
capacity to replace humans with computers in a rapidly widening range 
of  ‘ thinking ’  and  ‘ deciding ’  tasks. ”  Within twenty-fi ve years, he pre-
dicted, fi rms will  “ have the technical capability of substituting machines 
for any and all human functions in organizations. ”  Interestingly enough, 
Simon did not believe that this radical new use of the computer would 
lead to the creation of a computing elite but rather that improvements 
in artifi cial intelligence would lead to the elimination of the computer 
specialist altogether.  71   

 The idea that  “ thinking machines ”  would soon replace expert com-
puter programmers was not widely shared outside the artifi cial intelli-
gence community, however. More common was the notion that the need 
for such decision makers could be made redundant by the development 
of an integrated management system that would feed information directly 
to high-level executives, bypassing middle managers completely. John 
Diebold described one version of such a system in an article in the 
 Harvard Business Review  in 1964. When Diebold had introduced the 
concept of  “ automation ”  more than a decade earlier, he had confi ned 
the use of automatic control systems to traditional manufacturing and 
production processes. But his article proposed a  “ bolder, more innova-
tive ”  approach to automatic data processing (ADP) that blurred the 
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boundaries between factory fl oor and offi ce space. Calling ADP the  “ still-
sleeping giant ”  of modern corporate management, Diebold described, in 
vividly organic terms, a single information system that would  “ feed ”  an 
entire business. This system would be  “ the arteries through which will 
fl ow the life stream of the business: market intelligence, control informa-
tion, strategy decisions, feedback for change. ”  Gradually, the system 
would grow to encompass and absorb the entire organization. And after 
that, suggested Diebold,  “ management would never be the same. ”   72   

 The monolithic information system portrayed by Diebold became the 
management enthusiasm of the 1960s, variously referred to in the litera-
ture as the  “ total systems concept, ”   “ management system, ”   “ totally inte-
grated management information system, ”  and most frequently, MIS. As 
Thomas Haigh has convincingly demonstrated, during the decade of the 
1960s  “ a very broad defi nition of MIS spread rapidly and was endorsed 
by industrial corporations, consultants, academic researchers, manage-
ment writers, and computer manufacturers. ”   73   Although important dif-
ferences existed between the specifi c versions of MIS presented by these 
various champions, in general they shared several key characteristics: the 
assumption that information was a critical corporate and managerial 
asset; a general enthusiasm for the electronic computer and its ability to 
centralize managerial information; and the clear implication that such 
centralization would come at the expense of middle managers. 

 A New Theocracy — or Industrial Carpetbaggers? 

 Although the dream of the total management system never really came 
to fruition, the shift of power from operational managers to computer 
specialists did seem to occur in at least some organizations. In a follow-
up to  “ Management in the 1980s ”  in 1967 titled  “ The Impact of 
Information Technology on Organizational Control, ”  Thomas Whisler 
reiterated his view that information technology  “ tends to shift and 
scramble the power structure of organizations. . . . The decision to locate 
computer responsibility in a specifi c part of an organization has strong 
implications for the relative authority and control that segment will 
subsequently achieve. ”  It seemed unlikely, he argued, that anyone  “ can 
continue to hold title to the computer without assuming and using the 
effective power it confers. ”  He cited one insurance executive as saying 
that  “ there has actually been a lateral shift to the EDP manager of deci-
sion-making from other department managers whose departments have 
been computerized. ”  Whisler also quoted another manager at length who 
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was concerned about the relative decline of managerial competence in 
relation to computer expertise:  “ The supervisor . . . has been replaced as 
the person with superior technical knowledge to whom the subordinates 
can turn for help. This aspect of supervision has been transferred, at least 
temporarily, to the EDP manager and programmers or systems designers 
involved with the programming. . . . [U]nderneath, the forward planning 
function of almost all department managers has transferred to the EDP 
manager. ”   74   

 Whisler was hardly alone in his assessment of the role of computing 
personnel in organizational power shifts.  

 In 1962 the  Harvard Business Review  warned against  “ computer 
people  …  attempting to assume the role of high priests to the [electronic 
brain], ”  who would  “ ignore all the people with operating experience and 
concern themselves with looking for a place to apply some new trick 
technique. ”   75   A 1964 article in  U.S. News and World Report  asked if 
the computer was  “ running wild ”  within the corporation, and quoted 
one expert as saying that the  “ computer craze ”  would end as a  “ night-
mare ”  for executives.  76   In 1965, Robert McFarland warned of an  “ elec-
tronic power grab ”  in which computer specialists were  “ stealing ”  
decision-making authority from top executives:  “ Control of data pro-
cessing activities can mean control of the fi rm — without the knowledge 
of top management. ”   77   A textbook for managers from 1969 complained 
that  “ all too often management adopts an attitude of blind faith (or at 
least hope) toward decisions of programmers. ”   78   In her book  How 
Computers Affect Management  from 1971, Rosemary Stewart described 
how computer specialists mobilized the mystery of their technology to 
 “ impinge directly on a manager ’ s job and be a threat to his security or 
status. ”   79   The adoption of computer technology threatened to bring 
about a revolution in organizational structure that carried with it tangi-
ble implications for the authority of managers:  “ What has not been 
predicted, to any large degree, is the extent to which political power 
would be obtained by this EDP group. Top management has helped . . . by 
not doing their job and controlling computer systems. ”   80   The frequent 
association of computer boys with external consultants only compounded 
the resentment of regular employees. 

 There is no doubt that by the end of the decade, traditional corporate 
managers were extremely aware of the potential threat to their occupa-
tional territory posed by the rise of computer professionals. Thomas 
Alexander, in his  Fortune  article in 1969, noted a growing cultural clash 
between programmers and managers:  “ Managers . . . are typically older 
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and tend to regard computer people either as mere technicians or as 
threats to their position and status — in either case they resist their pres-
ence in the halls of power. ”   81   In that same year, Michael Rose, in his 
 Computers, Managers, and Society , suggested that local departmental 
managers  

 obviously tend to resist the change. For a start, it threatens to transform the 
concern as they know and like it. . . . At the same time the local ’ s unfamiliarity 
with and suspicion of theoretical notions leave him ill-equipped to appreciate 
the rationale and benefi ts of computerization. It all sounds like dangerously 
far-fetched nonsense divorced from the working world as he understands it. 
He is hardly likely to hit it off with the computer experts who arrive to 
procure the organizational transformation. Genuine skepticism of the relevance 
of the machine, reinforced by emotional factors, will drive him towards 
non-cooperation.  82   

 It is not diffi cult to understand why many managers came to fear and 
dislike computer programmers and other software specialists. In addition 
to the usual suspicion with which established professionals generally 
regarded unsolicited changes in the status quo, managers had particular 
reasons to resent EDP departments. The unprecedented degree of auton-
omy that corporate executives granted to computer people seemed a 
deliberate affront to the local authority of departmental managers. The 
 “ inability or unwillingness of top management to clearly defi ne the objec-
tives of the computer department and how it will be utilized to the benefi t 
of the rest of the organization ”  lead many operational managers to 
 “ expect the worst and, therefore, begin to react defensively to the possi-
bility of change ”   83   In the eyes of many nontechnical managers, the per-
sonnel most closely identifi ed with the digital computer  “ have been the 
most arrogant in their willful disregard of the nature of the manager ’ s 
job. These technicians have clothed themselves in the garb of the arcane 
wherever they could do so, thus alienating those whom they would 
serve. ”   84   

 The Revolt of the Managers 

 In response to this perceived challenge to their authority, managers 
developed a number of interrelated responses intended to restore them 
to their proper role in the organizational hierarchy. 

 The fi rst was to defi ne programming as an activity, and by defi nition 
programmers as professionals, in such a way as to assign it and them a 
subordinate role as mere technicians or service staff workers. As 
the sociologists Haroun Jamous and Bernard Peloille argued in their 
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groundbreaking study of the organizational politics of professional 
development, this technique of reducing the contributions of competing 
groups to the merely technical is a time-honored strategy for defending 
occupational and professional boundaries.  85   We have already seen some 
of the ways in which the rhetoric of management literature reinforced 
the notion that computer specialists were self-interested, narrow techni-
cians rather than future-minded, bottom-line-oriented good corporate 
citizens.  “ People close to the machine can also lose perspective, ”  main-
tained one computer programming  “ textbook ”  for managers.  “ Some of 
the most enthusiastic have an unfortunate knack of behaving as if the 
computer were a toy. The term  ‘ addictive ’  comes to mind. ”   86   Managers 
emphasized the youthfulness and inexperience of most programmers. 
The results of early aptitude tests and personality profi les — those that 
emphasized their  “ dislike for people ”  and  “ preference for . . . risky activ-
ities ”  — were widely cited as examples of the  “ immaturity ”  of the com-
puter professions. In fact, one of the earliest and most widely cited 
psychological profi les of programmers suggested that there was a nega-
tive correlation between programming ability and interpersonal skills.  87   

 The perception that computer programmers were particularly antiso-
cial, that they  “ preferred to work with things rather than people, ”  rein-
forced the notion that programming was an inherently solitary activity, 
ill suited to traditional forms of corporate organization and management. 
The same qualities that had previously been thought essential indicators 
of programming ability, such as creativity and a mild degree of personal 
eccentricity, now began to be perceived as being merely unprofessional. 
As part of their rhetorical construction of the applications crisis as a 
problem of programmer management, corporate managers accused pro-
grammers of lacking professional standards and loyalties:  “ Too fre-
quently these people [programmers], while exhibiting excellent technical 
skills, are non-professional in every other aspect of their work. ”   88   

 Another common strategy for deprecating computer professionals was 
to challenge their technical monopoly directly. If working with comput-
ers was in fact not all that diffi cult, then dedicated programming staffs 
were superfl uous. One of the alleged advantages of the COBOL pro-
gramming language usually touted in the literature was its ability to be 
read and understood — and perhaps even written — by informed manag-
ers.  89   The combination of new programming technology and stricter 
administrative controls promised to eliminate management ’ s dangerous 
dependency on individual programmers:  “ The problems of fi nding 
personnel at a reasonable price, and the problem of control, are both 
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solved by good standards. If you have a set of well-defi ned standards 
you do not need clever programmers, nor must you fi nd yourself depend-
ing on them. ”   90   At the very least, managers could learn enough about 
computers to avoid being duped by the  “ garb of the arcane ”  in which 
many programmers frequently clothed themselves.  91   At West Point, 
cadets were taught enough about computers to prevent them from  “ being 
at the mercy of computers and computer specialists. . . . [W]e want them 
to be confi dent that they can properly control and supervise these potent 
new tools and evaluate the signifi cance of results produced by them. ”   92   

 In much of the management literature of this period, computer special-
ists were cast as self-interested peddlers of whizbang technologies.  “ In 
all too many cases the data processing technician does not really under-
stand the problems of management and is merely looking for the applica-
tion of his specialty. ”   93   In the words of one Fortune 500 data processing 
executive,  “ They [EDP personnel] don ’ t exercise enough initiative in 
identifying problems and designing solutions for them. . . . They are 
impatient with my lack of knowledge of their tools, techniques, and 
methodology — their mystique; and sometimes their impatience settles 
into arrogance. . . . In sum, these technologists just don ’ t seem to under-
stand what I need to make decisions. ”   94   The book  New Power for 
Management  emphasized the myopic perspective of programmers:  “ For 
instance, a technician ’ s dream may be a sophisticated computerized 
accounting system; but in practice such a system may well make no major 
contribution to profi t. ”   95   Others attributed to them even more 
Machiavellian motives:  “ More often than not the systems designer 
approaches the user with a predisposition to utilize the latest equipment 
or software technology — for his resume — rather than the real benefi t for 
the user. ”   96   

 Experienced managers stressed the critical differences between  “ real-
world problems ”  and  “ EDP ’ s version of real-world problem. ”   97   The 
assumptions about programmers embedded in many of these accounts —
 that they were narrowly technical, inexperienced, and  “ poorly qualifi ed 
to set the course of corporate computer effort ”  — resonated with many 
corporate managers.  98   The accounts provided a convenient explanation 
for the burgeoning software crisis. Managers had in effect  “ abdicated 
their responsibility and let the  ‘ computer boys ’  take over. ”   99   The fault 
was not entirely the manager ’ s own, though. Calling electronic data 
processing  “ the biggest rip-off that has been perpetrated on business, 
industry, and government over the past 20 years, ”  one author suggested 
that business executives have been actively prevented  “ from really bearing 
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down on this situation by the self-proclaimed cloak of sophistication and 
mystique which falsely claims immunity from normal management 
methods. They are still being held at bay by the computer people ’ s major 
weapon — the snow job. ”   100   Computer department staffs, although  “ they 
may be superbly equipped, technically speaking, to respond to manage-
ment ’ s expectations, ”  are  “ seldom strategically placed (or managerially 
trained) — to fully assess the economics of operations or to judge opera-
tional feasibility. ”   101   Only the restorations of the proper balance between 
computer personnel and managers could save the software projects from 
a descent into  “ unprogrammed and devastating chaos. ”   102   

 The Road to Garmisch 

 In the late 1960s, new perspectives on the problem of programmer man-
agement began to appear in the industry literature.  “ There is a vast 
amount of evidence to indicate that writing — a large part of program-
ming is writing after all, albeit in a special language for a very restricted 
audience — can be planned, scheduled and controlled, nearly all of which 
has been fl agrantly ignored by both programmers and their managers, ”  
argued Robert Gordon in 1968 in a review of contemporary software 
development practices.  103   Although it was admittedly true  “ that pro-
gramming a computer is more an art than a science, that in some of its 
aspects it is a creative process, ”  this new perspective on software man-
agement suggested that  “ as a matter of fact, a modicum of intelligent 
effort can provide a very satisfactory degree of control. ”   104   

 It was the NATO Conference on Software Engineering in 1968 that 
irrevocably established software management as one of the central rhe-
torical cornerstones of all future debates about the nature and causes of 
the software crisis. In the fall of that year, as mentioned earlier, a diverse 
group of infl uential computer scientists, corporate managers, and mili-
tary offi cials gathered in Garmisch, Germany, to discuss their growing 
concern that the production of software had become  “ a scare item for 
management . . . an unprofi table morass, costly and unending. ”  The 
solution to the budding software crisis, the conference organizers claimed, 
was for computer programmers to embrace an industrialized software 
engineering approach to development. By defi ning the software crisis in 
terms of the discipline of software engineering, the NATO conference 
set an agenda that infl uenced many of the technological, managerial, and 
professional developments in commercial computing for the next several 
decades. 
 



 

 7 

 In the development of professional standards, the computer fi eld must be unre-
lenting in advocating stringent requirements for professional status, whether 
these include education, experience, examination, character tests, or what not. 

  — Charles M. Sidlo,  “ The Making of a Profession, ”  1961 

 Too frequently these people [programmers], while exhibiting excellent technical 
skills, are non-professional in every other aspect of their work. 

  — Malcolm Gotterer,  “ The Impact of Professionalization Efforts on the Computer 
Manager, ”  1971 

 The Certifi ed Public Programmer 

 In 1962, the editors of the electronic data processing journal  Datamation  
proposed what they believed would be the solution to the  “ many prob-
lems ”  that were  “ embarrassingly prominent ”  in the nascent commercial 
computing industry. The majority of these problems, they argued, were 
caused by the lack of  “ professional competency ”  among programming 
personnel. The recent explosive growth in commercial computing had 
brought with it a  “ mounting tide of inexperienced programmers, new-
born consultants, and the untutored outer circle of controllers and 
accountants all assuming greater technical responsibility. ”  Few of these 
so-called computer experts were well qualifi ed or experienced, and the 
result was the crisis of confi dence that was plaguing the industry. The 
solution to this crisis, contended the  Datamation  editors, was the estab-
lishment of a new breed of technical professional: the certifi ed public 
programmer.  1   

 By defi ning clear standards of professional competency, an indus-
try-wide certifi cation program would serve several important purposes 
for the programming profession. First, it would establish a shared 
body of abstract occupational knowledge — a  “ hard core of mutual 
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understanding ”  — common across the entire professional community. 
Second, it would help elevate the public reputation of computer person-
nel from its current stature of  “ cautious bewilderment and misinterpreta-
tion, ”  to  “ at least, confused respect. ”  Finally, and perhaps most 
signifi cantly, it would enable computer professionals to erect entry bar-
riers to their increasingly contested occupational territory: the fl ood of 
amateur programmers —  “ the industry ’ s widely publicized upcoming 
incompetents ” as the  Datamation  editorial dismissively referred to 
them —  “ would fi nd their accession to fi nancial stardom impeded by the 
need for specifi c qualifi cation such as the passing of a reasonable test of 
competency. ”   2   In fact, in 1963 the DPMA ’ s executive director Calvin 
Elliott named stamping out  “ bogus ”  data-processing schools as one of 
his organization ’ s primary objectives.  3   

 The  Datamation  call for the professionalization of programming coin-
cided neatly with the announcement by the National Machine Accountants 
Association (NMAA) of its new CDP examination. The NMAA, which 
would later that year rename itself the Data Processing Management 
Association (DPMA), represented almost sixteen thousand data process-
ing workers in the United States and Canada.  4   The NMAA had been 
working since 1960 to develop the CDP exam, which represented the 
fi rst attempt by a professional association to establish rigorous standards 
of professional accomplishment in the data processing fi eld. According 
to the NMAA ’ s 1962 press release, the exam was intended to  “ emphasize 
a broad educational background as well as knowledge of the fi eld of data 
processing, ”  and represent  “ a standard of knowledge for organizing, 
analyzing and solving problems for which data processing equipment is 
especially suitable. ”  It was open to anyone, NMAA member or not, who 
had completed a prescribed course of academic study, had at least three 
years of direct work experience in punched card and/or computer instal-
lations, and had  “ high character qualifi cations. ”  The fi rst year that the 
exam was offered, 1,048 applications took it — 687 successfully.  5   

 Despite being widely criticized for being superfi cial and irrelevant to 
real-world software development, the CDP clearly met a perceived need 
within the computing community. In 1965, 6,951 individuals took the 
CDP examination, and another 4,000 completed CDP refresher courses 
conducted by local DPMA chapters.  6   A number of large employers, 
including State Farm Insurance, the Prudential Insurance Company of 
America, and the U.S. Army Corps of Engineers, extended offi cial rec-
ognition to the CDP program, and the city of Milwaukee used the CDP 
as a means to assign pay grades to data processing personnel.  7   By the 
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end of 1975, 31,351 candidates had taken the CDP and 15,115 had been 
awarded the certifi cate.  8   Although it is diffi cult to fi nd accurate employ-
ment information for software workers in this period, estimates from the 
Bureau of Labor indicate these 15,115 CDP recipients constituted 
approximately 10 percent of the overall computing community. 

 The CDP examinations represented just one step in the DPMA ’ s ambi-
tious  “ Six Measures of Professionalism Program, ”  which included not 
only the development of standards of competence and codes of ethics 
but also programs for public service, continuing education, and funda-
mental research. Of these six measures, only the CDP program achieved 
even moderate industry acceptance. Nevertheless, simply by articulating 
a clear professional agenda the DPMA claimed for itself a leadership role 
in the computing community. Given the general lack of agreement about 
what skills and educational background were appropriate for computing 
personnel, the CDP program promised to guarantee at least a basic level 
of competence. Employers viewed certifi cation as a tool for screening 
potential employees, evaluating performance, and assuring uniform 
product and quality.  9   Programmers saw it as an indication of profes-
sional status, a means of assuring job security and achieving promotions, 
and an aid to fi nding and obtaining new positions.  10   The certifi cation of 
practitioners was generally considered to be one of the characteristic 
functions of any legitimate profession, and the professionalization of 
programming was seen by many at this time as the solution to a growing 
sense of crisis within the computing community.  11   The  “ question of 
professionalism, ”  as it came to be known in the literature, would come 
to form the basis for explicit discussions of the software crisis in the late 
1960s. 

 The growing discontent with a perceived lack of professionalism 
among computing personnel was in part a legacy of the massive expan-
sion of the commercial computer industry over the course of the previous 
decade. As the  Datamation  editorial suggests, one response to the per-
sonnel crisis of the 1950s had been an infl ux of new programmer trainees 
and vocational school graduates into the software labor market.  “ The 
ranks of the computer world are being swelled by growing hordes of 
programmers, systems analysts and related personnel, ”  warned a report 
in 1968 by the SIGCPR, and as a result  “ educational, performance and 
professional standards are virtually nonexistent. ”   12   And although com-
puter specialists in general were appreciative of the short-term benefi ts 
of the ongoing personnel shortage in the computer industry — among 
them, above-average salaries and plentiful opportunities for occupational 
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mobility — many believed that a continued crisis threatened the long-term 
stability and reputation of their industry and profession.  “ There is a 
tendency, ”  observed a report by the SIGCPR,  “ for programming to be 
a  ‘ dead-end ’  profession for many individuals, who, no matter how good 
they are as programmers, will never make the transition into a supervi-
sory slot. And, in too many instances this is the only road to advance-
ment. ”   13   Many programmers worried about becoming obsolete and felt 
pressure to constantly upgrade their technical skills.  14   Although starting 
salaries were high and individual programmers were able to move with 
relative ease horizontally throughout the industry, there were precious 
few opportunities for vertical advancement.  15   Whereas technical special-
ists in traditional engineering disciplines were often able (and in fact 
expected) to climb the corporate ladder into management positions, the 
computer boys were usually denied this opportunity.  16     

 Many of the job advertisements for programmers refl ected these con-
cerns about a lack of professional status and longevity. Employers prom-
ised new hires a potential career path that involved more than just mere 
technical labor:  “ Is your programming career in a closed loop? Create a 
loop exit for yourself at [the Bendix Corporation]. ”   17    “ Working your 
way toward obsolescence? At MITRE professional growth is limited only 
by your ability. ”   18    “ At Xerox, we look at programmers . . . and see 
managers. ”   19   But as contemporary studies of such  “ dual ladder ”  pro-
grams for technical workers in the computer fi elds revealed, program-
mers rarely had many opportunities for professional development.  20   It 
was just not clear to many corporate employers how the skills — and 
personality types — possessed by programmers would map onto the skills 
required for management. 

 Given their growing uncertainty about the future of their occupation, 
it is not diffi cult to understand why programmers in the early 1960s were 
so concerned with establishing themselves as recognized professionals. 
Belonging to a profession provided an individual with a  “ monopoly of 
competence, ”  or the control over a valuable skill that was readily trans-
ferable from organization to organization.  21   In more practical terms, 
professionalism offered a means of excluding undesirables and competi-
tors from the labor market, thereby assuring at least basic standards of 
quality and reliability as well providing a certain degree of protection 
from the fl uctuations of the labor market. Programmers in particular saw 
professionalism as means of distinguishing themselves from coders 
or other  “ mere technicians. ”  Professionalism offered increased social 
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 Figure 7.1 
 Bendix Corporation advertisement, 1962. 
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status, greater autonomy, improved opportunities for advancement, and 
better pay.  22   

 The professionalization efforts of programmers were generally encour-
aged by their corporate employers. An increasing number of corporate 
managers were beginning to blame their growing dissatisfaction with the 
rising costs of software development on the lack of professionalism on 
the part of programmers. Professionalism, or at least a certain form of 
corporate-friendly professionalism, was represented by managers as a 
means of reducing corporate dependence on the whims of individual 
programmers.  23   It was also thought that professionalism might solve a 
number of other pressing management problems: it might motivate staff 
members to improve their capabilities; it could bring about more com-
monality of approaches; it could be used for hiring, promotions, and 
raises; and it could help solve the perennial question, Who is qualifi ed?  24   
 “ The concept of professionalism, ”  argued one personnel research journal 
from the early 1970s,  “ affords a business-like answer to the existing and 
future computer skills market ”  by making computer personnel respon-
sible for policing their own disciplinary identity.  25   Professionalism 
appeared to provide a familiar solution to the increasingly complex 
problems of managing the relationship between business and technologi-
cal expertise. 

 In response to these various motivations to professionalize, program-
mers in the late 1950s and early 1960s worked to establish the institu-
tional structures traditionally associated with the professions. These 
included the development of an academic infrastructure for supporting 
theoretical computer science research; support for industry-based certi-
fi cation and licensing programs; the establishment of professional societ-
ies and journals; the introduction of performance standards; and 
professional codes of ethics. Many of these institutional structures devel-
oped rapidly and were established on a provisional basis by the end of 
the 1950s. 

 But the existence of professional institutions did not necessarily trans-
late readily into widely recognized professional status.  26   The early adop-
tion of the structures of professionalism, however, obscured the deep 
intellectual and ideological schisms that existed within the programming 
community. Although many practitioners agreed on the need for a pro-
gramming profession, they disagreed sharply about what such a profes-
sion should look like. What was the purpose of the profession? Who 
should be allowed to participate? Who would control entry into the 
profession, and how? What body of abstract knowledge would be used 
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to support its claims to legitimacy? By the beginning of the 1960s, clearly 
discernible factions had emerged within the fl edgling programming pro-
fession. Science- and engineering-oriented programmers worked to 
develop a theoretical basis for their discipline. They joined associations 
like the ACM that published academic-style journals, imposed strict 
educational requirements for membership, and resisted certifi cation and 
licensing programs. Business data processing personnel, on the other 
hand, pursued a more practice-centered professional agenda. If they 
joined any professional associations at all, it was the DPMA. They read 
journals like  Datamation , which emphasized plain speech and practical 
relevance over theoretical rigor. The tension that existed between these 
two groups of aspiring professionals — the academic computer scientists 
and the business data processors — greatly infl uenced the character and 
fortunes of the various professional institutions that each faction sup-
ported. Academic computer scientists struggled to establish a legitimate 
and autonomous intellectual discipline based on a sound body of theo-
retical research. Systems analysts and business programmers worked to 
improve their standing within the organizational hierarchy by distancing 
themselves from computer operators and other so-called technicians. 
Neither group was entirely successful. 

 This chapter will focus on the attempts of programmers to establish 
the institutional structures associated with professionalism, including 
professional societies, certifi cation programs, educational standards, and 
codes of ethics. It argues that the professionalization of computer pro-
gramming represented a potential solution to the looming software 
crisis that appealed to programmers and employers alike. But it also 
suggests that the controversy that surrounded the various professional 
institutions that were established in this period reveals the deep divisions 
that existed within the programming community about the nature of 
programming skill and the future of the programming professions. Many 
of the themes developed in previous chapters — the development of new 
programming technologies or more  “ effi cient ”  management methodolo-
gies — are closely tied to questions of professional status. If skilled pro-
grammers could be replaced by automated development tools, for 
example, or by more  “ scientifi c ”  management methodologies, then 
they could hardly have much claim to professional legitimacy. The ques-
tion of what programming was — as an intellectual and occupational 
activity — and where it fi t into traditional social, academic and profes-
sional hierarchies, was actively negotiated during the decades of 
the 1950s and 1960s. Programmers were well aware of their tenuous 
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professional position, and they struggled to prove that they possessed a 
unique set of skills and training that allowed them to lay claim to profes-
sional autonomy. 

 The Association for Computing Machinery 

 On January 10, 1947, at the Symposium on Large-Scale Digital 
Calculating Machinery at the Harvard Computation Laboratory, 
Professor Samuel Caldwell of MIT proposed to a crowd of more than 
three hundred the formation of a new association of those interested in 
computing machinery. His proposal obviously landed on fertile soil: 
within six months a  “ Notice on the Organization of an Eastern 
Association for Computing Machinery ”  was circulating within the com-
puting community, and in September the fi rst meeting of the Eastern 
Association for Computing Machinery was held at Columbia University. 
Seventy-eight individuals attended. Offi cers were elected, and the 
Executive Council was appointed. A second meeting, held in December 
at the Aberdeen Proving Grounds in Aberdeen, Maryland, attracted three 
hundred participants. The next year the organization dropped the word 
Eastern from its title, and was thereafter known simply as the Association 
for Computing Machinery (ACM). 

 During the 1950s the ACM grew steadily but not spectacularly. By 
1951 there were 1,113 members, including 43 in other countries; in 1956 
the total had risen to 2,305, and by 1959 it had reached 5,254. In the 
1960s, the membership grew somewhat more slowly, and there were a 
few periods during which the total number of members actually decreased. 
Overall, though, the ACM continued to expand at a rate of about 16 
percent annually. By the end of 1969 there were 22,761 regular members. 
  Figure 7.2  shows the annual membership statistics for the years 1947 
to 1972.   

 From its inception, the ACM styled itself as an academically oriented 
organization. Many of the original members either were or had been 
associated with a major university computation project, and most were 
university educated, including a number at the graduate level. The focus 
of the organization ’ s early activities was a series of national conferences, 
the fi rst of which was cosponsored by the Institute for Numerical Analysis 
at the University of California at Los Angeles. These meetings repre-
sented an outgrowth of an earlier series of university-sponsored confer-
ences, and they retained an academic fl avor. Many were low-budget 
affairs held at universities or research institutions, and they frequently 
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made use of dormitory facilities. The papers presented were usually 
technical, and the proceedings were published. The ACM conferences 
never acquired the trade show atmosphere that characterized other 
national meetings. The National Computer Conference, which became 
almost entirely commercial, for instance, resembled a trade show much 
more than an academic conference. In fact, deliberate efforts were made 
to distance the ACM from the infl uence of the commercial vendors, 
particularly IBM. For many years the ACM resisted publishing its own 
journal, possibly because  “ some early ACM leaders saw the society as a 
declaration of independence from IBM, and, by extension, from all com-
mercial considerations like the sale of publications and the solicitation 
of advertising. ”   27   Until 1953, when it began publishing the  Journal of 
the ACM , the ACM exclusively supported the National Research 
Council ’ s highly technical journal  Mathematical Tables and Other Aids 
to Computation . Even then, the primary contents of the  Journal of the 
ACM  were theoretical papers, and the emphasis was on the dissemina-
tion of  “ information about computing machinery in the best scientifi c 
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tradition. ”   28   Articles were peer-reviewed, and every attempt was made 
to maintain rigorous academic standards. 

 Throughout the 1950s and 1960s the ACM continued to cultivate its 
relationship with the academic community. In 1954 it accepted an invita-
tion to apply for membership in the American Association for the 
Advancement of Science. Since 1958 the ACM has been represented in 
the Mathematical Sciences Division of the National Academy of Sciences 
National Research Council. In 1962 it affi liated with the Conference 
Board of the Mathematical Sciences, which also consisted of the American 
Mathematical Society, the Mathematical Association of America, the 
Society for Industrial and Applied Mathematics, and the Institute of 
Mathematical Statistics. In 1966 the ACM established the prestigious 
Turing Award, the highest honor awarded in computer science. Almost 
half of the institutional members of the ACM were educational organiza-
tions, and after 1962 a thriving student membership program was 
developed.  29   

 The close association that the ACM maintained with the academic 
computer scientist proved a mixed blessing, however. Although the 
ACM was able to maintain a relatively high profi le within scientifi c 
and mathematical circles, it was often castigated by the business com-
munity. Many business programmers looked on the ACM as  “ a sort 
of holier than thou academic intellectual sort of enterprise — not 
inclined to be messing around with the garbage that comptrollers worry 
about, ”  and the ACM leadership was characterized as  “ a bunch of guys 
with their heads in the clouds worrying about Tchebysheff polynomials 
and things like that. ”   30    “ These four-year computer science wonders are 
infi nitely better equipped to design a new compiler than they are to 
manage a software development project. We don ’ t need new compilers. 
We need on-time, on-budget, software development. ”   31   A  Datamation  
article from 1963 titled  “ The Cost of Professionalism ”  warned that the 
members of the ACM had to  “ decide whether it ’ s worth that much to 
belong to an organization which many feel has been dominated by — and 
catered pretty much to — Ph.D. mathematicians. . . . [T]he Association 
tends to look down its nose at business data processing types while 
claiming to represent the whole, wide wonderful world of computing. ”   32   
A Diebold Group publication from 1966 characterized the ACM as a 
group  “ whose interests are primarily academic and which is helpful to 
those with scholastic backgrounds, theoreticians of methodology, scien-
tifi c programmers and software people. ”  Although the ACM president 
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immediately denied this depiction, calling it  “ too narrow, ”  the popular 
perception that the ACM catered solely to academics was diffi cult to 
counter.  33   

 The ACM leadership was not entirely unaware of or unsympathetic 
to the needs of the business programmers. In his unsuccessful bid in 1959 
for the ACM presidency, Paul Armer urged the ACM membership to 
 “ THINK BIG, ”  to  “ visualize ACM as the professional society unifying 
 all  computer users. ”   34   That same year, Herbert Grosch, an outspoken 
proponent of a strong, American Medical Association – style professional 
society (and later ACM president), roundly criticized the ACM for its 
academic parochialism:  “ Information processing is as broad as our 
culture and as deep as interplanetary space. To allow narrow interests, 
pioneering though they might have been, to preempt the name, to rele-
gate ninety percent of the fi eld to  ‘ an exercise left to the reader, ’  would 
be disastrous to the underlying unity of the new information sciences. ”   35   
Several attempts were made during the next decade to make the ACM 
more relevant to the business community. In response to widespread 
criticism of the theoretical orientation of the  Journal of the ACM , a new 
publication,  Communications of the ACM , was introduced in 1958. The 
main contents of  Communications  were short articles, mostly unrefereed, 
on technical subjects such as applications, techniques, and standards.  36   
In 1966 the Executive Council announced a $45,000 professional devel-
opment program aimed at business data processing personnel. The 
program included short  “ skill upgrade ”  seminars offered at the national 
computer conferences, a traveling course series, and self-study materi-
als.  37   There was even talk, in the mid-1960s, of a potential merger with 
the DPMA. In 1969, ACM president Bernard Galler announced a move 
toward  “ less formality, less science, and less academia. ”   38   

 Despite these short-lived efforts to reconcile with the business com-
munity, however, the conservative ACM leadership continued to pursue 
a largely academic agenda. As early as 1959 it was suggested that the 
ACM should impose stringent academic standards on its members, and 
in 1965 a four-year degree became a prerequisite for receiving full mem-
bership. Frequent battles arose over repeated attempts to change the 
name of the association to something more broadly relevant. In 1965 a 
proposal to change it to the Association for Computing and Information 
Science was rejected; a decade later the same issue was still being 
debated.  39   When Louis Fein suggested in 1967 that the ACM faced 
a  “ crisis of identity, ”  ACM president Anthony Oettinger insisted 
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vehemently that the ACM had no such crisis. In doing so, he reaffi rmed 
the association ’ s commitment to a theoretical approach to computing: 
 “ Our science must, indeed,  ‘ maintain as its sole abstract purpose of 
advancing truth and knowledge. ’  ”   40   

 This commitment to abstract science was further reinforced the fol-
lowing year when the ACM ’ s C 3 S announced its Curriculum  ‘ 68 guide-
lines for university computer science programs. Curriculum  ‘ 68 advocated 
a rigorously theoretically approach to computer science that included 
little of interest to business practitioners.  41   Even when the ACM did 
recognize the growing importance of business data processing to the 
future of its discipline, the emphasis was always placed on research and 
education:  

 All of us, I am sure, have read non-ACM articles on business data processing 
and found them lacking. They suffer, I believe, from one basic fault: They fail 
to report fundamental research in the data processing fi eld. The question of 
 ‘ fundamentalness ’  is all-important. . . . In summary, this letter is intended to urge 
new emphasis on FUNDAMENTALISM in business data processing. This objec-
tive seems not only feasible but essential to me. It provides not only a technique 
for getting ACM into the business data processing business, but a technique (the 
same one) for getting the fi eld of business data processing on a fi rm theoretical 
footing.  42   

 There is little question that throughout the 1960s, the ACM pursued 
a professionalization strategy that was heavily dependent on the author-
ity and legitimacy of its academic accomplishments. 

 It was not until the 1970s that the ACM began to seriously reconsider 
its policy toward business-oriented practitioners. In 1974 the ACM 
Executive Council commissioned a series of studies on business program-
ming as part of its long-range planning report. In doing so, the ACM 
was responding both to long-standing criticism and a recent spate of 
anti-ACM editorials that had appeared in the industry newsletter 
 Computerworld .  “ ACM had become not so much an industry profes-
sional group, ”  declared one of these editorials,  “ as it was a home for 
members of educational institutions around the country to overwhelm 
us with their erudition on topics of vaguely moderate interest. ”   43   The 
author noted that while most business data processing installations had 
standardized on the COBOL and FORTRAN programming languages, 
the ACM still supported ALGOL. He quoted ACM president Anthony 
Ralston to the effect that although only 25 percent of the ACM member-
ship were academics, ten out of twenty-fi ve council members were 
academics.  44   
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 The long-range report noted that of the 320,000 software personnel 
then working in the United States, 85 percent dealt with business data 
processing. It admitted that while the ACM had a reputation for profes-
sionalism,  “ BDP [business data processing] people tend to be turned off 
by ACM ’ s academically oriented leadership. . . . BDP professionals feel 
that academics don ’ t understand what BDP needs, and they ’ re right. ”   45   
It concluded that any new ACM members were likely to come from 
business data processing, and recommended the development of a new 
publication aimed at that audience. The report signaled to many in the 
ACM that the organization needed to broaden its membership and 
become more accommodating. The next few years witnessed a bitterly 
contested presidential election (the cornerstone of which was a debate 
over business data processing), yet another attempt to change the name 
of the ACM to something more broadly relevant, and efforts to reconcile 
with its business-oriented competitor, the DPMA. 

 The Data Processing Management Association 

 The DPMA originated in 1949 as the NMAA. The NMAA was founded 
as an association of accountants and tabulating machine managers. It 
held its fi rst convention in 1952, and grew rapidly over the next decade. 
By 1957 it represented more than ten thousand data processing workers 
in the United States and Canada, and by 1962 more than sixteen 
thousand. 

 In 1962 the NMAA changed its name to the DPMA. This was in part 
an attempt to expand its membership beyond fi nance and accounting 
professionals, and in part a refl ection of the changing status of its disci-
pline within the corporate hierarchy. As Thomas Haigh has suggested, 
punch card divisions at many large corporations had, by the beginning 
of the 1950s, acquired new status as the providers of strategic business 
information and other forms of valuable corporate data. The replace-
ment of tabulating machine technology with electronic computers created 
a new role for data processors within the corporation; in fact, it was as 
part of a shift toward electronic data processing that most corporations 
invested in their fi rst electronic computing equipment. From its incep-
tion, therefore, the DPMA represented the largest professional associa-
tion of computing personnel. 

 The establishment of the CDP program later that year was part of a 
larger strategy of professional development. It was announced in con-
junction with the DPMA ’ s  “ Six Measures of Professionalism ”  program, 
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which included as the  “ marks of professionalism ”  self-education, stan-
dard measures of knowledge, continuing research, a code of ethics, 
and mechanisms for self-policing and disciplining practitioners.  46   The 
DPMA ’ s many national conferences, local chapter programs and semi-
nars, and DPMA publications and home-study courses were all directed 
toward the self-education of individual members. The CDP program was 
obviously its provision for establishing a means of  “ measuring a minimum 
level of knowledge in the fi eld. ”  DPMA graduate research grants encour-
aged contributions to the  “ knowledge of the fi eld. ”  The DPMA code of 
ethics was part of its original charter, and was the fi rst of such codes to 
be established for the computer-related professions. Finally, although the 
DPMA had no existing mechanisms for determining and punishing mis-
conduct, it promised that the association would take a leading role in 
the development of an industry policing program. Although the DPMA ’ s 
original focus was on data processing supervisors, more than those of 
any other aspiring professional organization its programs were aimed at 
the broad computing community. Programmers and systems analysts 
were clearly part of its imagined community of practitioners. 

 Unlike the ACM, the DPMA made every effort to reach a broad 
spectrum of data processing personnel. Although originally open only to 
data processing supervisors, by 1964 the national leadership was making 
determined attempts to cultivate programmers within its membership.  47   
The structure of the organization, which included strong regional chap-
ters, allowed for diversity, local control, and rapid expansion. Each 
region had its own representative on the Executive Council who served 
with several executive offi cers and implemented policy decisions from 
the International Board of Directors. In addition, the DPMA ’ s offi cial 
publication, the  Data Management Journal , encouraged submissions on 
a much wider range of subjects than did the ACM ’ s  Journal  or 
 Communications . The DPMA also maintained a close association with 
the editors of  Datamation , another widely read industry journal that 
focused on issues of timely concern and practical relevance. 

 The DPMA ’ s inclusive approach to professional development brought 
it into confl ict with competing societies, particularly the ACM. The dif-
ferences between the two organizations mirrored the larger tensions that 
existed within the computing community: academic computer scientists 
versus the business data processors; theory versus practice. I have already 
shown how this tension affected the adoption of the DPMA ’ s CDP 
program: the ACM ’ s obvious lack of support helped to undermine 
the program ’ s legitimacy and prevented its widespread adoption. This 
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opposition was based on both philosophical grounds — many in the ACM 
believed that the CDP examinations were superfi cial and irrelevant — 
and institutional ones, since control over an industry-wide certifi cation 
program would have granted the DPMA considerable political author-
ity.  48   The two group also sparred over trivial issues, such as unauthorized 
use of member-address databases.  49   Despite several halfhearted attempts 
to explore an ACM/DPMA merger, or at least to establish an interasso-
ciation liaison, the two groups rarely communicated.  50   When AFIPS was 
established in the early 1960s, the NMAA and other industry-oriented 
groups were treated with dismissive contempt, and the DPMA resisted 
AFIPS affi liation until the mid-1970s. At a meeting arranged by AFIPS 
offi cials, for example, DPMA representatives were kept waiting, without 
explanation or apology, for over an hour.  51   

 In the year that it was introduced, the CDP examination attracted 
1,048 applicants, 687 of whom passed successfully. The exam itself 
included 150 multiple-choice questions on programming, numerical 
analysis, Boolean algebra, applications, elementary cost accounting, 
English, and basic mathematics (not including calculus). In response to 
criticism from the many otherwise-qualifi ed programmers who did not 
have formal mathematical training or college-level degrees, the educa-
tional requirements for the CDP were suspended until 1965. The other 
prerequisites — three years ’  experience and  “ high character qualifi ca-
tions ”  — were so vague as to be almost meaningless, and appear to have 
been only selectively enforced. 

 By the end of 1965, almost seven thousand programmers and data 
processing supervisors had taken the exam.   Figure 7.3  shows for the 
years between 1962 and 1973 the total number of candidates taking 
the exam, the total number of candidates who passed the exam, and the 
cumulative number of CDP holders.   

 The data in   fi gure 7.3  reveal the mixed fortunes and troubled history 
of the CDP examination. The striking early success of the program, 
which more than quintupled in size in its fi rst three years, suggests that 
many data processing personnel saw certifi cation as an attractive profes-
sional strategy. This corresponds well with evidence from industry jour-
nals and other documentary sources. A survey of the candidates in 1963 
reveals a remarkable range of background, experience, and education.  52   
For the examination session in 1966, however, the education require-
ments outlined in the original program announcement from 1962 were 
fi nally put in place. These requirements included specifi c courses in math, 
English, managerial accounting, statistics, and data processing systems. 
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Whereas participation in the exam in 1965 had jumped by more than 
300 percent from the previous year (possibly in anticipation of the impo-
sition of these requirements), applications for the session in 1966 dropped 
by almost 85 percent. Of the eighty-eight scheduled examination sites, 
twelve were dropped for lack of attendance. A major controversy erupted 
within the data processing community, particularly in DPMA-oriented 
publications such as  Datamation  and  Computerworld . 

 Advocates of the academic requirements argued that such require-
ments not only elevated the status and legitimacy of the CDP but also 
were standard for most other professions, including law, medicine, engi-
neering, and accounting. Opponents claimed that the specifi c course 
requirements were ambiguous, meaningless, and irrelevant. The DPMA 
Committee for Certifi cation, which administered the CDP program, was 
fl ooded with letters from disgruntled applicants requesting special dis-
pensation. Each case had to be individually evaluated.  53   In 1966 only 
1,005 candidates were approved to sit for the exam. In 1967, this 
number dropped to 646. This posed not only fi nancial diffi culties for the 
DPMA but presented a grave threat to the perceived legitimacy of the 
entire CDP program as well. Faced with the imminent collapse of 
their membership support, the DPMA admitted that  “ the established 
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eligibility requirements had unintentionally excluded some of the 
people for whom the CDP program was originally designed. ”   54   The 
committee dropped the specifi c course requirements, providing a grand-
father clause for those with three years ’  experience prior to 1965, and 
requiring others to have only two years of postsecondary education. 
Applications for the exam session in 1968 jumped back to almost three 
thousand. 

 Over the next several years, the CDP program struggled to regain its 
initial momentum. Annual enrollments dropped again briefl y in 1969, 
then leveled off for the next several years at about twenty-seven hundred. 
In an industry characterized by rapid expansion, this noticeable lack of 
growth represented a clear failure of the CDP program. With each year 
CDP holders came to represent a smaller and smaller percentage of the 
programming community. In 1970 the program faced yet another crisis: 
the announcement that a bachelor ’ s degree would be required of all CDP 
candidates, beginning with the examination in 1972. Once again a fi re-
storm of debate broke out. The DPMA claimed that this new require-
ment merely refl ected the changing realities of the labor market: since a 
college degree had already become a de facto requirement within the 
industry, requiring anything less for the CDP would severely undermine 
its legitimacy. The resulting controversy highlighted already-existing ten-
sions within the data processing community, and further divided the 
already-fragmented DPMA Certifi cation Council (many of whose own 
members could not satisfy the new degree requirement). Numerous 
observers called for the DPMA to relinquish control of the CDP exami-
nation to an independent certifi cation authority. By the mid-1970s 
it became increasingly clear that the CDP program faced imminent 
dissolution. 

 In an attempt to restore momentum to their fl agging certifi cation ini-
tiative, the DPMA joined forces with seven other computing societies —
 the ACM, the IEEE (Institute of Electrical and Electronics Engineers) 
Computer Science Society, the Association for Computer Programmers 
and Analysts, the Association for Education Data Systems, the Automation 
One Association, the Canadian Information Processing Society, and the 
Society of Certifi ed Data Processors (SCDP) — to form the Institute for 
Certifi cation of Computer Professionals (ICCP). The DPMA had always 
been extremely possessive of its certifi cation program, and its decision 
to relinquish control to an independent foundation refl ects a growing 
sense of desperation about the future of the CDP.  55   The ICCP was 
charged with upgrading and expanding the CDP program, introducing 
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new specialized examinations, and promoting professional development. 
In 1973 the ICCP took over responsibility for the CDP examinations. It 
also worked to develop a code of professional ethics to be adopted by 
its member organizations. 

 The ICCP failed to revive the CDP or institute a meaningful certifi ca-
tion program of its own. Because it represented such a wide variety of 
constituents, the ICCP was hindered by the same internal divisions that 
plagued the larger programming community. Rivalries among the con-
stituent member societies, many of whom were only superfi cially com-
mitted to the concept of certifi cation, doomed the organization to internal 
confl ict and inactivity.  56   The failure of the various competing profes-
sional associations to cooperate crippled the ability of the ICCP to 
develop meaningful certifi cation standards. No single program was able 
to refl ect the diverse needs of the collective software community. 
Furthermore, a series of highly critical assessments of the validity of the 
CDP examinations weakened popular and industry support.  57   The ICCP 
failed to present appealing alternative programs or examinations, and 
the organization languished during the 1970s. 

 In response to the inability of the professional associations to establish 
rigorous certifi cation programs, the SCDP adopted an approach to pro-
fessional standards that circumvented the ICCP altogether: state licensing 
of computer professionals. The SCDP was a grassroots organization of 
CDP holders dedicated to improving the status and legitimacy of the 
CDP program. Founded by the self-professed gadfl y Kenniston W. Lord, 
the SCDP frequently challenged the wisdom and authority of associa-
tions such as the DPMA and the ICCP. For many years, Lord and his 
fellow SCDP member Alan Taylor carried out a vituperative verbal 
campaign against the DPMA (and later the ICCP) in the pages of the 
weekly newspaper  Computerworld .  58   Taylor, a popular columnist for 
 Computerworld , accused the DPMA of running the CDP examinations 
as a profi t-making enterprise rather than an independent professional 
development program.  59   When the SCDP was denied formal representa-
tion in the ICCP in 1973, Lord proposed what was effectively a govern-
ment takeover of responsibility for programmer certifi cation. Unlike the 
certifi cation programs voluntarily adopted by individuals and associa-
tions, however, government licensing would be mandatory. Since it is 
illegal to practice a licensed profession without the prior approval of the 
state, entry into that profession could be tightly controlled and moni-
tored. Licensing would provide both control and protection as well as a 
certain degree of public recognition and legitimacy. 
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 In 1974, the SCDP developed a model licensing bill and submitted it 
to a number of state legislatures. According to its model legislation, no 
person in a state that passes the SCDP bill could  “ practice, continue to 
practice, offer or attempt to practice data processing or any branch 
thereof ”  without either achieving a four-year degree in data processing 
and gaining three years of related experience, or successfully completing 
a certifi cation examination and fi ve years of experience. The bill also 
provided a fi ve-year window in which those with twelve years of experi-
ence could be  “ grandfathered ”  into the profession. Practitioners were 
granted a twenty-four-month grace period in which to acquire the neces-
sary qualifi cations. The legislation covered a wide variety of occupational 
activities and titles, including any that made use of the terms  “ data pro-
cessing, ”   “ data processing professional, ”   “ computer professional, ”  or 
any of their derivatives. The state was given the power to revoke the 
certifi cation of any registrant who committed fraud, was proved guilty 
of negligence, or who violated the professional code of ethics.  60   

 The proposed SCDP legislation is notable as the only concerted 
attempt in this period to encourage government involvement in the pro-
gramming labor market. In fact, the specter of externally imposed state 
regulation had been raised as a primary justifi cation for establishing 
certifi cation programs in the fi rst place: since self-regulation was consid-
ered to be one of the defi ning characteristics of a profession, surrendering 
control over this function to the state was essentially an admission of 
defeat. Observers warned that the lack of a solution from within the 
science would result in a solution imposed from without:  “ In several 
fi elds, the lack of professional and industrial standards has prompted the 
government to establish standards. ”   61   Ironically enough, even the defeat 
of the SCDP legislation proved humiliating to some practitioners; the 
state ’ s unwillingness to legislate data processing activities was perceived 
as a slight to the entire industry ’ s importance and reputation.  62   

 Although the model SCDP legislation was adopted by none of the 
states to which it was submitted, the fact that it was proposed at all 
reveals one of the primary shortcomings of voluntary certifi cation pro-
grams such as the CDP: the lack of effective methods of enforcement. 
The inability, or unwillingness, of associations like the ACM and the 
DPMA to self-regulate was widely criticized by industry observers. 
Neither group had ever taken action against one of their members 
accused of fraud or negligence, and both had reputations for being 
unwilling to take strong positions on issues of public interest or safety. 
Indeed, the DPMA was unable even to enforce the proper use of the CDP 
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trademark. Individuals and organizations that abused the CDP designa-
tion, either by claiming to have received a CDP when in reality they had 
not or instituting their own CDP programs, received only ineffective 
warning letters. No legal action appears to have been taken.  63   According 
to SCDP president Kenniston Lord, the inability of the profession to 
regulate its own activities justifi ed drastic action in regard to state licens-
ing:  “ One does not truly have a profession until one has the ability, 
legally, to challenge a practitioner and when proven guilty, to see that 
he is separated from the practice. . . . This is one problem that the SCDP 
bill will solve. ”   64   

 The lack of ability and willingness of the DPMA to equip its certifi ca-
tion program with teeth was not the only reason why the CDP failed to 
achieve widespread industry acceptance, however. The program had 
other shortcomings as well. From almost the beginning, the examinations 
had been tainted by accusations of fraud and incompetent administra-
tion. In 1966 several individuals reported receiving offers from an exist-
ing CDP holder to take their examinations for them for a fee.  65   A copy 
of the 1965 exam was stolen from a locked storage cabinet at California 
State College, and its disappearance was covered up by the DPMA 
Committee for Certifi cation.  66   Complaints about testing conditions and 
locations were frequent and vociferous. For example, at one examination 
site at the University of Minnesota, the noise caused by a nearby drama 
club rehearsal of a sword fi ght scene  “ was so severe as to shower the 
room with particles of plaster. ”   67   Other examinees suggested that poorly 
trained proctors ( “ the little old lady who passed out the papers ” ) were 
not only unable to answer even basic questions about content and pro-
cedure but also in some cases switched rooms without notice, started 
sessions early for personal convenience, and misplaced completed exami-
nation booklets.  68   Although such administrative snafus were hardly 
unique to the CDP program, they undermined public confi dence in the 
ability of the DPMA to adequately represent the profession. 

 Another reason why the DPMA was unable to push through its certi-
fi cation initiative was a lack of support from other professional associa-
tions. An article in 1968 on certifi cation and accreditation in the 
 Communications of the ACM  failed to mention the CDP program. This 
conspicuous neglect of the most successful certifi cation program then 
available refl ects a growing tension between the two competing profes-
sional associations. The ACM recognized that a successful certifi cation 
program required a strong controlling organization. The organization 
that controlled certifi cation would effectively control the profession. 
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Indeed, the proposal that launched the CDP program in 1959 suggested 
that  “ the fi rst association to undertake a Data Processor ’ s Certifi cate is 
going to be the leading association in the data processing fi eld. ”   69   
Opposed to the idea that this controlling organization could be anything 
but the ACM, the Executive Council of the ACM worked to undermine 
the efforts of the DPMA at every occasion. In 1966 the council consid-
ered a resolution, clearly aimed at the CDP, to  “ warn employers against 
relying on examinations designed for subprofessionals or professionals 
as providing an index of professional competence. ”   70   An early draft of 
this document referred specifi cally throughout to the  “ DPMA certifi ca-
tion program. ”  Although the fi nal published version referred only to 
unspecifi c  “ certifi cation programs, ”  the target of its attacks was obvi-
ously the CDP. Later that year the Executive Council established a 
Committee to Investigate the Implications of the CDP. The fi rst order of 
business for the committee was the drafting of a strongly worded objec-
tion to the use of the word professional in association with the DPMA 
exam, and the wording of subsequent exam and program literature 
eliminated all references to such language: CDP therefore came to stand 
for  “ Certifi ed Data Processor, ”  rather than  “ Certifi ed Data Professional. ”   71   
Even this modest acronym was offensive to some professional groups. A 
member of a SHARE (an infl uential IBM users group) panel on certifi ca-
tion was  “ disturbed to read [the] statement that many DPMA certifi cate 
holders are beginning to use the initials  ‘ CDP ’  in their titles. ”  Such pre-
tentious behavior, he suggested,  “ will quickly bring down upon DPMA 
the wrath of other professions. It is probably illegal in some states. I fail 
to see how it can conceivably benefi t the cause of professionalism which 
DPMA and others of us are working toward. ”   72   Although the DPMA 
insisted that  “ many persons who use the CDP initials do so more to 
publicize the certifi cation program ”  than to promote their own personal 
interests, pressure from competing associations forced it to abandon 
many of its more ambitious claims for the CDP program.  73   A statement 
in 1966 conceded that  “ it would be presumptuous at this early stage in 
the program to suggest that CDP represents the assurance of competence, 
or that the Certifi cate should be considered as a requirement for employ-
ment or promotion in the fi eld. ”   74   It is no wonder that so many employ-
ers and practitioners lost confi dence in the ability of the DPMA to 
successfully administer an industry-wide certifi cation program. 

 An even more troublesome problem for the DPMA was resistance 
from its primary constituency to its proposed educational requirements. 
The original CDP announcement included a list of specifi c academic 
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prerequisites, including college-level courses in math, English, manage-
rial accounting, statistics, and data processing systems as well as eight 
out of seventeen possible electives.  75   Many of the practicing EDP special-
ists who formed the core of the DPMA membership saw such require-
ments as being irrelevant, unattainable, or both. When the educational 
requirements were fi rst enforced in 1966, applications dropped by more 
than 85 percent, never to recover. 

 The problem was not only that the new educational requirements 
were overly stringent for many aspiring EDP professionals; they were 
also entirely too specifi c. What exactly counted as a math, English, or 
managerial accounting course? Course titles and descriptions varied 
greatly by institution. Each application had to be evaluated individually 
to determine which courses legitimately counted toward the requirement. 
The Committee for Certifi cation was immediately overwhelmed with 
paperwork: complaints, transcripts, notes from faculty, requests for 
exemptions, and so on. This was in addition to the massive efforts 
required to assure that each candidate had the requisite three years ’  work 
experience and high character qualifi cations. It is unclear exactly what 
was meant by this requirement. It does appear that certain candidates 
were eliminated on the basis of having misrepresented their qualifi ca-
tions, or having committed fraud or other crimes, but no written stan-
dards for the high character qualifi cation seem to have existed. The 
situation quickly turned into an administrative nightmare for DPMA 
offi cials. The specifi c course prerequisites were soon replaced with a 
more straightforward, although no less controversial, two-year college 
requirement. When this prerequisite was modifi ed to a four-year degree 
in 1972, opposition became even more vociferous. The head of the West 
Tennessee chapter of the DPMA wrote to complain that he, along with 
about one-third of his chapter ’ s membership, had suddenly become 
ineligible to receive the CDP.  76   A  Computerworld  survey in 1970 indi-
cated that many practitioners felt the new requirement  “ unduly harsh ”  
and  “ ludicrous, ”  believing that it would decimate the data processing 
staffs of many smaller departments.  77   The always-outspoken Herbert 
Grosch (himself a PhD astronomer and president of the ACM from 1976 
to 1978) declared that  “ this policy is very ill-advised. What the hell is 
so hot about college — it turns out a bunch of knuckleheads — and a 
knucklehead PhD is no better that a knucklehead CDP. ”   78   

 Despite the strong negative reaction generated by these educational 
requirements, the DPMA leadership continued to insist on their neces-
sity. Such requirements had always been considered an essential compo-
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nent of the DPMA ’ s professionalization program: only by defi ning a 
 “ standard of knowledge for organizing, analyzing, and solving problems 
for which data processing equipment is especially suitable ”  could pro-
grammers ever hope to distinguish themselves from mere technicians or 
other  “ sub-professionals. ”   79   Like the academic computer scientists, busi-
ness programmers recognized the need for a foundational body of 
abstract knowledge on which to construct their profession; they differed 
only about what that relevant foundation of knowledge should include. 
In insisting on strong educational standards, the DPMA was in complete 
accord with the conventional wisdom of the contemporary profession-
alization literature.  80   And by the end of the 1960s, it was true that many 
employers did prefer to hire college graduates — although not necessarily 
computer science or data processing graduates — for entry-level program-
ming positions.  81   According to a study published in September 1968 by 
the Offi ce of Education, U.S. Department of Health, Education, and 
Welfare, 61 percent of the 353 business data processing managers sur-
veyed preferred that programmers have a college degree. Over 60 percent 
indicated that educational background was a substantial factor in deter-
mining a programmer ’ s chances for promotion.  82   As a recession hit the 
industry in the early part of the 1970s, this trend became even more 
pronounced.  83   An aspiring EDP school graduate, even with a CDP cer-
tifi cate, had little chance of breaking into data processing without a 
college degree. As one of these individuals lamented,  “ They told me 80% 
of all programmers don ’ t have a college degree. Now everywhere I go 
I ’ m told they ’ re sorry but they only want college people. ”   84   Although the 
DPMA ’ s decision to raise the educational requirements for the CDP was 
highly controversial, it was also probably justifi ed. 

 Ultimately, however, the DPMA never managed to convince employ-
ers and practitioners of the relevance of its educational standards, nor 
for that matter its certifi cation exams. Neither group was convinced that 
a CDP meant much in terms of future performance. The DPMA 
Certifi cation Council was not even able to pass a resolution requiring its 
own offi cials to possess the CDP.  85   In 1971, the Certifi cation Council 
decided to drop the baccalaureate degree requirement. Although this 
decision was a response to pressure from within the data processing 
community, it was widely regarded as a sign of weakness rather than 
judicious concession.  86   As the director of the computing center at Virginia 
Tech wrote to the president of the local DPMA chapter,  “ The removal 
of the degree requirement has forced all of us to consider the attainment 
of the CDP not as an extension of our normal academic and work 
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experience, but, as a matter of fact, something quite inferior to either 
one. ”   87   His letter provides a stinging but accurate indictment of the 
failure of the CDP program to achieve widespread acceptance and 
legitimacy:  

 My experience indicates that people seek certifi cation from their professional 
peer group for only two reasons. Either it is required by law or the individual 
feels that the mark of acceptance stamped upon him by his peer group is suffi -
ciently important to be worthy of the extra effort to achieve that certifi cation. 
Unfortunately, in the data processing profession, many, certainly most, of the 
people we recognize as outstanding professional achievers and accomplishers, do 
not hold the CDP.  88   

 One of the major criticisms leveled against the CDP examination by 
employers and data processing managers was that it tested  “ familiarity ”  
rather than competence.  89   It was not clear to what skills and abilities the 
CDP was actually intended to certify:  “ The present DPMA examination 
measures breadth of data processing experience but does not measure 
depth. . . . It certainly does not measure or qualify programming ability. 
It makes no pretense of being any measure of management skills. ”   90   The 
problem was a familiar one for the industry: although most employers 
in this period believed that only  “ competent ”  programmers could develop 
quality software, no one agreed on what knowledge and abilities consti-
tuted that  “ competence. ”   91   As Fred Gruenberger suggested at a RAND 
symposium in 1975 on certifi cation issues,  “ I have the fear that someone 
who has passed the certifying exams has either been certifi ed in the 
wrong things (wrong to me, to be sure) or he has been tuned to pass the 
diagnostics, and in either case I distrust the whole affair. ”   92   His attitude 
refl ects the ambivalence that many observers in this period felt about 
contemporary data processing training and educational practices. If data 
processing was simply a  “ miscellaneous collection of techniques applied 
to business, technology and science, ”  rather than a unique discipline 
requiring special knowledge and experience, then no certifi cation exam 
could possibly test for the broad range of skills associated with  “ general 
business knowledge. ”   “ Given the choice between two people from the 
same school, one of whom has the CDP, but the other appears brighter, ”  
Gruenberger argued,  “ I ’ ll take the brighter guy. ”   93   

 Although the DPMA revised and updated its examinations annually, 
and eventually introduced a Registered Business Programmers exam 
intended specifi cally for programmers, it was never able to convince the 
industry of the relevance of its certifi cation programs. One data process-
ing manager suggested that the CDP was at best  “ a minor plus for the 
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person who can measure up to other standards, ”  but that it would never 
be considered a  “ real ”  qualifi cation for employment.  94   Another warned 
of a  “ lack of confi dence ”  in the validity of the CDP exam:  “ I do not 
expect to apply for a CDP or to use the possession of a CDP as a criterion 
for employment. ”   95   Still another resented a perceived attempt on the part 
of the DPMA to foster a  “ closed shop ”  mentality, promising to  “ con-
tinue to regard the CDP holder with suspicion as to motive and qualifi ca-
tion, the level of suspicion being in inverse proportion to the date of the 
certifi cate. ”   96   In the absence of a strong commitment to the CDP on the 
part of employers, many programmers saw little benefi t in participating 
in the program. Those who did were increasingly self-selected from the 
lowest ranks of the labor pool — individuals for whom the CDP was a 
perceived substitute for experience and education. 

 Professional Societies or Technician Associations? 

 In spring 1975, on the eve of the annual National Computer Conference, 
a small group of the elite leaders of the computing community met in a 
nondescript conference room at a Quality Inn in Anaheim, California, 
to discuss the future of the computing profession. Similar meetings had 
been convened every year for the previous two decades, always with the 
intent to address the most pressing issues facing the computing commu-
nity. Although the specifi c composition of the group changed from year 
to year, the attendees always represented the highest levels of leadership 
in the discipline: award-winning computer scientists, successful business 
entrepreneurs, association presidents, and prolifi c authors. The cumula-
tive list of participants reads like a who ’ s who of the computing industry: 
Gene Amdahl, Paul Armer, Herbert Bright, Howard Bromberg, Richard 
Canning, Herbert Grosch, Fred Gruenberger, Richard Hamming, J.C.R. 
Licklider, Daniel McCracken, Anthony Oettinger, Seymour Papert, and 
Joseph Weizenbaum, among many others. This particular meeting 
included high-ranking representatives from all of the major professional 
societies: the ACM, the DPMA, the IEEE Computer Society, and the 
ICCP. These societies represented the largest and most infl uential con-
stituent members of the umbrella organization, AFIPS. On the agenda 
was a discussion of the role of AFIPS in the professional development of 
the discipline. 

 AFIPS had been founded in 1961 as a society of societies. The immedi-
ate goal had been to provide a U.S. representative to the upcoming 
International Federation of Information Processing (IFIP) conference. 
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IFIP had been established several years earlier under the aegis of the 
United Nations Educational, Scientifi c, and Cultural Organization 
(UNESCO). Beginning in 1959, IFIP hosted an annual international 
conference on computing. Each member nation was allowed to send 
representatives from a  single  organization. Since the United States had 
no single organization that spoke for its computing community, AFIPS 
was created to represent three of the largest computer-related societies: 
the ACM, the American Institute of Electrical Engineers (AIEE), and the 
Institute of Radio Engineers (IRE). (The AIEE and the IRE later merged 
into the IEEE.) It was hoped that AFIPS would eventually come to 
serve as the single national voice for computer interests in the United 
States.  97   

 From the start, AFIPS proved a disappointment. AFIPS did represent 
the United States at the annual IFIP meeting. It was given control over 
the lucrative Joint Computer Conferences, but beyond that, it proved 
incapable of serving as  “ the voice of the computing profession in 
America. ”   98   It was crippled by a weak charter and a lack of tangible 
support from its founding societies. AFIPS was a society of societies, not 
a society of members, and it was therefore dependent on and subservient 
to the interests of its constituent societies, rather than to the larger com-
puting community. In addition, several obvious candidates for member-
ship, including the DPMA, had been conspicuously excluded from 
participation, and the AFIPS voting structure made it obvious that addi-
tional members would be unwelcome.  99   Even more limiting was a clause 
in the constitution, insisted on by the ACM as an essential precondition 
for its support, prohibiting AFIPS from placing itself  “ in direct competi-
tion with the activities of its member societies. ”   100   Although the constitu-
tion was revised in 1969 to provide for stronger leadership and a more 
inclusive atmosphere, AFIPS continued to struggle for support and rec-
ognition. The DPMA did not join until 1974, for example, and even then 
without much enthusiasm. The gathering in 1975 of the computing elite 
at the Quality Inn in Anaheim represented one of the many attempts to 
reinvigorate interest in this ailing association. In 1989, just two years 
after celebrating its twenty-fi fth anniversary, AFIPS voted itself out of 
existence. The loss of control over the lucrative National Computing 
Conferences left it fi nancially unstable and without any clear means of 
support. Few in the community mourned its passing. 

 The transcripts of the meeting are revealing. The existence of a power-
ful professional association was obviously considered by the many infl u-
ential members of the computing community to be the cornerstone of a 
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strong professional identity. And yet rivalries between the member soci-
eties, particularly the ACM and the DPMA, proved to be an endemic 
and ultimately insoluble barrier to the establishment of this identity. 
Participants in the various associations disagreed over membership quali-
fi cations, dues, voting privileges, and certifi cation and licensing propos-
als. More important, however, was the lack of widespread popular 
support for these associations. One  Datamation  study indicated that less 
than 40 percent of all programmers belonged to any professional associa-
tion, and  “ probably less than 1% do anything in connection with an 
association that requires an extra effort on the individual ’ s part. ”   101   And 
even these low fi gures were probably infl ated: a  Wall Street Journal  
report from the same year revealed only that 13 percent of the data 
processing personnel surveyed belonged to any professional society.  102   
These numbers correspond well with the low level of interest in the CDP 
certifi cation program. Although it is diffi cult to compile exact fi gures on 
association membership, it is clear that at best only a small percentage 
of the eligible population chose to participate in any professional 
society. 

 If strong professional associations were widely perceived to be an 
important element of professional identity, why did groups like the 
ACM, the DPMA, and AFIPS have such diffi culty attracting and keeping 
members? AFIPS had some obvious structural problems that almost 
assured its ineffectiveness. Individuals could not directly join AFIPS; it 
was merely an umbrella organization for other associations, and pos-
sessed little real authority. But what about the ACM and the DPMA, the 
two largest relevant member societies? Both of these groups were estab-
lished early, were relatively high profi le, and published their own widely 
distributed journals. Both were frequently mentioned as candidates for 
the position of  the  professional computing association. Yet neither was 
able to consolidate its control over any signifi cant portion of the disci-
pline ’ s practitioners. The reasons behind their failure suggest the limita-
tions of professional associations as an institutional solution to the 
software crisis. 

 The persistent confl ict between the ACM and the DPMA revealed a 
much larger tension that existed within the computing community. As 
early as 1959, the outlines of a battle between academically oriented 
computer scientists and business programmers had taken shape around 
the issue of professionalism.  103   Although both groups agreed on the 
desirability of establishing institutional and occupational boundaries 
around the nascent computer-related professions, they disagreed sharply 
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about what form these professional structures should take. Observers 
noted a deepening  “ programming schism ”  developing within the indus-
try, a  “ growing breach between the scientifi c and engineering computa-
tion boys who talk ALGOL and FORTRAN . . . and the business data 
processing boys who talk English and write programs in COBOL. ”   104   
Individuals who believed that the key to professional status was the 
development of formal theories of computer science resisted subprofes-
sional certifi cation programs and tended to join the ACM; business data 
processors who were skeptical of  “ cute mathematical tricks, ”  either sup-
ported the DPMA or ignored the professional societies altogether. 

 It is obvious that the turf battles that raged between the ACM and 
the DPMA during the 1950s and 1960s helped undermine popular 
support for both organizations. In response to extensive  Datamation  
coverage of a RAND symposium in 1959 on  “ the perennial professional 
society question, ”  one reader commented that he  “ hadn ’ t laughed so 
hard in a decade. Are these guys kidding? You won ’ t solve this problem 
by self-interested conversation about it, nor is it solved by founding 
another organization. ”   105   In a retrospective in 1985 on the troubled 
history of AFIPS, Harry Tropp suggested that  “ the question of turf seems 
to have been there from the beginning. It shows up in the [1950s ’ ] Rand 
Symposium. . . . There were the hardware and software types and then 
there were the users. We had the east coast/west coast turf problems. 
What I am hearing today is a whole new evolution of different turfs as 
this information processing society explodes. ”   106   The fact that the DPMA 
refused affi liation with AFIPS until the mid-1970s — largely because of 
the perception that the latter organization was dominated by the ACM —
 was a major factor in its perpetual ineffectiveness and eventual dissolu-
tion (in 1987, just two years after it celebrated its twenty-fi fth anniversary). 
Herbert Grosch in particular was dismayed by the pettiness of the ACM-
DPMA debates, which he believed detracted from the overall goal of 
establishing a legitimate professional identity:  

 I couldn ’ t care less who publishes some abstract scientifi c paper! What I want 
to know is how do we pull together a hundred thousand warm bodies that are 
working on the outskirts of the computer business, give them a high-priced 
executive director, lots of advertising, a whole series of technical journals; in 
other words, organize a real rip-snorting profession? Whenever somebody starts 
worrying about which journal what paper should be published in, we get bogged 
down in an academic cross-fi re we ’ ve been in for ten years. ”   107   

 As damaging as these interassociation rivalries were to the infl uence 
and reputation of the ACM and the DPMA, what really hurt them was 
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the lack of support that they received from industry practitioners. Neither 
organization was able to clearly establish its relevance to the needs of 
either workers or their managers.  “ Neither organization . . . has done 
much for the industry or for society as a whole, ”  argued one  Datamation  
editorial from 1965.  “ We think the time is ripe to more clearly defi ne 
larger, more important long-range goals which distinguish a professional 
society from a technician ’ s association. ”   108   Employers looked to the 
professional associations to provide a supply of reliable, capable pro-
grammers. As was apparent from the impassioned debates about the 
structure and relevance of computer science curricula, however, it was 
far from obvious to many managers that formal educational programs 
contributed much to the production of professional programmers. The 
ACM ’ s continued devotion to theoretical computer science made it seem 
out of touch with the practical demands of business. The DPMA ’ s CDP 
program, although it was much more oriented to business data process-
ing, failed to achieve widespread industry acceptance. As a result, it 
also was not able to guarantee the kind of standardized labor force in 
which corporations were interested. Employers saw little value in either 
organization. 

 The Limits of Professionalism 

 In his monograph on  Offi ce Automation in Social Perspective  from 1968, 
Oxford sociologist Hans Rhee observed that  “ the computer elite are 
beginning to erect collective defenses against the lay world. They are 
beginning to develop a sense of professional identity and values. ”  But the 
process of establishing professional attitudes and controls, and a profes-
sional conscience and solidarity, Rhee suggested, had  “ not yet advanced 
very far. ”   109   He could just have easily been describing the computing 
professions as they existed a decade earlier or a decade afterward. By 
1968 computing had acquired many of the trappings of professionalism: 
academic computer science departments, certifi cation programs, and pro-
fessional associations. And yet most computing practitioners were not 
widely regarded as professionals, at least not in the eyes of the general 
public. In 1967, for example, the U.S. Civil Service Commission declared 
data processing personnel to be nonexempt employees, offi cially catego-
rizing programmers as technicians rather than professionals. Although 
this decision did not affect the lives or practices of programmers, it repre-
sented a symbolic defeat for professional associations such as the ACM, 
which lobbied hard to have it overturned.  110   
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 The inability of programmers and other data processing personnel to 
successfully professionalize raises a perplexing question for the historian: 
Given the apparent interest in professionalization on the part of both 
employers and practitioners, why were these efforts so ineffective? As 
was described earlier, industrial employers in the 1960s complained not 
so much about technical incompetence as a general lack of professional-
ism among programmers.  “ It was his distressing lack of professional 
attributes that most often undermines his work and destroys his man-
agement ’ s confi dence, ”  declared Malcolm Gotterer.  “ Too frequently 
these people, while exhibiting excellent technical skills, are non-
professional in every other aspect of their work. ”   111   Increased profes-
sionalism would presumably address the most frequent complaints 
leveled against data processing personnel: an overreliance on idiosyn-
cratic craft techniques; an arrogant disregard for proper lines of author-
ity; shoddy production quality; and a lack of commitment to the best 
interests of the organization. On the surface, the professionalization of 
programming appeared to be an ideal solution to many of the most del-
eterious symptoms of the burgeoning software crisis. 

 There are a number of explanations for the failure of most profes-
sionalization programs. Internal rivalries within the computing commu-
nity undermined the effectiveness of groups such as the ACM and the 
DPMA. No single organization could meet the needs of a diverse com-
munity of computer people that included everyone from PhD mathemati-
cians to high school dropout keypunch operators. As Louis Fein pointed 
out in his discussion of the ACM ’ s crisis of identity,  “ It is not clear . . . that 
an organization can play simultaneously the role of a profession, of an 
industry, and of a science. . . . I cannot see that ACM members, or IEEE 
Computer Group members, or DPMA members, or Simulations Councils, 
Inc. members, are members of a profession. They are practitioners or 
scientists or engineers or programmers — members of a technical 
society. ”   112   The attempts of the computer scientists to rationalize the 
practice of programming and produce a body of generally applicable 
programming theory set them at odds with vocational programmers. The 
seemingly inconsistent and idiosyncratic practices of working program-
mers were used as foils for the elegant constructions of the academic 
computer scientists. The attempts of the vocational programmers to 
appeal to the language and ideals of science and engineering were ridi-
culed. When asked to explain the linguistic transition from coder to 
programmer, the prominent computer scientist John Backus dismissed it 
as purely rhetorical:  “ It ’ s the same reason that janitors are now called 
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 ‘ custodians. ’   ‘ Programmer ’  was considered a higher-class enterprise than 
 ‘ coder, ’  and things have a tendency to move in that direction. ”   113   As the 
programming community broke down into competing factions — such as 
theoretical versus practical, certifi ed versus uncertifi ed, and the ACM 
versus the DPMA — its members lost the leverage necessary to push 
through any particular professionalization agenda. 

 In addition to internal rivalries, the aspiring computing professions 
also faced external opposition. For many corporate managers, profes-
sionalism was a potentially dangerous double-edged sword. On the one 
hand,  “ professionalism might motivate staff members to improve their 
capabilities, it could bring about more commonality of approaches, it 
could be used for hiring, promotions and raises, and it could help deter-
mine  ‘ who is qualifi ed. ’  ”  On the other hand,  “ professionalism might 
well increase staff mobility and hence turnover, and it probably would 
lead to higher salaries for the  ‘ professionals. ’  ”   114   Computer personnel 
were seen as dangerously disruptive to the traditional corporate estab-
lishment. The last thing that traditional managers wanted was to provide 
data processing personnel with additional occupational authority. 
Professionalism was therefore encouraged only to the extent that it pro-
vided a standardized, tractable workforce; professionalization efforts 
that encouraged elitism, protectionism, or anything that smacked of 
unionism were seen as counterproductive. 

 Perhaps the most important reason that programmers and other data 
processing personnel failed to professionalize, however, was that the 
professional institutions that were set up in the 1950s and 1960s failed 
to convince employers of their relevance to the needs of business. A 
 Computerworld  survey in 1974 indicated that  “ no technical society has 
ever captured and held the attention of professionals in BDP. ”   115   
Employers looked to professional institutions as a means of supplying 
their demand for competent, trustworthy employees. As we have seen, 
although computer science programs in the 1960s thrived in the universi-
ties, in the business world they were usually seen as overly theoretical 
and irrelevant. Likewise, the DPMA ’ s CDP program failed to establish 
itself as a reliable mechanism for predicting programmer performance 
or ability. Neither the ACM nor the DPMA offered much to employers 
in terms of improving the supply or quality of the programming 
workforce. 

 Given this lack of active support from employers, the professional 
associations had little to offer most data processing practitioners. Neither 
a computer science education nor professional certifi cation could ensure 
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employment or advancement. In response to a  Computerworld  article in 
1974 titled  “ Why Business Users Are Turned Off by ACM, ”  AFIPS 
president George Glaser remarked that  “ the general lack of success of 
ACM in attracting business data processing professionals to its member-
ship has relatively little to do with the nature and extent of the services 
it offers them. It is, rather, more attributable to a lack of interest on the 
part of these  ‘ professionals ’  in any professional society. ”   116   Glaser ’ s 
comment can be read either as an indictment of the apathy of the average 
computing practitioner or the policies of the ACM; either way, it suggests 
the strained relationship that existed between the two communities. 
Many working programmers saw little value in belonging to either the 
ACM or the DPMA, and support for both organizations as well as pro-
fessional institutions in general languished during the late 1960s and 
early 1970s. 
   



 

 8 

 We build software like the Wright brothers built airplanes: build the whole thing, 
push it off a cliff, and start over again. 

  — Ronald Graham, NATO Conference on Software Engineering  1   

 Industrializing Software Development 

 In the collective memory of the programming community, the years 
between 1968 and 1972 mark a major turning point in the history of its 
industry and profession. It is during this period that the rhetoric of the 
crisis became fi rmly entrenched in the vernacular of commercial comput-
ing. Although there had been earlier concerns expressed about  “ software 
turmoil ”  and the  “ software gap, ”  it was not until 1968 that the word 
 “ crisis ”  began to be applied to the challenges facing the software indus-
try. Within a few short years, the existence of a looming software crisis 
had been widely and enthusiastically embraced within the popular and 
industry literature. The discourse of crisis became one of the defi ning 
features of the software industry; since the late 1960s, almost every new 
computer-science curriculum proposal, programming technology, or 
development methodology has positioned itself relative to this perception 
of widespread crisis. Even those who deny the very existence of the crisis 
are continually forced to engage with its pervasive discursive legacy.  2   

 To a certain degree the emergence of the software crisis of the late 
1960s represents the culmination of a long series of concerns about 
software: the seemingly perpetual shortage of programming personnel; 
the burgeoning complexity of both application and systems software; the 
apparent failure of automatic programming technologies to make the 
process of programming less mysterious or more cost-effective; the pro-
fessional and political tensions inherent in management information 
systems and other organizationally disruptive technologies; and a growing 
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sense at all levels of society that the changes associated with the computer 
revolution were more fundamental and pervasive — and at times intru-
sive — than had previously been anticipated.  3   

 What is novel and signifi cant about the software crisis discourse, 
therefore, was not in its identifi cation of a series of problems but rather 
in the nature of its proposed solutions. For most historians as well as 
most contemporary observers, the software crisis of the late 1960s was 
defi ned by the emergence of new software-engineering approaches to the 
problems of software development. 

 The phrase  “ software engineering ”  appears to have fi rst been used by 
the hardware engineer J. Presper Eckert in an address to the Eastern Joint 
Computer Conference in 1965 in reference to the growing confl ict between 
computer programmers and their corporate employ ers. Computer pro-
gramming  “ would only be manageable, ”  he claimed,  “ when we could 
refer to it as  ‘ software engineering. ’  ”   4   But it was the 1968 NATO 
Conference on Software Engineering that marks the moment that software 
engineering dramatically entered the public consciousness. 

 In October 1968, a diverse group of academic computer scientists, 
corporate managers, and military offi cials gathered in Garmisch, 
Germany, for the fi rst-ever NATO Conference on Software Engineering. 
The conference was intended to address what many industry observers 
believed to be an impending crisis in software production. Large software 
development projects had acquired a reputation for being behind sched-
ule, over budget, and bug ridden. The solution to the so-called software 
crisis, suggested the conference organizers, was for software developers 
to adopt a more methodical and industrial approach. The phrase  “ soft-
ware engineering ”  was  “ deliberately chosen as being provocative, ”  sug-
gested the conference organizers,  “ in implying a need for software 
manufacturing to be based on the types of theoretical foundations and 
practical disciplines that are traditional in the established branches of 
engineering. ”   5   In the interest of effi cient software manufacturing, the 
black art of programming had to make way for the science of software 
engineering. 

 By defi ning the software crisis in terms of the discipline of software 
engineering, the conference set an agenda that infl uenced many of the 
technological, managerial, and professional developments in commercial 
computing for the next several decades. The general consensus among 
historians and practitioners alike is that the Garmisch meeting marked 
a major cultural shift in the perception of programming. In the aftermath 
of Garmisch,  “ software writing started to make the transition from being 
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a craft for a long-haired programming priesthood to becoming a real 
engineering discipline. It was the transformation from an art to a 
science. ”   6   The call to integrate  “ good engineering principles ”  into the 
software development process has been the rallying cry of software 
developers from the late 1960s to the present.  7   

 The fundamental problem with software, according to the NATO 
conference organizers, was not personnel or technology but rather tech-
nique. Software development was diffi cult because computer program-
mers had failed to follow an appropriate methodology. They persisted 
in their craft-based mentality when what was demanded was clearly an 
industrial system of manufacturing.  “ We undoubtedly produce software 
by backward techniques, argued M. Douglas McIlroy of Bell Telephone 
Laboratories:  “ We undoubtedly get the short end of the stick in confron-
tations with hardware people because they are the industrialists and we 
are the crofters. ”   8   Like many of his fellow participants, McIlroy rejected 
the notion that large software projects were inherently unmanageable. 
The imposition of engineering management methods had enabled effi -
cient manufacturing in myriad other industries, and would not fail to do 
the same for computer programming. Software engineering promised to 
bring control and predictability to the traditionally undisciplined prac-
tices of software development. 

 For a number of conference participants, the key word in the provoca-
tive NATO manifesto was  “ discipline. ”  For example, in his widely 
quoted paper on  “ mass-produced software components, ”  McIlroy pro-
posed applying mass-production techniques to software.  9   His vision of 
a software  “ components factory ”  invokes familiar images of industrial-
ization and proletariatization. According to his proposal, an elite corps 
of  “ software engineers ”  would serve as the Frederick Taylors of the 
software industry, carefully orchestrating every action of a highly 
stratifi ed programmer labor force. And like the engineers in more tradi-
tional manufacturing organizations, these software engineers would 
identify themselves more as corporate citizens than as independent 
professionals.  10   

 Not every proposed solution to the software crisis suggested at 
Garmisch was as blatantly management oriented as McIlroy ’ s. 
Nevertheless, the theme of transformation from a craft-based black art 
of programming to the industrial discipline of software engineering dom-
inated many of the presentations and discussions. The focus on manage-
ment solutions refl ected — and reinforced — a larger groundswell of 
popular opinion that extended far beyond the confi nes of the actual 
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conference. The industry literature of the period is replete with examples 
of this changing attitude toward software management. Even those 
proposals that seemed to be most explicitly technical, such as those 
advocating structured programming techniques or high-level language 
developments, contained a strong managerial component. Most required 
a rigid division of labor and the adoption of tight management controls 
over worker autonomy. When a prominent adherent of object-oriented 
programming techniques spoke of  “ transforming programming from a 
solitary cut-to-fi t craft, like the cottage industries of colonial America, 
into an organizational enterprise like manufacturing is today, ”  he 
was referring not so much to the adoption of a specifi c technology 
but rather to the imposition of established and traditional forms of 
labor organization and workplace relationships.  11   The solutions to the 
software crisis most frequently recommended by managers — among 
them the elimination of rule-of-thumb methods (i.e., the black art 
of programming), the scientifi c selection and training of program-
mers, the development of new forms of management, and the effi cient 
division of labor — were not fundamentally different from the four prin-
ciples of scientifi c management espoused by Frederick Taylor in an 
earlier era.  12   

 Aristocracy, Democracy, and Systems Design 

 In practice, software engineering was more an expression of ideals than 
a well-defi ned agenda. At best it was a loose collection of techniques, 
technologies, institutions, and practices.  13   As Stuart Shapiro has sug-
gested, the essence of the software-engineering movement was control: 
control over complexity, control over budgets and scheduling, and, 
perhaps most signifi cantly, control over a recalcitrant workforce.  14   
Although a number of technological or procedural innovations were 
developed to facilitate software engineering — structure programming 
techniques, the ADA programming language, Computer-Aided Software 
Engineering (CASE) environments — the focus of most software-engineer-
ing efforts were managerial. In this sense, software engineering represents 
the culmination of the turn toward managerial solutions to the software 
crisis that characterized the late 1960s. 

 Unhappy with the ballooning costs of software development, threat-
ened by the growing power of the computer people, and frustrated by 
the apparent inability of either academic computer science or the profes-
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sional societies to institute more formal methods for regulating the 
industry, corporate managers attempted to construct development meth-
odologies that would eliminate the uncertainty and expense associated 
with computerization projects.  

 It would be impossible to describe all of the numerous approaches to 
programmer management that were developed in this and subsequent 
periods. The remainder of this chapter will focus on the defi ning char-
acteristics of a few of the most prominent development methodologies 
that emerged in response to the declaration in 1968 of the software crisis: 
the hierarchical system, or software factory; the superprogrammer, or 
chief programmer team (CPT) approach; and the adaptive programmer 
team (or  “ egoless ”  programming) model. The hierarchical systems 
approach — originally developed for large, government-sponsored pro-
gramming projects at the SDC and the IBM Federal Systems Division —
 resembles the highly stratifi ed, top-down organizational structure familiar 
to most conventional corporate employees. The CPT, although it was 
also developed at the IBM Federal Systems Division, refl ects an entirely 
different approach to programmer management oriented around the 
leadership of a single managerially minded superprogrammer. The 
adaptive team approach was popularized as egoless programming by 
the iconoclastic Gerald Weinberg in his classic  The Psychology of 
Computer Programming  from 1971.  15   Weinberg proposed an open, 
 “ democratic ”  style of management that emphasized teamwork and 
rotating leadership. 

 Although it is possible to arrange these approaches into a roughly 
chronological order, it is not my intention to suggest that they represent 
any simple evolution toward increasing managerial control or economic 
effi ciency. Each of these management methodologies captures separate 
but interrelated visions about how computer programming as an eco-
nomic activity, and computer programmers as aspiring professionals, 
could best be integrated into the established social and technological 
systems of the traditional corporation. Each of these approaches built 
on, and responded to, the innovations and shortcomings of the others. 
They also refl ected the backgrounds and aspirations of their advocates 
and developers. By studying carefully the salient features of each of these 
three methodologies, we will be better able to situate them in their par-
ticular social and historical context, and hence to understand more fully 
their contribution to contemporary debates about the nature and causes 
of the software crisis. 
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 Armies of Programmers 

 The fi rst concerted attempts to manage software development projects 
using established management techniques occurred at the government- 
and military-sponsored SAGE air-defense project. The SAGE project was 
the heart of an ambitious early warning radar network intended to 
provide an immediate and centralized response to sneak attacks from 
enemy aircraft. The plan was to develop a series of computerized track-
ing and communications centers that would coordinate observation and 
response data from a widely dispersed system of interconnected perime-
ter warning stations. First authorized by Congress in 1954, by 1961 the 
SAGE system had cost more than $8 billion to develop and operate, 
and required the services of over two hundred thousand employees. The 
software that connected the specially designed, real-time SAGE comput-
ers was the largest programming development then under way. SDC, a 
RAND Corporation spin-off company responsible for developing this 
software, had to train and hire almost two thousand programmers. In 
the space of a few short years the personnel management department at 
SDC effectively doubled the number of trained programmers in the 
United States. 

 In order to effectively organize an unprecedented number of software 
developers, SDC experimented with a number of different techniques for 
managing the programming process. For the most part, however, SDC 
relied on a hierarchical structure that located most programmers at the 
lowest levels of a vast organizational pyramid built with layer on layer 
of managers.  16   The top of this hierarchy was occupied by nontechnical 
administrators. The middle layers were peopled by those EDP personnel 
who had exhibited a desire or aptitude for management. In other words, 
the managers in the SDC hierarchy were self-selected as being either 
uninterested or uncommitted to a long-term programming career. The 
management style in this hierarchical structure was generally autocratic. 
Managers made all of the important decisions. They assigned tasks, 
monitored the progress of subordinates, and determined when and what 
corrective actions needed to be taken. 

 This hierarchical approach to management was attractive to SDC 
executives for a number of reasons. First of all, it was a familiar model 
for government and military subcontractors. Second, it was often easier 
to justify billing for a large number of mediocre low-wage employees 
than a smaller number of excellent but expensive contractors. Finally, 
and perhaps most important, the  “ Mongolian horde ”  approach to 
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software development corresponded nicely with contemporary construc-
tions of the root causes of the burgeoning software turmoil. This was 
also known as the  “ Chinese Army ”  approach, at least until the phrase 
became unpopular in the early 1950s. 

 Faced with a shortage of experienced programmers, SDC embarked 
on an extensive programming of internal training and development. 
Most of its trainees had little or no experience with computers; in fact, 
many managers at SDC preferred it that way. Like many corporations 
in the 1950s, SDC believed that  “ it is much easier to teach our personnel 
to program than it is to teach outside experienced programmers the 
details of our business. ”   17   In any case, in the period between 1956 and 
1961 the company trained seven thousand programmers and systems 
analysts. At a time when all the computer manufacturers combined could 
only provide twenty-fi ve hundred student weeks of instruction annually, 
SDC devoted more than ten thousand student weeks to instructing its 
own personnel how to program.  18   

 The apparent success that SDC achieved in mass-producing program-
ming talent reinforced the notion that a hierarchical approach was the 
suitable model for large-scale software development. If large quantities 
of programmers could be produced on demand, then individual pro-
grammers were effectively anonymous and replaceable. A complex 
system like SAGE could be broken down into simple, modular compo-
nents that could be easily understood by any programmer with the 
appropriate training and experience. The principles behind the approach 
were essentially those that had proven so successful in traditional manu-
facturing: replaceable parts, simple and repetitive tasks, and a strict 
division of labor. 

 The hierarchical model of software development was adopted by a 
number of other major software manufacturers, particularly those 
involved in similarly large military or government projects. It is not clear 
how direct the connection was between SDC and these other manufac-
turers. SDC certainly had a role in training a large number of program-
mers and EDP managers.  “ We trained the industry! ”  boasted SDC 
veterans:  “ Whatever company I visit, I meet two or three SDC alumni. ”   19   
The labor historian Philip Kraft attributes much of what he refers to as 
the  “ routinization ”  of programming labor to the  “ degrading ”  infl uence 
of military-industrial organizations such as SDC. He describes the SDC 
so-called software factories as  “ the fi rst systematic, large-scale effort on 
the part of EDP users to transform the highly idiosyncratic, artisan-like 
occupation ”  of computer programming into  “ one which more closely 
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resembled conventional industrial work. ”   20   He argues that SDC played 
a signifi cant role in diffusing and popularizing the hierarchical approach 
to software engineering management. 

 Whether the claim that SDC policies and SDC personnel played a 
direct role in diffusing the hierarchical system of management through-
out the computer industry was valid, similar top-down methodologies 
were widely adopted. In the IBM Federal Systems Division, a multilevel 
organizational structure was used on all large government projects. IBM 
manager Philip Metzger provided a detailed description of the Federal 
Systems approach in his highly popular textbook  Managing a Programming 
Project , which went through three editions in the period between 1973 
and 1996.  21   An article titled  “ Issues in Programming Management ”  that 
appeared in 1974 in the respected industry newsletter  EDP Analyzer  
listed the hierarchical systems approach as one of the most commonly 
implemented software management methodologies.  22   Joel Aron, another 
IBM Federal Systems veteran, used the hierarchical model as the basis 
for his series of books on the  Program Development Process .  23   The 
hierarchical approach to software development was attractive to manag-
ers because it corresponded nicely with the contemporary management 
theories. In the fi rst half of the twentieth century, corporate management 
became a professional activity dominated by specialists and experts. 
These professional managers developed a shared culture and value system 
reinforced by an increasingly formalized program of training and educa-
tion. They exerted a high degree of control over the work practices of 
their subordinates, scientifi cally managing all aspects of the business and 
manufacturing process. EDP managers assumed that the techniques and 
structures that appeared to work so effi ciently in traditional industries 
would translate naturally into the software development department. It 
was only a matter of identifying and implementing the one best way to 
develop software components. 

 Embedded in the hierarchical model of management were a series of 
assumptions about the essential character of programming as an occu-
pational activity. Implied in the suggestion that the structures and pro-
cedures of a traditional manufacturing organization could be seamlessly 
mapped onto the EDP department was a belief that the skills and experi-
ence required to program a computer were, in effect, not all that different 
from those required to assemble an automobile. Managers could defi ne, 
in the minutest detail, the specifi cations that the programmers would 
follow. In turn, the programmers need only be trained to perform a 
limited and specialized function. Individual programmers were looked 
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on as interchangeable units.  24   They lacked a distinct professional iden-
tity. The path to advancement in the hierarchical system (if indeed there 
actually was one available to mere programmers) was through manage-
ment. Certifi cation programs were desirable in order to ensure a minimum 
level of competence, but only as a means for assuring a standard degree 
of performance and product.  25   Programmers were encouraged to be 
professionals only to the extent that being a professional meant self-
discipline, a willingness to work long hours with no overtime pay, and 
loyalty to the corporation and obedience to supervisors.  26   

 The notion that programmers could be treated as unskilled clerical 
workers was reinforced by a series of technical developments intended 
to allow managers to mechanically translate high-level systems designs 
into the low-level machine code required by a computer. For example, 
one of the alleged advantages of the COBOL programming language 
frequently touted in the literature was its ability to be read and 
understood — and perhaps even written — by informed managers.  27   More 
than a fashionable management technique, the hierarchical organiza-
tional model was a philosophy about what programming was and where 
programmers stood in relation to other corporate professionals. 
It embodied — in a complex of interrelated cultural, technical, and politi-
cal systems — a particular social construction of the nature and causes of 
the software crisis. 

 Despite the obvious appeal that the theory of hierarchical systems held 
for conventional managers, it rarely worked as intended in actual prac-
tice. Although managers would have preferred to think of programming 
as routine clerical work and programmers as interchangeable laborers, 
experience suggested that in reality the situation was quite different. 
I have already described how, in the late 1950s and early 1960s, pro-
gramming had acquired a reputation as being a uniquely creative activity 
requiring  “ real intellectual ability and above average personal character-
istics. ”   28    “ To  ‘ teach ’  the equipment, as is amply evident from experience 
to date, requires considerable skill, ingenuity, perseverance, organizing 
ability, etc. The human element is crucial in programming. ”   29   The anec-
dotal evidence that suggested skilled programmers were essential ele-
ments of software development was supported by numerous empirical 
studies produced by industrial psychologists and personnel experts. 

 The realization that computer programming was a more intellectually 
challenging activity than was originally anticipated threw a monkey 
wrench into the elaborate hierarchical systems that managers had con-
structed. Whereas the software turmoil of the 1950s was attributed 
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largely to numerical shortages of programmers, the  “ programmer 
quality ”  problems of the 1960s demanded a subtly different construction 
of the root causes of the software crisis. The problem could still be 
defi ned as a management problem requiring a management-driven solu-
tion. What had changed was the prevailing conception of what program-
mers were and what they did.  “ The massive attack on systems software 
poses diffi cult management problems, ”  concluded Gene Bylinsky in the 
pages of  Fortune  magazine.  “ On the one hand, a good programmer, like 
a writer or composer, works best independently. But the pressure to turn 
out operating systems and other programs within a limited time make it 
necessary to deploy huge task forces whose coordination becomes a 
monstrous task. ”  Echoing conventional wisdom about the creative nature 
of programming, Bylinsky maintained that the problem was  “ further 
complicated ”  by the fact that there is no  “ best way ”  to write computer 
programs.  “ Programming has nowhere near the discipline of physics, for 
example, so intuition plays a large part. Yet individual programmers 
differ in their creative and intuitive abilities. ”   30   

 Companies that implemented hierarchical systems methodologies also 
discovered that programmers were not content with the professional 
identity that these systems imposed on them. Programmers voted with 
their feet by leaving for other fi rms, and salaries infl ated dramatically.  31   
One large employer experienced a sustained turnover rate of 10 percent 
 per month .  32   The problem, according to one SDC survey of termination 
interviews, was that programmers working in hierarchical organizations 
 “ did not foresee for themselves the opportunities they want for profes-
sional growth and development . . . or for promotion and advance-
ment. ”   33   The career aspirations of the programmers confl icted with the 
occupational role they had been assigned by the managers. Many pre-
ferred to pursue professional advancement  within  programming, rather 
than  away  from programming. In the hierarchical system, the higher that 
individuals advanced, the more they worked as administrators rather 
than technologists. 

 Superprogrammer to the Rescue 

 The IBM System/360 has been called  “ the computer that IBM made, that 
made IBM. ”   34   The System/360 systems solved a number of problems for 
IBM and its customers. It fi lled in the gaps in the IBM line of product 
offerings by providing an entire range of hardware- and software-
compatible computers ranging from the low-end model 360/20 (intended 
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to compete directly with the Honeywell H-200) to the model 360/90 
supercomputer, which compared favorably to the CDC-6600. By 
making all of these machines software compatible (theoretically, at 
least), IBM supplied an inexpensive upgrade path for its customers. The 
client could purchase just the amount of computing power that they 
needed, knowing that if their needs changed in the future they could 
simply transfer their existing applications and data to the next level of 
System/360 hardware. They could also make use of their existing periph-
erals, such as tape readers and printers, without requiring an expensive 
upgrade. 

 The System/360 was an enormously risky and expensive undertaking. 
The  Fortune  journalist Tom Wise referred to it as  “ IBM ’ s $5,000,000,000 
Gamble. ”  He quoted one senior IBM manager as calling it the  “ we bet 
the company ”  project.  35   The riskiest and most expensive component of 
System/360 development was the OS/360 operating system. As men-
tioned earlier, in the years between 1963 and 1966, over fi ve thousand 
staff years of effort went into the design, construction, and documenta-
tion of OS/360. When OS/360 was fi nally delivered in 1967, nine months 
late and riddled with errors, it had cost the IBM Corporation half a 
billion dollars — four times the original budget, or  “ the single largest 
expenditure in company history. ”   36   

 Although the System/360 project turned out to be a tremendous 
success for IBM, sealing its position of leadership in the commercial 
computer industry for the next several decades, the OS/360 project was 
generally considered to be a fi nancial and technological disaster. The 
costs of the OS/360 debacle were human as well as material; according 
to Frederick Brooks, they were  “ best reckoned in terms of the toll it took 
on people: the managers who struggled to make and keep commitments 
to top management and to customers, and the programmers who worked 
long hours over a period of years, against obstacles of every sort, to 
deliver working programs of unprecedented complexity. ”  Many in both 
groups left, victims of a variety of stresses ranging from technological to 
physical.  37   

 The highly publicized failure of the OS/360 project served as a dra-
matic illustration of the shortcomings of the hierarchical management 
method. Techniques that had worked well on an application requiring 
ten thousand lines of code failed miserably when applied to a million 
lines of code project. Faced with serious schedule slippages, quality 
problems, and unanticipated changes in scope, the OS/360 managers did 
what traditional manufacturing managers were accustomed to doing: 
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they added more resources. The only noticeable result was that the 
project fell more and more behind schedule. 

  The Mythical Man-Month  was OS/360 project leader Frederick 
Brooks ’ s postmortem analysis of the failures of traditional hierarchical 
management. It is one of the most widely read and oft-quoted references 
on the practice of software engineering. The mythical man-month in the 
title refers to the commonly held notion that progress in software develop-
ment projects occurs as a function of time spent times the number of 
workers allocated — the implication being that more workers equals faster 
production. Brooks dismissed this assumption with the now-famous 
Brooks ’ s law, one of the most memorable aphorisms in the lore of soft-
ware development:  adding personnel to a late software project makes it 
later . Or to use one of Brooks ’ s more earthy metaphors,  “ the bearing of 
a child takes nine months, no matter how many women are assigned. ”   38   

 The highly quotable Brooks ’ s law was neither the only nor even the 
most signifi cant of the insights provided in  The Mythical Man-Month . 
Brooks did more than criticize existing methodologies; he provided an 
entirely new model for understanding software development manage-
ment. He was fi rmly convinced that there was a wide disparity in per-
formance among individual programmers. Brooks believed that small 
teams of sharp programmers were substantially more productive than 
much larger groups of merely mediocre performers. But he also recog-
nized that even the best small team could only accomplish so much in 
any given period of time. The small team approach simply did not scale 
well to larger projects. The problem of scalability was the heart of the 
 “ cruel dilemma ”  facing project managers:  “ For effi ciency and conceptual 
integrity, one prefers a few good minds doing design and construction. 
Yet for large systems one wants a way to bring considerable manpower 
to bear, so that the product can make a timely appearance. ”   39   And yet 
the Mongolian horde model of throwing programming resources — so-
called man-months — at projects was also obviously insuffi cient. What 
was needed was a way to apply the effi ciency and elegance of the small 
team approach to the problems of large-project management. 

 Brooks proposed the adoption of what he called the  “ surgical team ”  
model of software development. In doing so, he borrowed heavily from 
the work of IBM manager and researcher Harlan Mills, who had earlier 
developed the CPT concept. This notion was fi rst introduced as one of 
two experimental superprogrammer projects by Aron in a paper given 
at a second NATO Software Engineering conference held in Rome in 
1969. The fi rst experiment involved a thirty-man-year project requiring 
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fi fty thousand instructions. Mills attempted to complete the project 
himself (using a prototype surgical team) in only six months. The project 
eventually required about six man-years of effort to complete, and was 
considered a moderate success. The second experiment mentioned by 
Aron at the Rome conference turned out to be the famous  New York 
Times  project, which established the reputation of the CPT approach 
when it was publicized by F. Terry Baker in 1971. In both versions of 
the CPT approach, a single, expert programmer was responsible for all 
major design and implementation decisions involved with system devel-
opment. The chief programmer (or surgeon) defi ned the program speci-
fi cations, designed the program, coded it, tested it, and wrote the 
documentation. The chief was assisted in their tasks by an operating 
team of support staff. Their immediate assistant (or copilot) was only 
slightly less expert than the chief programmer. The copilot was the chief 
programmer ’ s mirror and alter ego, serving not only as an emergency 
backup or stand-in but also as an adviser, discussant, and evaluator. 
Although the assistant knew the program code intimately and may even 
have written some of it, it was the chief programmer who was ultimately 
responsible for it. 

 Other members of the Brooks ’ s surgical team included an administra-
tor, who handled schedules, money, personnel issues, and hardware 
resources; an editor, who provided the fi nishing touches to the chief 
programmer ’ s documentation; two secretaries, who dealt with corre-
spondence and fi ling; a program clerk, who maintained all the technical 
records for the project; a  “ toolsmith, ”  who built, constructed, and main-
tained the interactive tools used by the rest of the team for programming, 
debugging, and testing; a tester, who served as the chief programmer ’ s 
adversary and assistant, developed test plans to challenge the integrity 
of the program design, and devised test data for day-to-day debugging; 
and fi nally, the  “ language lawyer, ”  who delighted in the mastery of the 
intricacies of a programming language. The language lawyer, unlike the 
chief programmer, was not involved in big-picture issues or system 
design; the lawyer ’ s responsibility was fi nding  “ neat and effi cient 
ways to use the language to do diffi cult, obscure, or tricky things. ”  
Language lawyers were usually called in only for special, short-term 
assignments.  40   

 The advantage to the CPT approach, according to Mills and Brooks, 
was that it dramatically simplifi ed communications between team 
members. Whereas a large, hierarchical organization of X number of 
employees could require as many as (X 2  – X)/2 independent paths of 
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communication, in the CPT model all essential information passed 
through the person of the chief programmer. All team members reported 
to the chief directly and did not communicate with each other directly. 

 By centralizing all decision making in the person of the chief program-
mer, this approach assured the maintenance of the program ’ s structural 
integrity. Brooks compared the conceptual architecture of the typical 
large software project to the haphazard design of many European cathe-
drals; the patchwork structure of these cathedrals revealed an unpleasant 
lack of continuity, refl ecting the different styles and techniques of differ-
ent builders in different generations. Brooks preferred the architectural 
unity of the cathedral at Reims, which derived  “ as much from the integ-
rity of design as from any particular excellences. ”  This integrity was 
achieved only through the  “ self-abnegation of eight generations of build-
ers, ”  each of whom  “ sacrifi ced some of his ideas so that the whole might 
be of pure design. ”  Using wonderfully evocative biblical language, Brooks 
extolled the virtues of a unifi ed conceptual design:  “ As the child delights 
in his mud pie, so the adult enjoys building things, especially things of 
his own design. I believe that this delight must be an image of God ’ s 
delight in making things, a delight shown in the distinctiveness and 
newness of each leaf and each snowfl ake. ”   41   Only the CPT approach 
could guarantee such a degree of uncompromised architectural 
integrity. 

 The CPT approach differed from hierarchical systems methodologies 
in a number of essential characteristics. Whereas the hierarchical model 
allowed for (and in fact encouraged) the use of novice programmers, the 
CPT was built entirely around skilled, experienced professionals. This 
implied a radically different approach to professional development. Each 
member of the team was encouraged to develop within their own par-
ticular disciplinary competency; that is, it wasn ’ t necessary to become a 
surgeon to advance one ’ s career. For example, an aspiring language 
lawyer could continue to focus on their technical specialty without 
feeling pressure to transfer into management. The CPT approach embod-
ied the belief that computer programming was a legitimate, respectable 
profession. 

 The CPT also refl ected changing contemporary notions about the 
nature of programming ability. The primary justifi cation for using small 
teams of experienced programmers rather than large hordes of novices 
was the belief that one good programmer was worth at least ten of 
their average colleagues. In the person of the chief programmer, the 
innate technical abilities of the superprogrammer were merged with the 
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organizational authority of the traditional manager. The chief program-
mer was both a technical genius and expert administrator. Programming 
aptitude could not be abstracted from its embodiment in particular indi-
viduals; skilled programmers were anything but replaceable components 
of an automated software factory. In the elite surgical team model, the 
contributions of talented professionals far outweighed those provided by 
traditional management techniques or development methodologies. 

 Besides endowing computer programmers with considerable institu-
tional power,  The Mythical Man-Month  reinforced the notion that pro-
gramming was an exceptional activity, unlike any other engineering or 
manufacturing discipline. Brooks ’ s suggestion that programming was 
akin to poetry strongly implied that programming was not an activity 
that could be readily systematized. What Brooks proposed was the adop-
tion of useful tools and techniques, not some overarching methodology. 
As he later declared in a famous article titled  “ No Silver Bullet, ”  although 
the management of large programming projects could be improved incre-
mentally, there were no easy solutions to be derived from the lessons of 
traditional manufacturing.  42   

 Like the hierarchical systems model, the CPT was intimately linked 
to specifi c techniques and technologies. Since all major decisions relating 
to both design and implementation had to be made by a single super-
programmer, the CPT approach effectively demanded the adoption of 
top-down development techniques. Top-down programming was one of 
the foundational principles of the structured programming approach to 
software engineering advocated by many academic computer scientists 
in this period. The essence of top-down programming was the concept 
of abstraction: by proceeding step by step from general design goals to 
the specifi c implementation details, a systems architect could individually 
manage the otherwise-unmanageable complexity of a large software 
development project. The use of top-down programming techniques 
enabled the authoritarian chief programmer to maintain the architectural 
integrity that Brooks believed was so central to the design of useful and 
beautiful software programs. The heyday of the structured programming 
movement was coincident with the publication of  The Mythical 
Man-Month , and the attractiveness of the surgical team approach to 
management was reinforced by, and helped to reinforce, the popularity 
of structured programming as a development technology. 

 In addition to borrowing heavily from the established techniques and 
technologies of structured programming, the CPT model also helped to 
defi ne technological innovations of its own. The development support 
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library (DSL) was a system of documents and procedures that provided 
for the  “ isolation and delegation ”  of secretarial, clerical, and machine 
operations.  43   In earlier accounts the DSL is referred to as the program-
ming production library. Basically, the DSL was a set of technologies 
(including coding sheets, project notebooks, and computer control cards) 
that facilitated communications within the development team. It was 
envisioned as a means of further centralizing control in the hands of the 
chief programmer.  “ The DSL permits a chief programmer to exercise a 
wider span of control over the programming, resulting in fewer program-
mers doing the same job. This reduces communications requirements 
and allows still more control in the programming. With structured 
programming, this span of detailed control over code can be greatly 
expanded beyond present practice; the DSL plays a crucial role in this 
expansion. ”   44   

 By providing a core set of public programs and documents that were 
highly visible to all members of the surgical team, the DSL was supposed 
to discourage the  “ traditional ad hoc mystique ”  associated with conven-
tional craft-oriented programming.  45   The chief programmer could read, 
understand, and validate all of the work done by their subordinates. The 
technology of the DSL was clearly intended to reinforce a conventional 
management agenda: the transfer of control over the work practices of 
programmers into the hands of the managerial superprogrammer. In 
language remarkably reminiscent of the  “ head versus hand ”  dialectic 
emphasized by Karl Marx and his disciples, one proponent of the CPT 
approach described the DSL as having been  “ designed to separate the 
clerical and intellectual tasks of programming. ”   46   

 Although the CPT received much attention in the industry literature, 
it does not seem to have been widely or successfully implemented.  47   The 
original concept had been popularized by Baker in a series of articles 
documenting the successful implementation of the approach by Mills. 
Mills had been the chief programmer in a team that developed a com-
puterized information bank application for the  New York Times . He 
claimed to accomplished in twenty-two months what a traditionally, 
hierarchically managed group would have required at least several more 
years of calendar time to develop. Baker ’ s favorable reports on the  New 
York Times  project, which involved eighty-three thousand lines of code 
and eleven man-years of effort, convinced many computer professionals 
of the scalability of the CPT approach. The project was portrayed as 
having high productivity and low error rates, although questions later 
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arose about the accuracy of Baker ’ s assessment; Mills ’ s system eventually 
proved unsatisfactory and was replaced with a less ambitious system.  48   
For the time being, however, the  New York Times  system was considered 
to be proof positive of the effi ciency of the CPT approach. 

 Several objections to the CPT approach were raised in the contempo-
rary industry literature, though. The fi rst is that it was diffi cult to fi nd 
individuals with enough talent and energy to fulfi ll all of the functions 
required of the chief programmer.  49   The few who did exist were expen-
sive, and were not interested in working on small computers and mundane 
applications. A second problem was a perceived overdependence on key 
individuals implied in the CPT approach:  “ What happens if [our super-
programmer] snaps up a more lucrative offer elsewhere? He ’ ll likely take 
our back-up programmer with him, leaving us high-and-dry. ”   50   A number 
of observers suggested that the surgical team model led to excessive 
specialization.  51   The computer scientist C.A.R. Hoare derided the small-
team approach as a retreat  “ to the age of the master craftsman — more 
fashionably known as a chief programmer. ”   52   There were widespread 
doubts about the ability of the small-team approach to scale up to the 
needs of large development efforts. 

 The most revealing criticisms of the CPT system, however, had to do 
with the ways in which the presence of an elite administrator/program-
mer disrupted existing patterns of managerial authority:  “ The CPT per-
petuates the prima donna image of the programmer. Instead of bringing 
the programmer into the organization ’ s fold, it isolates and alienates him 
by encouraging the programmer to strive for a superhero image. ”   53   The 
CPT allowed for little participation by nontechnical administrators. A 
textbook,  Managing Software Development and Maintenance , from 
1981 corrected this perceived overdependence on technical personnel by 
proposing a revised chief programmer team (RCPT) in which  “ the project 
leader is viewed as a leader rather than a  ‘ super-programmer. ”  Whereas 
the chief programmer was clearly a technical specialist, the project leader 
was  “ an expert conceptualizer, designer, and project manager ”  — but not 
necessarily a superprogrammer. Because the project leader possessed 
both project management and technical skills, they were  “ able to direct, 
oversee, and review all technical functions. ”   54   

 The RCPT approach was clearly intended to address a concern faced 
by many traditionally trained department-level managers — namely, that 
top executives had  “ abdicated their responsibility and let the  ‘ computer 
boys ’  take over. ”   55   As was described in chapter 7, it was this fear of 
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the loss of control over valuable occupational territory that most deter-
mined contemporary reactions to proposed managerial solutions to the 
software crisis. 

 Computer Programming as a Human Activity 

 The hierarchical model unapologetically attempted to make program-
mers ’  work as routine and mechanical as possible; the CPT provided a 
real creative outlet for a single superprogrammer only. For moderately 
skilled programmers attempting to establish for themselves a legitimate 
professional identity that would provide them with autonomy and status, 
both models were equally uninviting. What was needed was an alterna-
tive organizational model that could simultaneously support two seem-
ingly contradictory agendas: increased managerial control over the 
 “ irrational ”  programming process, and ongoing support for the indepen-
dent professional authority of programmers. 

 In 1969, the programmer and computing consultant Weinberg pub-
lished  The Psychology of Computer Programming . The book claimed to 
present the fi rst detailed empirical study of computer programming as a 
complex human activity, and indeed, although Weinberg was neither a 
psychologist nor an ethnographer, his observations appear to be remark-
ably accurate and insightful. At the very least his work was well received 
by practitioners, whose personal experiences seem to have resonated 
with the anecdotes provided by Weinberg.  The Psychology of Computer 
Programming  has been widely cited as an accurate description of what 
really went on in actual programming projects. 

 Weinberg ’ s book did more than simply portray existing attitudes and 
practices, though. It also proposed a new method for organizing and 
managing teams of software developers. The problem with existing hier-
archical methods of software production, according to Weinberg, was 
that they encouraged programmers to become  “ detached ”  from the 
social environment — and overly possessive of their software. When pro-
grammers invest so much of themselves in their programs, Weinberg 
suggested, they lose the ability to evaluate their creations objectively. The 
immediate result was bad software — and ultimately a software crisis. 
 “ Programmers, if left to their own devices, will ignore the most glaring 
errors in their output — errors that anyone else can see in an instant. ”  
The solution to the crisis provoked by  “ property-oriented ”  program-
ming, argued Weinberg, was the adoption of the  “ egoless programming 
team, ”  in which every programmer is equal, and where all of the code 



Engineering a Solution  213

is  “ attached ”  to the team rather than to the individual.  56   By opening up 
the programming process to self-refl ection and criticism, the egoless 
(or adaptive) programming model would increase effi ciency, eliminate 
errors, and enhance communication — all without inhibiting the creative 
abilities of programmers. 

 Although egoless programming represented a relatively radical depar-
ture from traditional software development methodologies, it was predi-
cated on fairly conventional notions about the nature of programming 
ability. For Weinberg, there was little doubt that the majority of people 
in programming were detached personality types who preferred to be left 
to themselves. This tendency toward detachment was reinforced  “ both 
by personal choice and because hiring policies for programmers are often 
directed toward fi nding such people. ”   57   This detachment from people 
often led programmers to become excessively attached to their products. 
The  “ abominable practice ”  of attaching their names to their software 
(as in Jules ’  Own Version of the International Algebraic Language, better 
known as the JOVIAL programming language) offered evidence of the 
programmer ’ s inability to disassociate themselves from their creations. 
The JOVIAL programming language was created for the U.S. Air Force 
in the late 1950s by the SDC. As it was to be a variant of the International 
Algebraic Language (eventually renamed ALGOL), it was suggested that 
it be called OVIAL (Our Own Version of the International Algebraic 
Language), but since OVIAL apparently had  “ a connotation relative to 
the birth process that did not seem acceptable to some people, ”  the name 
was soon changed to JOVIAL. It was later decided that the J in JOVIAL 
would stand for Jules Schwartz, one of the programmers involved in the 
project. Hence, Jules ’  Own Version of the International Algebraic 
Language. This proprietary sense of ownership on the part of the creator 
was not necessarily an unusual or even undesirable tendency; after all, 
artists  “ owned ”  paintings, authors  “ owned books, ”  and architects 
 “ owned ”  buildings. In many cases these attributions led to the admira-
tion and emulation of good workers by lesser ones. What was different 
about computer programs, however, was that they were owned exclu-
sively by their creators. Good programs, unlike good literature, were 
never read by anyone other than the author. Thus, according to Weinberg, 
 “ the admiration of individual programmers cannot lead to an emulation 
of their work, but only to an affectation of their mannerisms. ”   58   Junior 
programmers were unable to benefi t from the wisdom and experience of 
their superiors. The only thing available to emulate was their manner-
isms. The result was the perpetuation of bad work habits and personal 
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eccentricities —  “ the same phenomenon we see in  ‘ art colonies, ’  where 
everyone knows how to look like an artist, but few, if any, know how 
to paint like one. ”   59   

 Weinberg believed that the use of small, unstructured programming 
teams and regular code reviews would alleviate the problem of program-
mer attachment. Each of the programmers in the group would be respon-
sible for reading and reviewing all of the application code. Errors that 
were identifi ed during the process were simply  “ facts to be exposed to 
investigation ”  with an eye toward future improvement, rather than per-
sonal attacks on an individual programmer.  60   By restructuring the social 
environment of the workplace and thereby restructuring the value system 
of the programmers, the ideal of egoless programming would be achieved. 
The result would be an academic style, peer-review system that would 
encourage high standards, open communication, and ongoing profes-
sional development. Junior programmers would be exposed to good 
examples of programming practice, and more senior developers could 
exchange subtle tricks and techniques. A piece of completed code would 
not be considered the product of an individual team member but rather 
of the team as a whole. The openness of this process would also encour-
age the development of proper documentation. 

 There were a number of other salient features of the egoless (or adap-
tive) programming team that differed from conventional team-oriented 
approaches. The most unusual and signifi cant was that all major design 
and implementation decisions were to be determined by consensus 
instead of decree. There were no assigned team leaders, at least not in 
the conventional sense. Leadership shifted between team members based 
on the needs of the moment and the strength of the individual team 
members (hence the term adaptive). For example, if a particular phase 
of the project involved a lot of debugging, one of the team members 
especially skilled at debugging might assume the temporary role of team 
leader during that period. Even then, all of the important decisions would 
be made democratically. Work was assigned based on the strengths — and 
preferences — of the individual team members. 

 The democratic approach to software project management, in 
Weinberg ’ s view, offered a number of advantages. It encouraged com-
munication and fl exibility. Schedule and design changes could be more 
readily accommodated, and resources could be allocated effi ciently. 
Second, the lack of a formal hierarchy made the adaptive team signifi -
cantly more robust than more structured alternatives. For instance, the 
adaptive team could readily adjust to the addition or removal of members. 
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The success of the project would no longer hinge on the presence of 
any one particular individual. In an era in which the performance of 
programmers was believed to vary dramatically from programmer to 
programmer, and when turnover in the software industry averaged 
upward of 25 percent annually, this was an appealing benefi t. Last but 
not least, the social dynamics of the democratically managed adaptive 
team appeared to correspond well with the actual experiences and expec-
tations of the average working programmer.  61   Weinberg provided a great 
deal of anecdotal evidence suggesting that programmers worked best in 
environments in which they participated in all aspects of project develop-
ment, from design to implementation to testing. By eliminating the things 
that caused programmers to become dissatisfi ed, turnover could be 
reduced signifi cantly. The adaptive team approach to programming, 
argued Weinberg, was not only cost-effective and effi cient; it kept the 
programmers happy. And of course, happy programmers were produc-
tive programmers. 

 Like the CPT and the hierarchical system of management, egoless 
programming constituted a solution to a specifi c conception of the bur-
geoning software crisis. The advocates of the adaptive team approach 
shared with many of their contemporaries certain basic assumptions 
about the nature of programming as a skill and activity: that program-
ming was an essentially creative undertaking; that individual program-
mers varied enormously in terms of style and productivity; and that 
current programming practices resembled craft more than they did 
science. They also believed that despite these exceptional characteristics, 
software development was an activity that could, to a certain extent, be 
managed and controlled. What was unusual about the adaptive team 
solution was the degree to which it offered computer programmers a 
legitimate career path and an attractive professional identity. 

 In the hierarchical system of management, programmers were gener-
ally regarded as technicians rather than professionals. The few program-
mers who rose through the hierarchy did so by abandoning their technical 
interests in favor of managerial careers. The CPT offered status and 
authority only to a small corps of elite superprogrammers. All but the 
most talented individuals served as much less privileged support person-
nel. As will be seen, many programmers were extremely concerned with 
issues of professional development, both as they related to themselves as 
individuals and to their larger disciplinary community. The journal arti-
cles, job advertisements, and letters to the editor from this period show 
that many programmers were worried about becoming dead-ended in 
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purely technical positions. Hierarchical organizations and CPTs did not 
offer them an attractive model of professionalization. 

 The adaptive team approach, in comparison, offered promising career 
opportunities to a wide range of software workers. The goal of the adap-
tive team was to foster a family atmosphere in which every member ’ s 
contributions were important. Team members were anything but inter-
changeable units. Programmers could cultivate their technical skills and 
advance their careers without feeling pressure to transfer into administra-
tion. As one knowledgeable observer suggested, in the adaptive team 
approach  “ a good programmer does not get further and further away 
from programmers, as occurs in a hierarchical structure when he moves 
up the management ladder. Instead, he stays with programming and 
gravitates toward what he does best. ”   62   

 Judging from the response it received in the industry literature,  The 
Psychology of Computer Programming  appealed to a broad popular 
audience.  63   Weinberg ’ s anecdotes about the real-life work habits of pro-
grammers rang true to many practitioners. His descriptions of the mis-
chievous pranks that programmers played on their managers, for example, 
or the social signifi cance of a strategically located Coca-Cola dispenser, 
captured for many of his readers the essential character of the program-
ming profession. The book has remained in continuous publication since 
1969, and was widely celebrated as one of the few classic texts in the 
programming literature.  64   Weinberg presented a romantic portrait of 
software development that emphasized the quiet professionalism of 
skilled, dedicated programmer-craftspeople. Of the many models for 
software engineering that were proposed in the late 1960s and early 
1970s, the egoless programmer was by far the most attractive to the 
average practitioner. 

 Yet the popularity of egoless programming extended beyond the com-
munity of practitioners. Weinberg ’ s theories about the effi ciency of small 
family work groups and bottom-up, consensus decision making reso-
nated with certain popular contemporary management theories. In 1971, 
Antony Jay ’ s  Corporation Man  provided an ethological analysis of 
 “ tribal behavior ”  in modern corporations that reinforced Weinberg ’ s 
conclusion that six- to ten-member teams were a  “ natural ”  organiza-
tional unit.  65   Douglas McGregor ’ s  The Human Side of Enterprise  dis-
criminated between the Theory X approach to management, which 
assumed that because of their innate distaste for regimented labor, most 
employees must be controlled and threatened before they would work 
hard enough, and the Theory Y belief that the expenditure of physical 
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and mental effort in work is as natural as play or rest, and that the 
average person learns, under proper conditions, not only to accept but 
to seek responsibility.  66   For the supporters of Theory Y management, 
Weinberg ’ s adaptive team represented an exemplary model of the par-
ticipative problem-solving approach.  67   

 The concept of egoless programming was rarely adopted in toto, 
though. In later descriptions of the chief programming team, Baker and 
Mills claimed that their system represented a form of egoless program-
ming, in the sense that the code produced by the chief programmer was 
open for inspection by other members of the surgical team. By this point, 
egoless programming was interpreted by many managers in terms very 
favorable to management: it meant that programmers should not be 
defensive about code reviews, task assignments, and other management-
imposed structures. The adaptive team terminology in this case seems to 
have been adopted for public relations purposes only. The whole point 
of the chief programming team was to consolidate all aspects of design 
and implementation into the hands of a single superprogrammer. It 
would have been impossible to maintain the level of architectural integ-
rity desired by Brooks if the chief programmer were not heavily invested 
in their own individual conceptual structure. 

 Indeed, by the mid-1970s the language of egoless programming 
appears to have been almost entirely transformed and co-opted by con-
ventional managers. These managers picked up on the idea that requiring 
programmers to develop open, nonpropriety code allowed for increased 
administrative oversight. To them, egoless programming meant that  “ all 
programmers were to adhere to rules that would make their products 
understandable to others and make the individual programmer replace-
able. ”   68   Weinberg ’ s original intention that egoless programming would 
enable programmers to develop as autonomous professionals appears to 
have gone entirely by the wayside. One management consultant reminded 
his audience that managers should  “ stress the non-punitive nature of the 
new approaches. Egoless programming is designed to help the program-
mer, not point out his faults. ”   69   The not-so-subtle subtext of this reminder 
is that by this period, egoless programming had acquired a reputation 
for being worker-hostile management jargon. 

 Although  The Psychology of Computer Programming  received a great 
deal of popular attention for its descriptive verisimilitude, it was less 
successful in its prescriptive capacity. Weinberg ’ s recommendations do 
not appear to have been taken seriously by many academic or industry 
leaders. It may be that his adaptive teams did not scale well to large 
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development efforts, and were used in nothing but small local projects. 
They may have proven ineffi cient or diffi cult to implement, although 
there is evidence that the use of informal, unstructured programming 
teams was standard practice in the industry. At least one author rejected 
the adaptive team approach because it failed to provide adequate mecha-
nisms for formal managerial control.  70   It seems likely that this last objec-
tion was what ultimately proved fatal to Weinberg ’ s proposal. The 
adaptive team approach reinforced the notion that programmers were 
independent professionals. It shifted organizational control and author-
ity away from managers. It ceded valuable occupational territory to a 
group whose institutional power base had not yet been fi rmly estab-
lished. Weinberg ’ s adaptive teams were unappealing to everyone but 
programmers, and programmers did not have the leverage to push 
through such an unpopular agenda. 

 From Exhilaration to Disillusionment 

 The 1968 NATO Conference on Software Engineering was, according 
to contemporary accounts, an exhilarating experience for many partici-
pants. The public acknowledgment of a perceived software crisis was a 
cathartic moment for the industry. As one prominent computer scientist 
described it,  “ The general admission of the software failure in this group 
of responsible people is the most refreshing experience that I have had 
in a number of years, because the admission of shortcomings is the 
primary condition for improvement. ”   71   Despite the general recognition 
of impending crisis, the spirit of the conference was  “ positive, even lib-
eratory. ”   72   Attendees rallied behind the organizers ’  call for  “ a switch 
from home-made software to manufactured software, from tinkering to 
engineering. ”   73   Software engineering emerged as the dominant rhetorical 
paradigm for discussing the future of software development. By adopting 
the  “ types of theoretical foundations and practical disciplines that are 
traditional in the established branches of engineering, ”  computer pro-
gramming could be successfully transformed from a black art into an 
industrial discipline. Software workers from a wide variety of disciplines 
and backgrounds adopted the rhetoric of software engineering as a 
shared discourse within which to discuss their mutual professional 
aspirations. 

 In order to capitalize on the enthusiasm generated in the wake of the 
Garmisch meeting, the NATO Science Committee quickly organized a 
second conference to be held the following year in Rome. The Rome 
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conference in 1969 was intended to have an explicitly practical focus: 
the goal was to develop specifi c techniques of software engineering. As 
with the Garmisch meeting, a deliberate and successful attempt was 
made to attract a wide range of participants. The resulting conference, 
however, bore little resemblance to its predecessor. Whereas the Garmisch 
participants had coalesced around a shared sense of urgency, the Rome 
conference was characterized by confl ict. According to the same observer 
who had referred glowingly to the Garmisch conference as a  “ most 
refreshing experience, ”  the discussions at the Rome meeting were 
 “ sterile, ”  the various groups of attendees  “ never clicked, ”  and  “ most 
participants ”  left feeling  “ an enormous sense of disillusionment. ”   74   A 
prolonged debate about the establishment of an international software 
engineering institute proved so acrimonious and divisive that it was 
omitted from the conference proceedings:  “ All I remember is that it 
ended up being a lot of time wasted, and no argument ever turned up 
to make something happen — which is probably just as well. ”   75   

 Why was the Rome conference considered to be such a disappoint-
ment relative to Garmisch? Many of the same participants had attended 
both meetings; there had been no signifi cant changes in terms of demo-
graphic makeup or organizational structure. Neither were there any 
major new issues or technologies introduced or discussed. Many of the 
Rome presentations covered material that had previously been addressed, 
albeit at a less detailed and technical level, at Garmisch. And yet while 
the Garmisch conference is widely considered to have marked a pivotal 
moment in the history of software development —  “ a major cultural shift 
in the perception of programming ”  — the Rome one seems to have been 
deliberately forgotten.  76   

 One obvious difference between the two events is that the earlier 
conference had encouraged participants to focus their attention on a 
commonly perceived but vaguely defi ned emergency, while the latter 
forced them to deal with specifi c controversial issues. Software engineer-
ing had emerged as a compelling solution to the software crisis in part 
because it was fl exible enough to appeal to a wide variety of computing 
practitioners. The ambiguity of concepts such as professionalism, engi-
neering discipline, and effi ciency allowed competing interests to partici-
pate in a shared discourse that nevertheless enabled them to pursue vastly 
different personal and professional agendas. Industry managers adopted 
a defi nition of professionalism that provided for educational and certifi -
cation standards, a tightly disciplined workforce, and increased corpo-
rate loyalty. Computer manufacturers looked to engineering discipline 
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as a means of countering charges of incompetence and cost ineffi ciency. 
Academic computer scientists preferred a highly formalized approach to 
software engineering that was both intellectually respectable and theo-
retically rigorous. Working programmers tended to concentrate on the 
more personal aspects of professional accomplishment, including auton-
omy, status, and career longevity. The software engineering model 
seemed to offer something for everyone: standards, quality, academic 
respectability, status, and autonomy. As Michael Mahoney has sug-
gested, software engineering  “ was not coined to characterize an ongoing 
activity but rather to express a desire for one. By 1967, when the com-
puter industry was less than twenty years old, people felt the need for 
software engineering, even if they were not sure what it was. ”   77   

 Yet the rhetorical fl exibility that had served the consensus-seeking 
Garmisch participants proved unwieldy when it came to establishing 
specifi c standards and practices. The Rome conference illuminated in 
sharp relief the vast differences that existed between competing visions 
for the software engineering discipline. Unlike the confl ict between 
workers and managers described in the previous chapter, these divisions 
were largely internal to the programming community. The primary split 
was between academic computer scientists and commercial software 
developers. The industry programmers resented being invited to Rome 
 “ like a lot of monkeys to be looked at by theoreticians ” ; the theoreticians 
complained of feeling isolated, of  “ not being allowed to say anything. ”   78   
As the editors of the conference proceedings have pointed out, the  “ lack 
of communication between different sections of the participants ”  became 
the  “ dominant feature ”  of the meeting.  79    “ The seriousness of this com-
munications gap, ”  and the realization that it  “ was but a refl ection of the 
situation in the real world, ”  caused the gap itself to become a major 
topic of discussion.  80   It was to remain an issue of central concern to the 
programming community for the next several decades. 

 Indeed, in the years after 1968 the rhetoric of the software crisis 
became even more heated. In 1987 the editors of  Computerworld  com-
plained that  “ the average software project is often one year behind plan 
and 100% over budget. ”   81   In 1989 the House Committee on Science, 
Space, and Technology released a report highly critical of the  “ shoot-
from-the-hip ”  practices of the software industry. Among other things, 
the report called for a professional certifi cation program for program-
mers. The thirty-three-page report,  “ Bugs in the Program: Problems in 
Federal Government Computer Software Development and Regulation, ”  
was written by staff members James H. Paul and Gregory C. Simon of 
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the Subcommittee on Investigations and Oversight of the House 
Committee on Science, Space, and Technology.  82   Later that same year 
the Pentagon launched a broad campaign to  “ lick its software problems ”  
that included funds for a Software Engineering Institute and the wide-
spread adoption of the ADA programming language. ADA was touted 
by Department of Defense offi cials as  “ a means of replacing the idiosyn-
cratic  ‘ artistic ’  ethos that has long governed software writing with a more 
effi cient, cost-effective engineering mind-set. ”   83   The list of critical reports, 
denunciations of current practices, and proposed silver-bullet solutions 
goes on and on. In his 1996 summary of the legacy the fi rst NATO 
Conference, W. Wayt Gibbs suggested that  “ a quarter of a century later 
software engineering remains a term of aspiration, ”  rather than a real 
accomplishment:  “ The vast majority of computer code is still hand-
crafted from raw programming languages by artisans using techniques 
they neither measure nor are able to repeat consistently. ”   84   



 

 9 

 Perhaps you ’ ve noticed that it ’ s getting more and more diffi cult to locate and 
then hire the best people. This isn ’ t an illusion; it ’ s real, it ’ s signifi cant, and it ’ s 
only going to get worse. It is, in fact, the heart of the real software crisis: There 
is more software to be developed than there are capable developers to do it. 
Demand will continue to outstrip supply for the foreseeable future. Hence, more 
and more software will be behind schedule, over budget, underpowered, and of 
poor quality — and there ’ s nothing we can do about it. 

  — Bruce Webster,  “ The Real Software Crisis, ”  1988 

 Software ’ s Chronic Crisis 

 In the closing minutes of the twentieth century, computer programmers 
around the world sat huddled around their computer screens, awaiting 
with bated breath the fl ip of a single digital bit. At stake was continued 
functioning of the millions of computerized systems that they and their 
fellow programmers had developed over the course of the previous half-
century, many of them considered vitally important to the continued 
functioning of crucial infrastructure, both military and civilian. At mid-
night on December 31, 1999, it was widely believed, at least some of 
these systems would crash as a result of the inability of their internal 
clocks to distinguish properly between the years 2000 and 1900. The 
possible consequences of this seemingly trivial programming error 
included banks failing, airplanes falling out of the sky, possibly even an 
unintended nuclear war.  1    “ The Y2K problem is the electronic equivalent 
of the El Ni ñ o, ”  the United States Deputy Secretary of Defense John 
Hamre had warned a year earlier:  “ This is going to have implications in 
the world . . . that we can ’ t even comprehend. ”   2   Over the course of the 
months leading up to the year 2000, computer programmers in the 
United States alone had invested more than $300 billion in last-minute 
attempts to remediate the possible consequences of the so-called Y2K 
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Bug; even still, the fi nal minutes prior to midnight were tense with 
uncertainty. 

 Like most crises, the salience of the Y2K problem diminished almost 
immediately upon its failure to materialize. To the average citizen, the 
fuss that the computer people made about Y2K was just one of several 
apocalyptic scenarios that swirled around the turn of the millennium, all 
of which seem, in retrospect, self-evidently unfounded. It was diffi cult to 
remember, even just a few years later, how much time, energy, and effort 
were expended in addressing this latest iteration of the software crisis. 
For experienced observers of the computer industry, however, the short-
comings of contemporary software development practices revealed by 
Y2K were both very real and depressingly familiar. Once the proximate 
technical cause of the problem had been clearly identifi ed (the short-
sighted decision, intentional or otherwise, to code calendar year data 
with two digits instead of four; i.e.,  “ 72 ”  rather than  “ 1972 ” ), the dis-
cussion quickly turned to the deeper, more endemic problems associated 
with software development: haphazard techniques, a lack of profession-
alism, and insuffi cient managerial controls. 

 In many respects, the Y2K problem was just another in long series of 
software crises which, as we have seen, have plagued the computer 
industry since its very inception. But Y2K in particular highlighted some 
of the lesser-known facets of the seemingly perpetual software crisis, the 
most interesting and surprising of which was the problem of software 
maintenance. 

 The problem of maintenance is a ubiquitous but neglected element of 
the history of technology. All complex technological systems eventually 
break down and require repair (some more than others); as David 
Edgerton has suggested, maintenance is probably the central activity of 
most technological societies.  3   But maintenance is also low-status, diffi -
cult, and risky. Engineers and inventors do not like, and generally do 
not perform maintenance, and therefore historians of technology have 
largely ignored it. 

 The problem of maintenance is particularly challenging for both prac-
titioners and historians of computing. In theory, software should never 
need maintenance because software does not break down or wear out, 
at least in the conventional sense. Once a software-based system is 
working, it will work forever (or at least until the underlying hardware 
breaks down — but that is generally considered someone else ’ s problem). 
Occasionally a stray cosmic ray might fl ip an unexpected bit in a soft-
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ware system and cause an error, but generally speaking software can 
never be broken. 

 Except that software does break — all the time, at great expense and 
inconvenience to its users. In fact, from the early 1960s on, software 
maintenance has represented between 50% and 70% of all total expen-
ditures on software.  4   There is a strong argument to be made that the 
software crisis of the late 1960s was essentially a maintenance problem: 
what became increasingly expensive about software in this period was 
not so much development as ongoing maintenance.  5   In any case, from 
the 1960s to the present, it has continued to absorb between one half 
and two thirds of all software-related resources.  6   

 But if software is a technology that can never be broken, what does 
it mean for software to stop working? The most obvious answer is that 
software can contain errors in implementation. Maurice Wilkes, one of 
the fi rst people to program a modern, stored-program computer, famously 
recalled the moment in June 1949 when he suddenly realized that  “ a 
good part of the remainder of my life was going to be spent in fi nding 
errors in my own programs. ”   7   Wilkes was describing the process of 
debugging (the elimination of fl aws in the original design or implementa-
tion, rather than the repair of accumulated errors), but the larger impli-
cation for the computing community is obvious: the delivery of a working 
application was only the beginning of the life-cycle of a software applica-
tion. A programmer could (and many did) spend the majority of their 
career chasing down the bugs that gradually revealed themselves in the 
operation of a complex software-based system. In this respect, runs the 
well-worn joke, programming a computer is a little bit like having sex: 
 “ One mistake and you have to support it for the rest of your life. ”  

 But thinking about maintenance solely in terms of fi xing bugs is mis-
leading. Fixing such bugs in implementation accounts for only a minority 
of software maintenance. One exhaustive study from the early 1980s 
estimated such emergency fi xes occupied at most one fi fth of all software 
maintenance workers.  8   Even when the ongoing process of debugging 
software is excluded, maintenance still accounts for more than half of 
the overall cost of software development. 

 The majority of software maintenance involves what are euphemisti-
cally referred to in the literature as  “ enhancements. ”  These enhance-
ments sometimes involve strictly technical measures — such as implementing 
performance optimizations — but more commonly are what Richard 
Canning, one of the computer industry ’ s most infl uential industry 
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analysts, described as  “ responses to changes in the business environ-
ment. ”   9   This wonderfully fl exible phrase includes the introduction of 
new functionality, as dictated by market, organizational, or legislative 
develops and changes in the larger technological or organizational system 
in which the software is inextricably bound. Software maintenance also 
incorporates such apparently nontechnical tasks as  “ understanding and 
documenting existing systems; extending existing functions; adding new 
functions; fi nding and correcting bugs; answering questions for users and 
operations staff; training new systems staff; rewriting, restructuring, 
converting, and purging software; managing the software of an opera-
tional system; and many other activities that go into running a successful 
software system. ”   10   By the early 1980s, the industry and technical litera-
ture had settled on a shared taxonomy for talking about software main-
tenance: There was corrective maintenance (bug fi xes), perfective 
maintenance (performance improvements), and adaptive maintenance 
(adaptations to the larger environment). Adaptive maintenance so 
dominated real-world maintenance that many observers pushed for an 
entirely new nomenclature; software maintenance was a misnomer, they 
argued: the process of adapting software to change would better be 
described as  “ software support, ”   “ software evolution, ”  or  “ continuation 
engineering. ”   11   

 The concept of adaptive maintenance captures neatly what has been 
referred to throughout this history as the  “ heterogeneous ”  nature of 
software. Despite their seemingly intangible nature, software applica-
tions are always inextricably linked to a network of social and techno-
logical systems. This means that although the material costs associated 
with building software are low (in comparison with traditional, physical 
systems), the degree to which software is embedded in larger, heteroge-
neous systems makes starting from scratch almost impossible. Consider 
Frederick Brooks ’ s widely cited claim that  “ the programmer, like the 
poet, works only slightly removed from pure-thought stuff. He builds 
his castles in the air, from air, creating by exertion of the imagination. ”   12   
To a certain degree, this is true — at least when the programmer is 
working on constructing a new system. But when charged with maintain-
ing a  “ legacy ”  system, the programmer is working not with a blank slate 
but a palimpsest. The ease with which computer code can be written, 
modifi ed, and deleted belies the durability of the underlying artifact. 
Because software is a tangible record, not only of the intentions of the 
original designer but of the social, technological, and organization 
context in which it was developed, it cannot be easily modifi ed.  “ We 
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[programmers] never have a clean slate, ”  argued Barjne Stroudstroup, 
the creator of the widely used C++ programming language,  “ Whatever 
new we do must make it possible for people to make a transition from 
old tools and ideas to new. ”   13   In this sense, software is less like a poem 
and more like a contract, a constitution, or a covenant. Software is 
history, organization, and social relationships made tangible. 

 One of the remarkable implications of all of this surprising durability 
of software is that the software industry, which many consider to be one 
of the fastest-moving and most innovative industries in the world, is 
perhaps the industry most constrained by its own history. As one observer 
recently noted, today there are still more than 240 million lines of com-
puter code written in the programming language COBOL, which was 
fi rst introduced in 1959 — and which was derided, even at its origins, as 
being backward looking and technically inferior. And yet 90% of the 
world ’ s fi nancial transactions are processed by applications written in 
COBOL, as is 75% of all business data processing. Five out of eight large 
corporations rely on COBOL code, many of them substantially. 70% of 
Merrill Lynch applications are coded in COBOL. The total value of 
active COBOL applications — many of them developed prior to the 
1980s — is as high as $2 trillion.  14   All of this COBOL code needs to 
actively maintained, modifi ed, and expanded. The vast majority of the 
code that had to be remediated prior to Y2K was written in COBOL. 

 That fact that so much of the $300 billion that was spent on Y2K 
involved the maintenance of existing code highlighted both the continued 
signifi cance of, and dissatisfaction with, the work of computer program-
mers. Like all forms of maintenance, software maintenance is diffi cult, 
unpopular, and largely unrewarding. The maintenance requires pro-
grammers to work on live systems, where mistakes and failures have real 
and immediate consequences. Because maintenance does not generally 
involve design, it is considered boring and low-status. And because of 
the unique nature of software — its intangibility — software systems are 
often coded before they are completely specifi ed. Many programmers 
fi nd it easier to  “ just start coding ”  than to develop design documents. 
Most programs are poorly documented (if at all), and so most mainte-
nance works involves intensive on-the-job learning. If ever a type of 
programming requires real skill, experience, and intelligence, it is soft-
ware maintenance. 

 The trouble and expense associated with rewriting so much of the 
software that had been developed over the past several decades also 
raised uncomfortable questions about why the software had not been 
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written properly in the fi rst place. For some observers, at least, the Y2K 
fi asco was yet another indication that computer programmers were lazy 
and unprofessional. In the wake of Y2K, renewed criticisms were raised 
against the  “ artistic ethos ”  of many programmers, their continued neglect 
of the rigorous practices of software engineering, and their general failure 
to serve as solid corporate citizens.  15   Once again, programmers were 
castigated as outsiders, as  “ cowboys ”  and  “ hackers ” ; once again, a 
looming shortage of  “ good ”  and  “ experienced ”  programmers was 
predicted.  

 By the turn of the twenty-fi rst century, of course, such indictments of 
the computer specialists had become almost conventional. By this point 
the rhetoric of crisis had become so commonplace in the computer indus-
try literature that for many young programmers the software crisis was 
 “ less a turning point than a way of life. ”   16   

 This comes back to some of the central questions of this book: How 
can we explain the continued existence of a seemingly perpetual crisis in 
what is generally considered to be one of the most successful and profi t-
able industries of all time? How can we understand the role of computer 
specialists — in many respects the paradigmatic  “ knowledge workers ”  of 
post-industrial society — within this troubled framework of crisis, con-
fl ict, and contested identity? If, as Shoshona Zuboff has suggested, com-
puter-based technologies are not simply neutral artifacts, but rather 
 “ embody essential characteristics that are bound to alter the nature of 
work within factories and offi ces, and among workers, professionals, 
and managers, ”  then what are the  “ essential characteristics ”  of software 
and software development that shape our understanding of work, iden-
tity, and power in the information technology industry (and the many 
industries that rely on information technology)?  17   How can we under-
stand the social and occupational history of the computer programmer 
in terms of a larger debate about the role of information technology in 
organizational transformation? How can we understand the social and 
occupational history of the computer programmer in terms of a larger 
debate about the role of information technology in organizational 
transformation? 

 Drawing Boundaries/Construction Disciplines 

 In his study of boundary work in Victorian science, sociologist Thomas 
Gieryn suggests that the process of disciplinary demarcation can be best 
understood through the study of rhetorical practice. Gieryn used the term 
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boundary work to describe the ideological style used by nineteenth-
century scientists in their attempts to create a public image favorable to 
science by contrasting it favorably to nonscientifi c intellectual or techni-
cal activities. Depending on what they thought would be most convincing 
to the audience that they were addressing, these scientists would repre-
sent their activities alternatively as being empirical or theoretical, pure 
or applied. In other word, scientists used rhetoric that was intrinsically 
fl exible, that allowed them to use different, and sometimes even contra-
dictory, defi nitions of what science was in an attempt to justify their 
claims to authority or resources. 

 This process of boundary work serves a number of practical purposes 
for practitioners: the expansion of intellectual authority and career 
opportunities; the denial of resources to deviants and nonprofessionals; 
and the protection of autonomy from external infl uences. Boundary 
work, according to Gieryn, functions as a  “ sociological parallel to the 
familiar literary device of a  ‘ foil. ’  Just as readers come to know Holmes 
better through contrasts to his foil Watson, so does the public better 
learn about science through contrasts to non-science. ”   18   

 The concept of boundary work is an indispensable tool for the histo-
rian of computing. Computer science as an academic discipline and 
computer programming as an occupation have struggled with various 
degrees of success to establish institutional boundaries. Programmers 
have struggled to distinguish themselves from mere technical craftspeo-
ple, on the one hand, and scientists and engineers, on the other. In doing 
so, they alternatively refer to the practice of programming as either an 
art or a science, depending on whom is being addressed and for what 
purpose. In the language of sociology, the  “ vocabularies ”  of the literary 
arts and scientifi c engineering are the  “ cultural repertoires ”  that pro-
grammers use in the construction of  “ ideological self-descriptions. ”   19   

 The process of doing boundary work allowed programmers to mobi-
lize the internal inconsistencies of their discipline as ideological resources 
with which to distinguish themselves from both craftspeople and scien-
tists. When it helped them accomplish their particular individual or 
professional agenda, they talked about programming in artistic or arti-
sanal terms; at other times they portrayed it as a scientifi c or engineering 
discipline. Although not every member of the computing community 
valued equally the craft tradition and artistic sensibilities of the  “ black 
art ”  of programming, enough did to make personal expressions of cre-
ativity an important aspect of the programming tradition. This concern 
for aesthetics functioned as a shared community value, unifying the 
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otherwise-disparate traditions of vocational programming and academic 
computer science. As the Soviet computer scientist Andrei Ershov sug-
gested in a 1972 address to the Joint Computer Conference of the ACM, 
 “ an understanding, a feeling for the aesthetic of programming, is needed, 
and not only as a driving force for the programmer: it is necessary for 
those who manage programmers, and especially for those who educate 
and train them. ”  This artistic sensibility was not simply essential for 
cultivating creativity, Ershov argued, but also allowed computer experts 
to avoid being converted  “ what is simply a highly paid subgroup of the 
working class. ”   “ If such a tendency is to be resisted, ”  Ershov suggested, 
 “ a programmer must fi nd some system of inner values in his specialty, 
values which can help him both to assimilate industrial methods and, 
when necessary, to transcend them. ”   20   

 At other points, of course, programmers were perfectly willing to lay 
claim to the epistemological status of a fundamental science. The point 
is that art and science were both rhetorical resources to be used in pursuit 
of professional development and institution-building strategies. Like 
Gieryn ’ s Victorian scientists, programmers are able to endow their dis-
cipline with  “ just those characteristics needed to achieve professional and 
institutional goals, and to change those attributed characteristics as cir-
cumstances warrant. ”   21   Many of the apparent confl icts within program-
ming should be reevaluated within the context of discipline formation 
and boundary work. 

 Despite the many differences in professional goals and theoretical 
orientation that existed between the vocational programmers and the 
academic computer scientists, the strength of their shared aesthetic values 
and craft traditions provided a basis for community solidarity. Even at 
the height of the software crisis, the average computer scientist had more 
in common with the vocational programmer than they did with the mili-
tary and industrial managers. The software engineering movement failed 
to provide adequate incentives to either of these groups, and therefore 
failed to capture the full support of the majority of members of the pro-
gramming community. 

 The goal of boundary work is the establishment of professional iden-
tity, and the sociology of a profession ’ s literature provides another useful 
resource for interpreting the history of programming. During the 1950s 
and 1960s, many white-collar occupations attempted to professionalize, 
and computer programmers were no exception.  22   They established 
professional societies, codes of ethics, and certifi cation and curriculum 
standards.  23   Belonging to a profession provided an individual with a 



Conclusions: Visible Technicians  231

 “ monopoly of competence, ”  the control over a valuable skill that was 
readily transferable from organization to organization.  24   Professionalism 
provided a means of excluding undesirables and competitors; it assured 
basic standards of quality and reliability; it provided a certain degree of 
protection from the fl uctuations of the labor market; and it was seen by 
many workers as a means of advancement into the middle class.  25   
Programmers in particular saw professionalism as a means of distin-
guishing themselves from  “ coders ”  or other  “ mere technicians. ”  
Corporate managers generally embraced the concept of professionalism. 
It appeared to provide a familiar solution to the increasingly complex 
problems of programmer management:  “ The concept of professional-
ism, ”  argued one personnel research journal from the early 1970s, 
 “ affords a business-like answer to the existing and future computer skills 
market. ”   26   The rhetoric of professionalism was ideologically neutral, 
and appealed to a wide variety of individuals and interest groups. 
Professionalization was one of several widely adopted strategies for 
dealing with the software crisis. 

 But did programmers ever truly professionalize? The historical evi-
dence is ambiguous.  27   On one hand, as the historian William Aspray has 
suggested, it is remarkable how rapidly computing acquired the trap-
pings of a profession: research laboratories and institutes, professional 
conferences, professional societies, and technical journals.  28   On the other 
hand, as we have seen, the existence of professional institutions did not 
necessarily translate readily into widely recognized professional status. 
Indeed, one of the most traditional interpretations of computer program-
mer has been as a failed profession.  

 The most prominent advocates of the  “ failed profession ”  interpreta-
tion are labor historians Philip Kraft and Joan Greenbaum. Building on 
the work of Harry Braverman and David Noble, Kraft and Greenbaum 
situate the history of programming in one of the grand conceptual struc-
tures of labor history: the ongoing struggle between labor and the forces 
of capital. In  Labor and Monopoly Capital: The Degradation of Work 
in the Twentieth Century , Braverman argued that the basic social func-
tion of engineers and managers was to oversee the fragmentation, routi-
nization, and mechanization of labor. Cloaked in the language of progress 
and effi ciency, the process of routinization was characterized primarily 
as a means of disciplining and controlling a recalcitrant workforce. The 
ultimate result was the deskilling and degradation of the worker. In his 
1977 book  Programmers and Managers: The Routinization of Computer 
Programming in the United States , Kraft described a similar process at 
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work in the computer industry.  “ Programmers, systems analysts, and 
other software workers are experiencing efforts to break down, simplify, 
routinize, and standardize their own work so that it, too, can be done 
by machines rather than people. ”  The use of high-level programming 
technologies and structured development methodologies represented 
 “ elaborate efforts ”  to  “ develop ways of gradually eliminating program-
mers, or at least reduce their average skill levels, required training, [and] 
experience. ”  The once-proud computer programmer, he contended, has 
been relegated largely to subsidiary and subordinate roles in the produc-
tion process.  “ While a few of them sit at the side of managers, counseling 
and providing expert ’ s advice, most simply carry out what someone else 
has assigned them. ”   29   

 Kraft suggested that managers have generally been successful in impos-
ing structures on programmers that have eliminated their creativity and 
autonomy. His analysis was remarkably comprehensive, covering such 
issues as training and education, structured programming techniques 
( “ the software manager ’ s answer to the conveyor belt ” ), the social orga-
nization of the workplace (aimed at reinforcing the fragmentation 
between  “ head ”  planning and  “ hand ”  labor), and careers, pay, and 
professionalism (encouraged by managers as a means of discouraging 
unions). Greenbaum followed Kraft ’ s conclusions and methodology 
closely in her book  In the Name of Effi ciency: Management Theory and 
Shopfl oor Practice in Data-Processing Work  in 1979. More recently, she 
has defended their application of the Braverman deskilling hypothesis: 
 “ If we strip away the spin words used today like  ‘ knowledge ’  worker, 
 ‘ fl exible ’  work, and  ‘ high tech ’  work, and if we insert the word  ‘ informa-
tion system ’  for  ‘ machinery, ’  we are still talking about management 
attempts to control and coordinate labor processes. ”   30   

 There is validity to both interpretations of the changing attitude of 
managers toward programmers that occurred in the late 1960s. Certainly 
there were numerous technical innovations in both hardware and soft-
ware that prompted managerial responses. It is true that many of the 
larger software development projects in this period did run over budget 
and fall behind schedule. The cost of software development relative to 
hardware purchases did continue to climb, and the labor cost of pro-
gramming did become a serious burden to many manufacturers and 
users. It is also true that some managers were interested, as Kraft and 
Greenbaum maintain, in creating software factories where deskilled pro-
grammers cranked out mass-produced products that required little 
thought or creativity.  31   The SDC referred to its in-house programming 
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methodology as the software factory. One guidebook from 1969 for 
managers captured the essence of this adversarial approach to program-
mer management by describing the successful computer manager as the 
 “ one whose grasp of the job is refl ected in simple work units that are in 
the hand[s] of simple programmers; not one who, with control lost, is 
held in contempt by clever programmers dangerously maintaining control 
on his behalf. ”   32    

 An uncritical reading of this and other similar management perspec-
tives on the process of software development, with their confi dent claims 
about the value and effi cacy of various performance metrics, develop-
ment methodologies, and programming languages, might suggest that 
Kraft and Greenbaum are correct in their assessments. In fact, many of 
these methodologies do indeed represent  “ elaborate efforts ”  that  “ are 
being made to develop ways of gradually eliminating programmers, or 
at least reduce their average skill levels, required training, experience, 
and so on. ”   33   Their authors would be the fi rst to admit it. A more critical 
reading of this literature, however, indicates that the claims of many 
management theorists represent imagined ideals more than current 
reality. Writing in 1971, the occupational sociologist Enid Mumford 
actually lauded data processing as an  “ area where the philosophy of 
job reducers and job simplifi ers — the followers of Taylor — has not been 
accepted. ”   34    

 The fact that the software crisis has survived a half century of sup-
posed silver bullet solutions suggests that Kraft may have overlooked an 
essential component of this history. What is missing from his analysis is 
the perspective on the software labor process provided by the many 
companies that recognized that computer programming was, at least to 
a certain extent, a creative and intellectually demanding occupation, and 
that in their management of software personnel stressed  “ the importance 
of a judicious balance between control and individual freedom. ”   35   Kraft 
implied that most corporations adopted a hierarchical system of manage-
ment aimed at eliminating worker autonomy. He ignored the many 
alternative methodologies that were proposed and adopted in this period. 
Like his mentors Braverman and Noble, he overemphasized the willing-
ness and ability of the managerial  “ class, ”  which he treats as a mono-
lithic and homogeneous category, rather than as the diverse group 
of individuals operating in different social, political, and technical envi-
ronments, to impose unilaterally their routinization agenda on the pro-
gramming labor force. Many programmers were skilled workers who 
vigorously pursued their own professional advancement; it is clear that 
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they were active participants in the struggle to develop the discipline of 
software engineering.  36   

 A more nuanced reading of the contemporary industry literature sug-
gests that the key to understanding the managerial response to the soft-
ware crisis has less to do with economic imperatives or dialectical 
materialism than with what the sociologist Andrew Abbott has described 
as the  “ jurisdictional struggles ”  that occur among groups of profession-
als struggling for control over a particular occupational territory. In  The 
Systems of Professions: An Essay on the Division of Expert Labor , 
Abbott provides an  “ ecological ”  model for understanding professional 
change and development. His model can be summarized briefl y as 
follows: 1) professions grow when occupational niches become available 
to them, and they change when their particular territory becomes threat-
ened; 2) the critical events in professional development are struggles over 
jurisdictions, and key environmental changes involve the creation or 
abolition of jurisdictions; and 3) professional struggle occurs at three 
levels: the workplace, culture and public opinion, and legal and admin-
istrative rules. These levels are loosely coupled. Most shifts in jurisdiction 
start in the workplace, move to public opinion, and may end up in 
the legal sphere. Hence, the most consequential struggles are over com-
petence and theory — the core jurisdiction. Increasing abstraction allows 
for professional expansion, but overabstraction can dilute the core 
jurisdiction.  37   

 My argument is that just one of these jurisdictional struggles occurred 
on commercial computing in the late 1960s. The continued persistence 
of a software crisis mentality among industrial and government manag-
ers as well as the seemingly unrelenting quest of these managers to 
develop a software development methodology that would fi nally elimi-
nate corporate dependence on the craft knowledge of individual pro-
grammers can best be understood in light of a struggle over workplace 
authority that took shape in the early decades of computing. In the 1950s 
and 1960s, the electronic digital computer was introduced into the well-
established technical and social systems of the modern business organiza-
tion. As this technology became an increasingly important tool for 
corporate control and communication, existing networks of power and 
authority were uncomfortably disrupted. The confl icting needs and 
agendas of users, manufacturers, managers, and programmers all became 
wrapped up in a highly public struggle for control over the occupational 
territory opened up by the technology of computing. 
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 Visible Technicians 

 Neither version of the professionalization narrative, whether they culmi-
nate in failure or success for programmers, are entirely satisfactory when 
applied to computer programmers. Despite their best efforts to establish 
the institutional structures of a profession, computer programmers were 
never able to achieve widespread professional recognition. They were 
unable, for example, to develop two of the most defi ning characteristics 
of a profession: control over entry into the profession, and the adoption 
of a shared body of abstract occupational knowledge — a  “ hard core of 
mutual understanding ”  — common across the entire occupational com-
munity. They failed to suffi ciently convince employers of the value of 
professionalism, and were divided among themselves over issues involv-
ing academic standards and certifi cation requirements. Complaints 
about the lack of professional standards among computer programmers 
continue to play a central role in discussions about the nature and causes 
of the software crisis. Despite the widespread adoption of the rhetoric 
of software engineering, most computer programmers are not engineers 
and would not identify themselves as such. Although the question of 
professionalism continues to be a live issue in the programming com-
munity, in general computer programmers are not considered to be 
professionals.  38   

 So if they are not professionals, managers, or clerical support staff, 
what exactly are computer programmers? What does their unique history 
tell us about larger patterns in work practices and the organization of 
labor in the late twentieth century? 

 Perhaps the most useful way to think about the computer programmer 
is as a technician. As the organizational theorist Stephen Barley has 
pointed out, technicians are a relatively recent addition to the pantheon 
of occupations.  39   Although technicians do not fi t easily into the interpre-
tative framework of either labor history or the sociology of professions, 
they represent the fastest-growing sector of the U.S. labor force. They 
include such occupations as radiological technicians, science technicians, 
engineering technicians, and medical technicians. Their work transgresses 
traditional occupational boundaries; according to Barley, technicians 
 “ often wear white collars, carry briefcases, and conduct sophisticated 
scientifi c and mathematical analyses. Yet they use tools, work with their 
hands, make objects, repair equipment, and, from time to time, get 
dirty. ”   40   They are usually — albeit at times grudgingly — granted a great 
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deal of autonomy by their employers.  41   Like computer programmers, 
technicians occupy an ambiguous occupational space that is diffi cult to 
categorize. 

 Also like computer programmers, technicians serve as mediators 
between the technological and social architectures of the organization. 
Technicians are frequently responsible for building, repairing, and moni-
toring the complex systems that keep a company running. Because they 
play a support role that is tangential to the core business of the organiza-
tion and generally possess skills radically different from those of their 
colleagues, they are seen as foreigners to the work site.  42   Traditional 
employees generally resent their dependence on technicians and consider 
them insuffi ciently subservient.  43  . Like the computer boys of the late 
1960s, technicians regularly wield power disproportionate to their offi -
cial position in the occupational hierarchy. 

 There are a number of other similarities between Barley ’ s description 
of technicians and the history of the computer programmer. Although 
they are generally well educated and rely heavily on scientifi c or engineer-
ing training, technicians also value intuition and craft knowledge. They 
tend to learn on the job, rather than from formal academic or vocational 
training programs. They make extensive use of social networks and com-
munity-based systems of information exchange. Their expertise is typi-
cally local and idiosyncratic, and diffi cult to communicate or defi ne as a 
set of abstract principles.  44   

 It seems clear from these depictions that computer programmers can 
be considered as a type of technician. In fact, this seems to be the most 
useful way to make connections between software workers and other 
forms of technical labor. It captures the tension inherent in the practices 
of software development: the curious coexistence of high technology and 
artisanal sensibilities; the inability of programmers to conform to con-
ventional professional, scientifi c, or engineering categories; the persistent 
attempts by corporate managers to restructure software development 
along the lines of traditional manufacturing; and the remarkable persis-
tence of the forty-year-old software crisis. 

 Where Did All the Women Go? 

 In 1969 the Data Processing Management Association presented Rear 
Admiral Grace Hopper with its very fi rst  “ man of the year ”  award. That 
a professional society in a technical fi eld would, in this period, 
even consider awarding its very fi rst major award to a woman seems 
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astounding to modern sensibilities. In the decades since the  “ ENIAC 
girls ”  became the world ’ s fi rst computer programmers, the computer 
professions have become stereotypically masculine, and female enroll-
ments in computer science programs have been declining since the mid-
1980s. Participation rates for women in the computing fi elds are a 
perennial problem for the industry, and this has been the subject of much 
study and debate for the past several decades. 

 It was not always thus. As we have seen, women played an early and 
important role in the history of computing. Some of them became quite 
infl uential: in addition to Grace Hopper, Betty Snyder Holberton, Jean 
Sammet, and Beatrice Helen Worsley, among others, rose to positions 
of considerable prominence in the early computing industry.  45   In fact, as 
I have pointed out elsewhere, compared to most technical professions, 
computer programming remained unusually open to females throughout 
the 1950s and 1960s. However, during this same period the computer 
programming community was also actively pursuing a strategy of profes-
sional development that would eventually make it one of the most ste-
reotypically male professions, inhospitable to most women.  46   

 Contemporary estimates suggest that throughout the 1960s at least 
thirty percent of working computer programmers were women. One 
study puts the fi gure closer to fi fty percent.  47   When the fi rst offi cial gov-
ernment statistics were calculated in 1970, twenty-three percent of pro-
grammers were identifi ed as female — and this is during a period of 
intense contraction in the programmer labor market.  48   The term  “ pro-
gramming ”  often encompassed a multitude of occupational categories, 
including high-status jobs such as systems analyst and lead programmer 
as well as low-status jobs like coder; women tended to (or were forced 
to) congregate in the lower end of the occupational pool. Nevertheless, 
there is ample evidence women were unusually welcome within the 
computing professions well into the late 1960s. 

 One explanation for the larger numbers of women in computing 
in this period was the intense shortage of available labor. In an employ-
ment market desperate for even moderately skilled computer workers, it 
would have been counterproductive to discriminate against women. The 
reliance on aptitude testing and internal promotion during this period 
meant that women were at least as likely to be selected as programmer 
trainees as men. Many fi rms tested all of their employees for program-
ming aptitude, so even women working in such highly feminized 
(and low-status) occupations as stenography had a chance to become 
programmers. 
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 Additionally, there is evidence that female programmers were not just 
acceptabled but preferred. In a 1963  Datamation  article lauding the 
virtues of female computer programmers, for example, Valerie Rockmael 
focused specifi cally on women ’ s stability, reliability, and relative docility: 
 “ Women are less aggressive and more content in one position . . . Women 
consider fringe benefi ts of more importance than their male peers and 
are more prone to stay on the job if they are content, regardless of a lack 
of advancement. They also maintain their original geographic roots and 
are less willing to travel or change job locations, particularly if they are 
married or engaged. ”   49   In an era in which turnover rates for program-
mers averaged twenty percent annually, this was a compelling argument 
for employers. 

 A 1968 article in  Cosmopolitan  magazine captured perfectly the 
promise of opportunity available to women in the early decades of com-
puting. Entitled simply  “ The Computer Girls, ”  the article noted that 
there were already more than 20,000 women working as computer pro-
grammers in the United States, and that there was an immediate demand 
for 20,000 more.  50   The author quotes Grace Hopper herself as saying 
that programming was  “ just like planning a dinner ” :  “ You have to 
plan ahead and schedule everything so it ’ s ready when you need it. 
Programming requires patience and the ability to handle detail. Women 
are  ‘ naturals ’  at computer programming. ”   51   The rapid expansion of the 
computer industry meant that  “ sex discrimination in hiring ”  was unheard 
of, the article ’ s author confi dently declared, and anyone with aptitude —
 male or female, college-educated or not — could succeed in the fi eld. 
As one of the article ’ s sources described it, computing was one of 
the few occupations in which a woman could be  “ fully accepted as a 
professional. ”   52   

 The  Cosmo  article is full of seemingly silly details — such as a confes-
sion from Sally Brown,  “ a redhead from South Bend, Indiana, ”  that  “ she 
doesn ’ t mind working late ”  because there is often  “ a nice male program-
mer to take a girl home ”  — but for the most part it accurately refl ects the 
contemporary sense of the opportunities available to women in comput-
ing. After all,  “ every company that makes or uses computers hires 
women to program them, ”  the article noted matter-of-factly,  “ If a girl 
is qualifi ed, she ’ s got the job. ”  And, in true  Cosmopolitan  style, the 
article concludes with a quiz; by answering a few simple questions, any 
 Cosmo  girl could see whether she too had what it took to be a profes-
sional computer programmer making  “ $15,000 after fi ve years. ”   53   The 
questions on the quiz were drawn directly from an aptitude test used by 
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the Honeywell Corporation, and so was more relevant to the real world 
than the magazine ’ s usual fare. 

 In many ways, however, the idealized gender-neutral profession 
described in  “ The Computer Girls ”  was already becoming increasingly 
divorced from reality. Over the course of the 1960s, developments in the 
computing professions were creating new barriers to female participa-
tion. An activity originally intended to be performed by low-status, 
clerical — and more often than not, female — computer programming was 
gradually and deliberately transformed into a high-status, scientifi c, and 
masculine discipline. 

 Professionalization was crucial aspect of this masculinization process. 
As Margaret Rossiter and others have suggested, professionalization 
nearly always requires the exclusion of women.  54   Among other things, 
it requires segmentation and stratifi cation. In order to elevate the overall 
status of their discipline, aspiring professionals had to distance them-
selves from those aspects of their work that were seen as low-status 
and routine, work that became increasingly feminized. In addition, the 
imposition of formal educational requirements on the part of the profes-
sional societies, such as a college degree, made it diffi cult for women —
 particularly women who had taken time off to raise children — to enter 
the profession. In 1965, for example, the Association for Computing 
Machinery imposed a four-year degree requirement for membership that, 
in an era when there were almost twice as many male as there were 
female college undergraduates, excluded signifi cantly more women than 
men.  55   A survey from the late 1970s showed that fewer than 10% of 
ACM members were women.  56   Similarly, certifi cation programs or licens-
ing requirements erected barriers to entry that disproportionately affected 
women. Finally, professionalism also suggests a certain degree of mana-
gerial authority and competence — skills and characteristics that were 
often seen as being masculine rather than feminine. The CDP examina-
tions, for example, explicitly required candidates to have at least three 
years of experience, and the majority of CDP holders worked in middle 
management.  57   In his 1971 book  The Psychology of Computer 
Programming , Gerald Weinberg notes the commonly held belief that 
female programmers were incapable of leading a group or supervising 
their male colleagues.  58   The more programmers were seen as potential 
managers (a new development that came with professionalization), the 
more women were excluded. 

 All of this suggests that as computer programmers constructed a 
professional identity for themselves during the crucial decades of the 
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1950s and 1960s, that they also constructed a gender identity. Masculinity 
was just one of many resources that they drew on to distance their pro-
fession from its low-status origins in clerical data processing. The ques-
tion of  “ who made for a good programmer ”  increasingly involved in its 
answer the qualifi er  “ male. ”  The stereotype of the antisocial program-
mer, wearing sandals and a beard, was not simply a product of the 
pseudoscientifi c personality profi les used for recruitment in this period; 
over time, it became a deliberate self-construction embraced by the com-
munity. Yesterday ’ s  “ computer boys ”  are today ’ s  “ IT guys. ”  The moniker 
may have changed, but the gender (and status) connotations remain. 

 To suggest that a discipline has been made masculine, however, is not 
to claim that all of its practitioners are male but rather that the ideals 
of the discipline are seen as masculine ideals. It is entirely possible, for 
example, to talk about science being gendered male without arguing that 
there are no female scientists. To the degree that women succeed in 
masculinized disciplines, however, it is by suppressing their femininity: 
to act female in such contexts is to act  “ unprofessionally. ”   59   There is a 
large literature on the ways in which women in such fi elds are forced to 
accommodate themselves to the dominant gender dynamics of the disci-
pline. The masculinization of a profession erects barriers to female par-
ticipation, but it does not eliminate it altogether.  60   

 From Crisis to Opportunity 

 The continued existence of a four-decades-long crisis in one of the largest 
and fastest-growing sectors of the U.S. economy suggests an interesting 
dichotomy: on the one hand, software is the technological success story 
of the past half century; on the other hand, its reputation and identity 
continue to be marked by perceptions of crisis and failure. What can we 
make of these strange contradictions and the remarkable persistence of 
a crisis mentality? More important, how can understanding this duality 
contribute to advancing the art and science of software development? 

 There seem to be at least three crucial lessons to be learned from the 
history of the software crisis: 

 The fi rst is a simple and obvious observation: just as software is about 
more than just computer code, the software crisis is about more than 
just software. Software is what links the powerful technology of digital 
computing to larger human actions, agendas, and interactions. As such, 
it cannot be isolated from its social, economic, and political context. User 
dissatisfaction with software often has less to do with technical failure 
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than it does with its failure to address the  “ real ”  problem (which was 
probably not technical in nature), or the implications that software has 
on larger patterns of work, power, and autonomy. 

 The second lesson follows naturally from the fi rst: just as software 
itself is a heterogeneous system and the software crisis is a refl ection of 
that heterogeneity, so too must the solution to the software crisis be 
heterogeneous. One of the appeals of software engineering as a solution 
to the crisis is that engineers have long experience in developing such 
complicated  “ systems of systems. ”  And yet even more established 
branches of engineering struggle with the engineer ’ s temptation to reduce 
everything to a technical problem. From the earliest days of electronic 
computing, users have been dissatisfi ed with the tendency of program-
mers to oversimplify complex business problems. And although the 
context of software development has changed over time, laments about 
the inability of software designers to adequately comprehend and repre-
sent the needs of users have not. Computer programmers in particular 
sat in the uncomfortable  “ interface between the world of ill-stated prob-
lems and the computers. ”   61   Design in a heterogeneous environment is 
diffi cult; design is as much a social and political process as it is technical; 
cultivating skilled designers requires a comprehensive and balanced 
approach to education, training, and career development. As Frederick 
Brooks observed in his  “ No Silver Bullet, ”   “ The hardest single part of 
building a software system is deciding precisely what to build. No other 
part of the conceptual work is as diffi cult as establishing the detailed 
technical requirements, including all the interfaces to people, to machines, 
and to other software systems. No other part of the work so cripples the 
resulting system if done wrong. No other part is more diffi cult to 
rectify later. ”   62   

 Finally, any proposed solution to the software crisis, whether it is 
technical, managerial, professional, or otherwise, has implications for 
individuals and organizations. The appeal of the software factory model 
might appear obvious to corporate managers; for skilled computer pro-
fessionals, the idea of becoming a factory worker is understandably less 
desirable. Whether or not such a model would even be feasible depends 
a great deal on whether or not you believe software development as a 
process can be decomposed neatly into individual tasks. The history of 
software suggests that this is not at all an obvious or undisputed fact. 

 From this perspective, even the most seemingly technical debates 
cannot be isolated from this larger context of occupational identity 
and organizational power. As early as 1962, in a RAND Corporation 
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Symposium on Programming Languages, Jack Little lamented the ten-
dency of manufacturers to design languages  “ for use by some sub-human 
species in order to get around training and having good programmers. ”   63   
When the Department of Defense proposed ADA as a solution to yet 
another outbreak of the software crisis, it was trumpeted as a means of 
 “ replacing the idiosyncratic  ‘ artistic ’  ethos that has long governed soft-
ware writing with a more effi cient, cost-effective engineering mind-set. ”   64   
As was mentioned earlier, object-oriented programming enthusiasts 
advocate for  “ a software industrial revolution based on reusable and 
interchangeable parts that will alter the software universe as surely as 
the industrial revolution changed manufacturing. ”   65   Once again, the 
desirability of such a revolution, and its attendant implications for the 
character and quality of programming labor, is not universally recog-
nized; witness the recent debate about outsourcing, which ties the history 
of the software crisis into a much larger and longer-running one about 
globalism, job protection, workers ’  rights, and national identity. 

 All of this is not to deny the remarkable success of the software indus-
try or the accomplishments of aspiring software engineers. In fact, the 
success of software — in the face of a seemingly perpetual and unchanging 
rhetoric of crisis — is precisely what makes this history so interesting and 
relevant to contemporary practitioners. This is perhaps one of the few 
situations in which it actually is true that those who cannot learn from 
history are doomed to repeat it. 

 Historians of technology have long argued that all technologies are, 
at least to a certain degree, socially constructed. This is simply to say 
that the physical design of an artifact is inextricably infl uenced by its 
larger environment. In the 1950s and 1960s, the electronic digital com-
puter was introduced into the well-established technical and social 
systems of the modern business organization. Like all new technologies, 
the computer took its shape from — and helped to shape — its social, cul-
tural, and technological context. As the computer became an increasingly 
important part of the modern corporate organization, control over its 
use and identity became increasingly contested. The confl icting needs and 
agendas of users, manufacturers, managers, and programmers all became 
wrapped up in a highly public struggle for control over the professional 
territory opened up by the technology of computing. Thinking about 
the software crisis — and the invention of the discipline of software engi-
neering — as a series of interconnected social and political negotiations, 
rather than an isolated technical decision about the one best way 
to develop software components, provides an essential link between 
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internal developments in information technology and their larger social 
and historical context. It can help explain why, in an industry character-
ized by rapid change and innovation, the rhetoric of crisis has proven so 
remarkably persistent. 

 Despite the persistence of the software crisis mentality, programming 
continues to survive as an essentially craft-based occupation in the 
midst of a predominantly engineering-oriented corporate environment.  66   
Although the rhetoric of software engineering has been generally adopted, 
the substance of software engineering has not. Military and industrial 
leaders continue to decry the lack of engineer standards in software 
development.  “ More and more software will be behind schedule, over 
budget, under powered, and of poor quality — and there ’ s nothing we 
can do about it, ”  complained an article in  Byte Magazine  in 1996. A 
1998 study by the House Committee on Software Development and 
Regulation called software a shoot-from-the-hip industry, noting a  “ dis-
tinct vacuum in the treatment of ethics in computer science. ”   67   Almost 
thirty years after the fi rst NATO Conference on Software Engineering, 
many programmers and project managers are still concluding that 
 “ excellent developers, like excellent musicians and artists, are born, not 
made. ”   68   
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